Amir Saadat, PhD

Postdoctoral Scholar Department of Chemical Engineering Stanford University, Shriram Center, Room 048-B

Profile

Multi-disciplinary scientist with 10+ years of experience in simulation, modeling, and experimental investigations in biophysics, soft matter, and nanocomposites. I have conducted multi-scale numerical simulations to validate different experiments, namely automatic cell microscopy, single DNA visualization, and extensional rheology. I have extensively collaborated with biochemists, medical doctors, and microfluidic experts. Currently investigating variability of cell biomechanics and biochemistry in chronic fatigue syndrome (CFS) disease.

Selected Skills

Computational and statistical modeling of physical systems		
– Molecular-level (Monte Carlo, stochastic differential equations)	MATLAB	$\bullet \bullet \bullet \bullet \bullet$
– Continuum-level (finite-element, finite-volume)	Python	$\bullet \bullet \bullet \bullet \bullet$
	Fortran, $C/C++$	••••
Optical microscopy, LED lighting	MPI, OpenMP, CUDA	•••••
 Image analysis (bioengineering applications) 	Rheometry, LVE, LAOS	••••
 Microfluidic devices (bioengineering applications) 	Extrusion, Injection molding	••••
 Familiar with spectroscopy and scattering techniques 	Dynamic light scattering (DLS)	•••••
 Statistical analysis: descriptive, inferential 	ANSYS Fluent & POLYFLOW	$\bullet\bullet\bullet\bullet\bullet$
 Rheology, polymer and nano-composite processing 	OpenFOAM & ParaView	$\bullet \bullet \bullet \bullet \bullet$

Experiences

Postdoctoral Scholar	Stanford, CA
- Designed a biomedical assay experiment to validate red blood cell models	
- Studied physiological variability of blood cell biochemistry and biomechanics	
- Characterized cell stiffness using multi-physics simulation and microfluidic experiments	2016 - present
- Studied large-scale dynamics of red blood cell suspension in micro-vasculature	-
- Developed automatic image analysis tools for cells inside a micro-channel using MATLAB/Python	
- Investigated zeta potential and mobility of red blood cells using dynamic light scattering (DLS)	
Graduate Research Assistant, Eastman Chemical Fellow	Knoxville, TN
- Simulated/validated single DNA visualization experiments with stochastic modeling	2011 - 2016
- Modeled extensional rheology of polystyrene solutions using statistical simulations	
- Developed Brownian dynamics simulation package "BDpack" (http://amir-saadat.github.io/BDpack,	/)
- Developed parallelized codes using CUDA, MPI, OpenMP	
Polymer Rheology Lab Coordinator	Tehran, Iran
- Mentored/supervised three undergrad students to conduct viscoelastic and processing experiments	2007 - 2010
- Studied die swell and rheology of nanocomposites theoretically and experimentally	

Honors and Awards

Aug 2018-present	Open Medicine Foundation (OMF) Postdoc Scholarship
Apr 2019-Apr 2020	Allocation of NSF's XSEDE computational resources (equal to \sim \$40,000)
Feb 2017-Aug 2018	Army High-Performance-Computing Research Center Postdoc Scholarship
July 2017	NVIDIA-Stanford ICME grant for leveraging GPU computing (\$50,000)
Feb 2014-Aug 2016	Eastman graduate student fellowship from Eastman Chemical Company
2006-2009	Top (1st rank) and honor student during M.Sc. in Amirkabir University

asaadat@stanford.edu
 http://www.stanford.edu/~asaadat
 https://github.com/amir-saadat

Education/Professional Training

Stanford University Postdoc in Chemical Engineering Advisor: Eric S. G. Shaqfeh Research title: Design of diagnostic devices via simulation and microfluidic experiments	Stanford, CA 2016 - present
University of Tennessee Ph.D. and M.Sc. in Chemical and Biomolecular Engineering, GPA:4.0 Ph.D. minor in Computational Science (Program chair: Jack Dongarra) Advisor: Bamin Khomami Dissertation title: Large scale Brownian dynamics simulation of polymeric solutions	Knoxville, TN 2011 - 2016 2015
Amirkabir University of Technology M.Sc. and B.Sc. in Polymer Engineering	Tehran, Iran 2003 - 2009

Publications

- 1. Amir Saadat*, Diego A. Huyke*, Diego I. Oyarzun*, Ingrid H. Ovreeide, Paulina V. Escobar, Eric S. G. Shaqfeh, Juan G. Santiago "High-throughput Measurement of an Individual's Red Blood Cell Shear Modulus Distribution", under review in *PNAS*.
- 2. Amir Saadat, Chris J. Guido, Eric S. G. Shaqfeh, "Effect of Cytoplasmic Viscosity on Red Blood Cell Migration in Small Arteriole-level Confinements", under review in *Phys. Rev. Fluids*. Presently available as *bioarxiv*.
- 3. Amir Saadat*, Chris J. Guido*, Gianluca laccarino, Eric S. G. Shaqfeh, "Immersed-Finite-Element Method for Deformable Particle Suspensions in Viscous and Viscoelastic Media", *Phys. Rev. E*, **2018**, 98, 063316.
- 4. Danielle J. Mai*, Amir Saadat*, Bamin Khomami, Charles M. Schroeder, "Stretching Dynamics of Single Comb Polymers in Extensional Flow", *Macromolecules*, **2018**, 51, 1507.
- 5. Tiras Y. Lin*, Amir Saadat*, Amit Kushwaha, Eric S. G. Shaqfeh "Effect of Length on the Dynamics of Wall Tethered Polymers in Shear Flow", *Macromolecules*, **2017**, 51, 254.
- 6. Amir Saadat, Bamin Khomami, "Letter to the Editor: BDpack, an Open Source Parallel Brownian Dynamics Simulation Package", *J. Rheol.*, **2017**, 61, 147-149.
- 7. Amir Saadat, Bamin Khomami, "A New Bead-Spring Model for Simulation of Semi-Flexible Macromolecules", *J. Chem. Phys.*, **2016**, 145, 204902.
- 8. Amir Saadat, Bamin Khomami, "Matrix-Free Brownian Dynamics Simulation Technique for Semidilute Polymeric Solutions", *Phys. Rev. E*, **2015**, 92, 033307.
- 9. Amir Saadat, Bamin Khomami, "Molecular Based Prediction of the Extensional Rheology of High Molecular Weight Polystyrene Dilute Solutions: A High-Fidelity Brownian Dynamics Approach", J. Rheol., **2015**, 59, 1507-1525.
- Amir Saadat, Bamin Khomami, "Computationally Efficient Algorithms for Incorporation of Hydrodynamic and Excluded Volume Interactions in Brownian Dynamics Simulations: A Comparative Study of the Krylov Subspace and Chebyshev Based Techniques", J. Chem. Phys., 2014, 140, 184903.
- 11. Amir Saadat, Hossein Nazockdast, Fatemeh Sepehr, Milad Mehranpour, "Viscoelastic Modeling of Extrudate Swell of Acrylonitrile-Butadiene-Styrene/Clay Nanocomposite", *Appl. Rheol.*, **2013**, 23, 12131.
- 12. Amir Saadat, Hossein Nazockdast, Fatemeh Sepehr, Milad Mehranpour, "Linear and Nonlinear Melt Rheology and Extrudate Swell of Acrylonitrile-Butadiene-Styrene and Organoclay-Filled Acrylonitrile-Butadiene-Styrene Nanocomposite", *Polym. Eng. & Sci.*, **2010**, 50, 2340-2349.