Multi-scale dynamics in biological soft matter and polymeric fluids

Amir Saadat (Postdoc advisor: Eric Shaqfeh, PhD advisor: Bamin Khomami) Department of Chemical Engineering, Stanford University

Research experience and vision

- Grant writing experience
- Open Medicine Foundation (OMF), 1 year, \$100K
- NSF's XSEDE computational allocation, 1 year, \$40K
- NVIDIA-Stanford for leveraging GPU computing, \$50K
- NIH R01 (under review, co-authored)
- Research experience and skills
- Designing microfluidic platforms for medical diagnosis
- Blood suspension biology (microcirculation modeling)
- Image analysis and microfluidic experiments of blood cells
- Parallel computing CPU and GPU (Fortran, C/C++, CUDA)
- Continuum level techniques (finite element, finite volume) – Dynamics of flexible and semiflexible macromolecules – Molecular simulations (semidilute polymeric solutions) – Rheology and processing of polymer nanocomposites

High-throughput measurement of red blood cell (RBC) biomechanics

- Primary deformability issues (hereditary, mutation) - Sickle cell disease, thalassemia, malaria infection
- Secondary deformability issues (hydration, oxidative stress) - Sepsis, diabetes, metabolic syndrome, etc.
- Now investigating chronic fatigue syndrome, no definitive cure, affects millions of individuals and 2 out of 100 children

1 - A. Saadat*, D. Huyke*, D. Oyarzun*, P. Escobar, I. Oevreeide, E. Shaqfeh, J. Santiago, (Submitted to PNAS) 2 - A. Saadat*, C. Guido*, G. Iaccarino, E. Shaqfeh, Phys. Rev. E 98, 063316 (2018)

Structure and dynamics of polymer solutions via molecular modeling

1 - A. Saadat, B. Khomami, BDpack, an open source parallel Brownian dynamics simulation package, J. Rheol. 61, 147 (2017) 2 - D. Mai*, A. Saadat*, B. Khomami, C. Schroeder, Macromolecules 51, 1507 (2018) 3 - T. Lin*, A. Saadat*, A. Kushwaha, E. Shaqfeh, Macromolecules 51, 254 (2018)

le							
rent research ure research				 Macroscopic Constitutive modeling Boltzmann collision Organ scale 			
				mmersed boundary ellular, vessel scale			
Langevin dyn Flexible macron Cell molecular in				e mics lecules eraction			
Atomistic ▲ Coarse-grained chemistry			5				
					L	ength sca	le
gstrom Nano-		Mie	cro-	Mili-	Meters		

Engineering medical diagnosis and treatment: molecular to organ scale

Funding opportunities

- NSF Mathematical and Physical Sciences (MPS), Mathematical Biology and CDS&E suitable for all three projects • NSF's XSEDE (4 times every year) and INCITE (due June each year) for computational resources allocation
- National Institute of Health (NIH) R01 and R21 for all three projects, National Institute on Aging (NIA) for the first project • American Heart Association (AHA) and American Society of Hematology (ASH) for blood projects

• Defects in the brain blood circulation is believed to contribute to synaptic loss and cognitive decline, e.g., Alzheimer's • It is assumed that oxygen pressure and species concentration affect cytoskeleton activation state and RBC deformability

• Blood viscosity, and RBC adhesion to each other and to the endothelium is altered in many blood associated diseases • Surface properties influence RBC self-organization and interactions in the vascular network

• Arthritis of the knee affects 46 million (22%) of adults in the US

• Synovial fluid is in semidilute concentration regime. Treatment methods include injection of polymers and nanomaterials

• Open Medicine Foundation (OMF) for chronic fatigue syndrome investigation