
Randomized Algorithms

CME309/CS365, Winter 2012-2013, Stanford University
Instructor: Ashish Goel

Handout 3: Homework 1. Due 1/31/2013 @ 11:00am.

Collaboration policy: Limited collaboration is allowed you can discuss the problem with other students
in this class but cannot collaborate on writing the actual final answer. Please do not look at someone elses
solution and do not share your solution with anyone else.

Late HW policy: You are allowed one late day for any one HW (i.e. submit the HW on Friday as opposed
to Thursday).

Problem numbers refer to the text-book (Motwani and Raghavan).

Non-letter grade students: please do any three problems. If you do more, we will grade any three.

1. Problem 1.8

2. Problem 1.9
Hint: Define a random variable Xi that indicates whether the size of the set S reduces by a constant
factor (e.g. 1

4) in the i-th iteration.

3. Problem 2.3

4. Problem 4.14
Hint: Try an analysis similar to the hint for Problem 1.9

5. Let X1, X2, . . . , Xn be i.i.d. geometric random variables and S =
∑

iXi. Give Chernoff-like bounds
on S. Specifically, find bounds for Pr[S > (1 + δ)E[S]] and Pr[S < (1 − δ)E[S]].
Hint: A geometric random variable with mean 1

p can be interpreted as the number of coin flips needed
to get a Heads, when each coin flip gets Heads with probability p.

6. Exercise 4.2 (Probability and Computing): We have a standard six-sided die. Let X be the number of
times that a 6 occurs over n throws of a die. Let p be the probability of the event X ≥ n

4 . Compare
the best upper bounds on p that you can obtain using Markov’s inequality, Chebyshev’s inequality,
and Chernoff bounds.

7. Suppose you have a set of n numbers. You want to find the smallest element of this set, but you
are working with a computer where writing to memory is much more expensive than reading from
memory or doing computation. Design a randomized algorithm that computes the minimum of the
given numbers with high probability, while only using O(log n) writes to memory when you are allowed
to sample with replacement from S as a unit time operation, and when you are allowed to sample
without replacement from S as a unit time operation. For these two cases, your algorithm should take
time O(n log n) and O(n) respectively. Any writes done by the sampling data structure are not charged
to your algorithm.

1


