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We now outline the main parts of the supplementary materials. In Section S1, we provide proofs of Theorems 1 and 2 in the9

main paper, which deal with consistency in the beta-model and the stochastic block model (SBM), respectively. We then move10

to proving Theorem 3, which deals with consistency in the latent space model. First, Section S2 defines the estimates of the11

node locations and effects, and in Section S2.1, we prove Theorem 3 in the main paper, which deals with the consistency of the12

estimates of the node locations and effects. The proof of Theorem 3 relies on proving consistency of the estimates of the global13

parameters, which we do in Section S2.2. Section S2.3 discusses the assumptions made in Theorem 3 in the main paper and14

demonstrates that several conventional distributions used in the literature satisfies these assumptions. Section S3 contains the15

proof of Theorem 4 in the main paper. Section S4 provides proofs of the other theorems in the main paper. Section S5 contains16

the proof of Theorem 5 and Section S6 contains the proof of Theorem 6. Sections S7 and S8 provide additional simulations.17

Section S9 provides simulations to verify the consistency of the claims made in Theorem 3. Section S10 contains additional18

lemmas and results we use in the supplementary materials.19

In the proofs, we use C to refer to constants or sequences of constants that can change from line to line, but critically these20

constants never depend on the graph size n nor the number of nodes with trait k, nk.21

S1. Consistency of Beta-Model and SBM Parameters (Theorems 1 and 2)22

We begin with the beta-model. Before providing specifics, we first introduce the main ideas of the proof of Theorem 1, which23

shows that the estimators, computed using just ARD, proposed in (1) are consistent for the parameters of the beta-model. To24

do this, we first recall that (1) proposes a fixed point estimator ν̂i that satisfies ν̂i(t + 1) = ϕ(ν̂i(t)) for some known function ϕ,25

which depends only on the degree sequence. They also propose a consistent estimator of the parameter β, which also only26

depends on the degree of the nodes. Since ARD allows us to recover the degree of nodes in the survey, we can then directly27

apply the results of (1) to conclude Theorem 1. Before getting to the proof of Theorem 1, we now re-state Theorem 3 of (1),28

which we use in our proof of Theorem 1.29

Proposition S1.1 (Theorem 3 of (1)). The fixed point estimator, as described in equations 17-18 of (1), satisfies

max
1≤i≤n̂

|ν̂i − ν⋆
i | ≤ C

√
log(n)

n

with probability 1 − O(1/n2) for some constant C > 0. In addition, we have that β̂
p→ β as n → ∞.30

Proof of Theorem 1. In the case of mutually exclusive and exhaustive traits, di =
∑K

k=1 yik. Since the fixed point estimation31

procedure proposed in (1, 2) depends only on the degree of each node, which we are able to estimate with ARD, we can then32

apply Theorem 3 of (1) to conclude Theorem 1 of the main paper. Theorem 3 of (1) requires several conditions (Conditions 1,33

2, 3, and 5 of (1)), which are all satisfied under the assumptions of Theorem 1 of the main paper.34

35

We now give a brief overview of the proof of Theorem 2. The intuition is that the the ARD responses ỹi = (yi1/n1, . . . , yiK/nK)36

converge, by the weak law of large numbers, to Zi = (P̃i1, . . . , P̃iK) at an exponentially fast rate in n. See Figure S1 for an37

illustration of this fact. Therefore, two nodes in the same community will be classified together with probability going to 1,38

and since the by assumption the Zi are distinct, two nodes in different communities will eventually be classified into different39

communities. We want to emphasize again the differences between the problem we are studying here and classic clustering40

problems or community detection problems. Compared to classic clustering problems, in which the distribution of data does not41

change as the sample size grows, the data we are analyzing here, yik/nk, is converging to its expectation at an exponentially42

fast rate. Therefore, as our sample size grows, it becomes easier to correctly cluster the ARD responses and therefore to43

correctly classify nodes into the right communities. Second, compared to more standard community detection problems, we do44

not observe the graph but instead observe ARD about the nodes (3). This ARD, because it is a sample average, converges45

exponentially fast to its mean, which allows us to perform fast community detection.46

Proof of Theorem 2. To begin, we pick a node randomly from V . Let ci denote its community membership. For any j, since
yjk/nk is a sum of (conditionally) independent random variables, by Hoeffding’s inequality we have that P(|yjk/nk − pjk| >
ϵn) ≤ a exp(−a′ϵ2

nnk) for constants a and a′. To simplify notation here, suppose that we have groups of equal size, so that
nk = n/K, but this is not required for our analysis. By recalling that ỹi = (yi1/n1, . . . , yiK/nK) is the normalized ARD
response with mean p̃i = (P̃i1, . . . , P̃iK), we can conclude by a union bound that

P( max
j:cj =ci

||ỹj − p̃j || > ϵn) ≤ n × a exp(−a′ϵ2
nn) .

for some constants a and a′. By taking ϵ2
n = log(n)/n, we see that P(maxj:cj =ci 1{ĉj ≠ ĉi} > 0) ≤ 1/n. In addition, since47

∆ := minc,c′ ||Zc − Zc′ || > 0, which gives us well-separated clusters, and ϵn → 0, we have that P(maxj:cj ̸=ci 1{ĉj ̸= ĉi}) → 148

for any j with cj ̸= ci. By definition of the classification algorithm, we can conclude that P(maxj:cj =ci 1{ĉj ̸= ĉi} > 0) ≤49

P(maxj:cj =ci ||ỹj − p̃j ||).50

Since the algorithm assigns nodes j that are within ϵn away from i into the same category, we see that the probability of any51

incorrect classification goes to zero for this community. The same argument applies to the second community, when looking at52

the set V \ Ĉi. We then repeat this argument until all nodes are classified.53
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Fig. S1. Comparison of ARD responses in two different scenarios. On the left, we generate traits using the matrix Q =
(

1/2 1/2
1/2 1/2

)
. In this case, traits have no relationship

with the community membership. In the left figure, we plot the normalized ARD responses, Here red indicates community 1, black indicates community 2, circles indicate trait 1,

and triangles indicate trait 2. On the right, we repeat the simulation but using Q =
(

7/10 3/10
1/10 9/10

)
. Here, there is a strong relationship between traits and community

membership, and so K-means returns the correct clustering of the data.
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Given a consistent estimate of the community membership vector, it follows from the weak law of large numbers that Q̂, P̂ ,
and π̂ are consistent for Q, P and π, where

Q̂ck = 1
mc(n)

∑
i∈Ĉc

1{ti = k}

P̂cc′ =


1

mc(n)
∑

i∈Ĉc

∑
k

yik P̂(cj =c′|tj =k)
nc′

, c ̸= c′

1
mc(n)

∑
i∈Ĉc

∑
k

yik P̂(cj =c′|tj =k)
nc′ −1 , c = c′

.

where yik is the ARD response from node i about trait k, π̂c = 1
mc(n)

∑n

i=1 1{ĉi = c}, and mc(n) is the number of nodes that
we estimate to be in community c under the estimated community membership vector ĉ. Here, recall that

P(cj = c′ | tj = k) = P(tj = k, cj = c′)
P(tj = k)

= P(tj = k | cj = c′)P(cj = c′)
P(tj = k)

= Qc′k × πc′

P(tj = k)

and we let P̂ (cj = c′|tj = k) denote the estimate of this probability, computed by plugging in estimates for Q, π, and P (tj = k).54

55

S2. Consistency of Latent Space Model Parameters (Theorem 3)56

We now define the estimates of the node locations and the node effects. In the estimates provided below, we assume that we57

have estimates of the global parameters, which we denote by η⋆ = (µ⋆
1, . . . , µ⋆

K , σ⋆
1 , . . . , σ⋆

K , E{exp(ν⋆)}). In Section S2.2, we58

provide estimates of η⋆ based on method-of-moment estimators.59

Recall that the ARD data yik satisfies yik | ν⋆
i , z⋆

i , η⋆ ∼ Binomial(nk, pik) where nk is the size of group k and pik, which we60

now define. With ARD data we do not observe any connections in the graph directly. It is possible, though unlikely as long as61

the sample size is small compared to the population size when using simple random sampling, that we might observe an alter62

of one of the surveyed respondents. That is, if person i reports knowing 5 people named Michael, one of those people named63

Michael might also be in the survey. Even in the unlikely event that this happens, we do not have access to this information64

through ARD since we do not observe any links. When considering the Binomial representation, therefore, we are making65

a statement not about the connections between any two individuals (which we do not observe) but instead about marginal66

connections between a person and a population. Respondent i is almost certainly more likely to know some members of the67

group k than others, but since ARD does not provide information on edges there is no way to specify that heterogeneity.68

Instead, we focus on an aggregate summary of the relationship between respondent i and members of group k which does not69

differ between members of the group because ARD, unlike the complete graph, does not contain sufficient data to do so. The70

power of our approach, however, is that, even under this limited information setting we still recover consistent estimates of71

model parameters.72

Conditioned on node i’s effect ν⋆
i and latent space location z⋆

i , the probability node i connects to an arbitrary node j in73

group k, written as is P(gij = 1 | ν⋆
i , z⋆

i , η⋆) := pik,74

pik =
∫

V

∫
Z

exp{ν⋆
i + νj − d(z⋆

i , zj)}fk(zj)fV (νj) dνj dzj

= exp(ν⋆
i )E{exp(ν)}

∫
Z

exp{−d(z⋆
i , zj)}fk(zj) dzj .

[S.1]75

Here, we use the notation ν⋆
i to refer to a fixed but unknown parameter of interest, whereas νj represents the variable that76

is integrated out. Note here we have used the property that exp(a + b) = exp(a) exp(b). By assuming the link function is77

exponential, we can easily separate the terms in the expression for P(gij = 1 | νi, zi, η). We believe we can extend these ideas78

to other link functions, as was done in (4), but we leave that to future work.79

We now motivate and then formally describe these method-of-moment estimators (or equivalently, Z-estimators). Since the80

ARD is Binomial, we can estimate pik by equating pik with yik/nk. This then allows us to solve for the parameters νi and zi81

since pik depends on these two parameters (and η, which we can consistently estimate). In total, we create two systems of82

equations (one for the node locations and one for the fixed effects). This section assumes that we know the true parameters η⋆,83

but in Section S2.2 we show how to estimate the parameters η⋆.84

We start with estimating the node locations. To do this, we note that the ratio yik/yik′ converges in probability, by the
weak law of large numbers, to the ratio

Eσk [exp{−d(zi, z)}]/Eσk′ [exp{−d(zi, z′)}] ,

which depends only on the variances of the distributions of node locations σ1, . . . , σK and the node location zi, where we define85

the notation Eσ[exp{−d(z, zi)}] to mean that the expectation is taken with respect to σ. Note that critically, in the ratio86
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pik/pik′ , the terms involving the node effects and E{exp(ν)}, which are all unknown at this point, cancel out. This is the87

reason we look at the ratio of two ARD responses. Here we also make the simplifying assumption that nk = nk′ , although the88

results do not change significantly if we remove this assumption. This suggests that we should take our estimate of the node89

location, denoted by ẑi, to be the value of zi such that yik/yik′ is equal to the ratio Eσk [exp{−d(zi, z)}]/Eσk′ [exp{−d(zi, z′)}].90

More formally, we define the function G1 : M × (0, ∞)2 → R by91

G1(zi; σk, σk′ ) = Eσk [exp{−d(zi, z)}]
Eσk′ [exp{−d(zi, z′)}] . [S.2]92

We drop the dependence on k and k′ for simplicity and just write G1 without any mention of k or k′. This function, when viewed as93

a function of zi for a fixed σk, σk′ , is not always invertible, but we can define a pseudo-inverse by G−1
1 (x) = {m ∈ M : G1(m) = x}.94

In the following calculations, we will take the inverse to be chosen in a fixed way from this set. We discuss this condition further95

and give examples in Section S2.3. Our estimate of the node location, ẑi, solves log{G1(ẑi; σ̂k, σ̂k′ )} = log(yik/nk)−log(yik′ /nk′ )96

for two arbitrary and distinct entries k, k′. In practice, the user selects the values of k and k′. The user can estimate a location97

using each pair of indices k ̸= k′. Taking an average (or the Fréchet mean more generally) would improve the accuracy of98

the resulting estimate. Note that the log transformation simplifies the analysis of this estimator and allows us to use a proof99

technique that is similar to the one used to prove Theorem 1.3 in (2) or Theorem 3 in (1).100

We now motivate our estimator of the the node effects. The idea is that ARD is a Binomial random variable and thus we
can equate the probability of an edge between node i and nodes in group k (which depends on the node effect and the node
location, which we have already estimated above) with the observed number of edges. We then solve for the node effect. To
state this estimator more formally, define the function

G2(νi, zi) = E{exp(ν)} exp(νi)E[exp{−d(zi, z)}] ,

where here z ∼ F (µk, σ2
k). Since yik/nk converges in probability to G2(z⋆

i , ν⋆
i ), this motivates the following estimator101

ν̂i = log
(

yik

nk

)
− log(E[exp{−d(ẑi, z)}]) − log[Ê{exp(ν)}] . [S.3]102

where z ∼ F (µ̂k, σ̂k) and the term log[Ê{exp(ν)}] is the estimate of log[E{exp(ν)}] computed using η̂. Again, as in the case of103

the node locations, the user can select the group index k used in computing ν̂i. As in the case of the node location, we can104

compute ν̂i for all group indices k and their average will be an improved estimate of ν⋆
i .105

In the next section, we prove Theorem 3 in the main paper, which deals with showing that estimates of the node locations106

and node effects are consistent and satisfy a convergence rate of
√

3 log(ñ)/2ñ with probability at least 1 − O(m/ñ3), where107

ñ = n/K and K is assumed to be fixed. Our proof of Theorem 3 is based on two separate lemmas: Lemma S2.2 proves the108

claimed convergence result for the node locations, and Lemma S2.3 proves the claimed convergence result for the node effects.109

To begin with some notation, the estimates of the node locations and the node effects depend on the group parameters,110

which we denote by η. We let ẑi(η) denote the estimate of z⋆
i that is computed using the known and true η, and we let ẑi(η̂)111

denote the estimate based upon the plug-in estimate η̂, which we define formally in Section S2.2.112

S2.1. Proof of Theorem 3. We now provide a proof of Theorem 3 in the main text. For clarity, we repeat the statement of the113

proof here along with the necessary assumptions. The proof relies on consistent estimates of the global parameters. For ease of114

exposition, we have moved the derivation of these estimates to the subsequent section. We prove the result by constructing a115

series of Lemmas that, when combined, yield the desired result. We begin by restating the necessary assumptions. Additional116

discussion of the assumptions, including verification that they hold with distributional assumptions commonly used in practice117

is in Section S2.3. Note that in the main part of the paper, the following four assumptions are labeled as Assumptions 2-5.118

Assumption S2.1. For each k, µk is in a compact subset of Mp(κ) and σk is in a compact subset of (0, ∞).119

Assumption S2.2. The node effects ν⋆
i

iid∼ H satisfy E{exp(ν⋆
i )} < ∞.120

Assumption S2.3. The distribution F is a symmetric distribution on Mp(κ) that is completely characterized by its mean and121

variance and satisfies the following two conditions. The function zi 7→ Ek[exp{−d(zi, z)}] is Lipschitz for every k ∈ {1, . . . , K}122

and zi 7→ Ek[exp{−d(zi, z)}]/Ek′ [exp{−d(zi, z′)}] has a pseudo-inverse that is Lipschitz.123

Assumption S2.4. Define F1 : (zi, σk, σk′ ) 7→ Ek[exp{−d(zi, z)}]/Ek′ [exp{−d(zi, z′)}]. The inverse function F −1
1 is continuous

in σ and for every k, k′, ℓ, and ℓ′, the following two functions are Lipschitz:

η 7→ Ekk′ [exp{−d(z, z′)}]
Eℓℓ′ [exp{−d(z, z′)}] , η 7→ Ekk′ [{exp(−d(z, z′)}]2

Eℓℓ′ [{exp(−d(z, z′)}]2 .

Under the four assumptions above, we now restate Theorem 3 in the main paper.124
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Theorem 1. Suppose Assumptions S2.1, S2.2, S2.3, and S2.4 hold. The estimators ẑi and ν̂i and η̂ are consistent for z⋆
i , ν⋆

i ,
and η⋆ as m, n → ∞, up to isometry on Mp(κ) and satisfy

max
1≤i≤m(n)

dMp(κ)(ẑi, z⋆
i ) ≤

√
3 log(ñ)

2ñ
,

max
1≤i≤m(n)

|ν̂i − ν⋆
i | ≤

√
3 log(ñ)

2ñ
,

with probability 1 − O(m/ñ3).125

Proof of Theorem 3 in the main paper. For readability, we split up the proof of Theorem 3 in the main paper into several126

lemmas. Theorem 3 claims a concentration inequality for the estimates of the node locations and node effects using the plug-in127

estimate η̂ of the global parameters. We prove this result for the node locations (Lemma S2.2) and for the node effects (Lemma128

S2.3) separately. These two lemmas require us to first prove the consistency (without a rate) on the estimates of node locations129

and effects, which we do in Lemma S2.1. The proofs of Lemmas S2.2 and S2.3 are based on Lemmas S2.4 and S2.5, which prove130

the concentration inequalities using the true and unknown group parameter η. Combining the arguments in these lemmas131

proves the desired result.132

133

Our proof of Theorem 3 starts with the following lemma, which states the estimates that maximize the pseudo-likelihood134

of the ARD are consistent as m, n → ∞. We use this result later on to prove Theorem 3. We would like to emphasize that135

maximizing the pseudo-likelihood, which we do in Section S10, is equivalent to a method-of-moments estimator in this case.136

Lemma S2.1. Let the assumptions from Theorem 3 of the main paper hold. Suppose that we have consistent estimates of the137

group parameters η, denoted by η̂. Now suppose that (ν̂1:m, ẑ1:m) are the Z-estimators of the node effects and locations described138

in Section S2. Then, (ν̂1:m, ẑ1:m) are consistent for ν⋆
[1:m] and z⋆

[1:m] as m, n → ∞, up to an isometry on Mp(κ).139

For readability, we have moved the proof of Lemma S2.1 to Section S10. The main idea of the proof follows the standard140

M-estimator consistency steps: showing a well-separated extremum and a uniform law of large numbers (5).141

Lemma S2.2. With probability at least 1 − O(m/ñ3), the following inequality holds up to isometry on Mp(κ).

max
1≤i≤m(n)

dM(ẑi(η̂), z⋆
i ) ≤

√
3 log(ñ)

2ñ
.

Proof. By the triangle inequality,142

dM(ẑi(η̂), z⋆
i ) ≤ dM(ẑi(η̂), ẑi(η)) + dM(ẑi(η), z⋆

i ). [S.4]143

We have two terms in the triangle inequality. We will only have to focus on the second one, because that will dominate the144

rate as we will soon show. We calculate that one below. The first one has an extremely fast rate as it tends to zero. This can145

be seen in a straightforward manner from using a Taylor expansion of the estimating equation in the usual way, because the146

estimating equation consists of an average taken over all pairs of groups and all pairs of potential links across every pair of147

group which gives order OP (1/
√

K2mn), where again m is the size of the ARD sample. We will show later that this rate is148

much faster than the rate for the second term in the inequality, which means this term can be ignored when proving the rate of149

convergence on the term dM(ẑi(η̂), z⋆
i ).150

We now study the second term in the triangle inequality above. Now, using the definition of ẑi(η) as ẑi = G−1
1 (a; η̂), we

write
dM(ẑi(η̂), ẑi(η)) = dM(G−1

1 (a; η̂), G−1
1 (a; η̂))

where a = log(yik/nk) − log(yik′ /nk′ ).151

Supposing that G−1
1 (a; σ) is continuous in σ, which we assume in Theorem 3 in the main paper, we combine Lemma S2.6

with the continuous mapping theorem to show that dM(ẑi(η̂), ẑi(η)) converges to zero in probability. All we need to do now is
show that the second term in (S.4) satisfies the claimed concentration inequality. By Lemma S2.4, which we state below, with
probability at least 1 − O(1/n3

k),

dM(ẑi(η), z⋆
i ) ≤

√
3 log(ñ)

2ñ
,

up to isometry on M. By a union bound, and by recalling (S.4), we conclude that with probability at least 1 − O(m/ñ3):

max
1≤i≤m(n)

dM(ẑi(η̂), z⋆
i ) ≤

√
3 log(ñ)

2ñ

up to isometry on M.152

The next lemma shows that the estimate of νi, based on the plug-in estimate η̂, satisfies a similar concentration inequality.153
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Lemma S2.3. The estimator ν̂i from (S.3) satisfies the following: With probability 1 − O(m/ñ3),

max
1≤i≤m(n)

|ν̂i(η̂) − ν⋆
i | ≤

√
3 log(ñ)

2ñ
.

Proof. The proof follows the same argument that we used in the proof of Lemma S2.2. Since η̂ is consistent for η, the second154

term in the definition of ν̂i can be ignored when proving the desired concentration inequality (again, this argument was used in155

the proof of Theorem 3 in (1)). It therefore suffices to just argue that the term log(yik/nk) satisfies the claimed concentration156

inequality. We can prove this inequality by Hoeffding’s inequality. See Lemma S2.5, which proves this formally. Taking a union157

bound over all i = 1, . . . , m(n) to proves the desired result.158

In the case where d(zi, zj) = 0 (only node effects determine connection propensity) and m = n (meaning that we observe159

the entire graph and not just the ARD), then Theorem 3 of the main paper simplifies to Theorem 3.3 of (2).160

Lemma S2.4. With probability at least 1 − O(m/ñ3), the following inequality holds:

max
1≤i≤m(n)

dM(ẑi(η), z⋆
i ) ≤

√
3 log(ñ)

2ñ
.

The proof is based on similar ideas found in (1, 2). The intuition behind the proof is as follows. The estimator ẑi(η) is161

based on the ARD yik/nk = 1/nk

∑
j∈Gk

gij , which converges exponentially fast to pik by Hoeffding’s inequality. This insight162

allows us to conclude the uniform control over the error in ẑi(η).163

Proof. To begin, we recall that the estimator is ẑi = G−1
1 (yik/nk; η). This function will not be invertible, but we can choose a164

representative from the set of {x : G1(x; η) = yik/nk}. Any choice will lead to the right answer, up to isometry. Note also165

that because of properties of Mp(κ), it is locally Euclidean. See (4) and its references for a more complete description of this166

point. Since ẑi(η̂) converges to zi(η), up to isometry, we therefore only need to prove the argument for the Euclidean case (this167

follows from Lemma S2.1). The extension to the spherical and hyperbolic geometries follows since there is a neighborhood168

around zi in which the distances are approximately Euclidean distances, and thus the Euclidean arguments apply here too.169

Since
a = log(yik/nk) − log(yik′ /nk′ )

converges in probability, as n → ∞, to G1(zi), this motivates our estimate of zi. We set ẑi = G−1
1 (a). See Section S2.3 for a

discussion on this inverse function. Since G−1
1 {log(pik) − log(pik′ )} = z⋆

i ,

∥ẑi(η) − z⋆
i ∥ =

∥∥G−1
1 (a) − G−1

1 {log(pik) − log(pik′ )}
∥∥

≤ Cn| log(yik/nk) − log(yik′ /nk′ ) − log(pik) − log(pik′ )|
≤ C̃n{|yik/nk − pik| + |yik′ /nk′ − pik′ |} .

where Cn and C̃n are sequences of constants. We know that C̃n is on the order nk = O(n) when K is fixed (which we assume),170

since x 7→ log(x) is Lipschitz on any interval [a′, b′] with Lipschitz constant 1/a′. In our case, with probability going to 1,171

yik ≥ 1 and so yik/nk ≥ 1/nk and thus we can take 1/(1/nk) = nk to be the Lipschitz constant. We thus conclude that172

P(∥ẑi(η) − z⋆
i ∥ > ϵ) ≤ P

(∣∣∣yik

nk
− pik

∣∣∣ > ϵ/C̃n

)
+ P

(∣∣∣yik′

nk′
− pik′

∣∣∣ > ϵ/C̃n

)
. [S.5]173

We now show that both terms on the right hand side converge to zero exponentially fast. Since yik is a sum of independent
Bernoulli random variables, each with expectation pik, by Hoeffding’s inequality (6),

P
(∣∣∣yik

nk
− pik

∣∣∣ > ϵ/C̃n

)
≤ 2 exp

(
−2 ϵ2nk

C̃2
n

)
.

Set ϵ2 = 3
2 n−1

k C̃2
n log(nk) = O( 3

2 n−1
k n2

k log(nk)). Then,

P

(∣∣∣yik

nk
− pik

∣∣∣ >

√
3 log(ñ)

2ñ

)
≤ 2 exp {−3 log(nk)} = 2/n3

k .

Similarly, P
(∣∣∣ yik′

nk′
− pik′

∣∣∣ >

√
3 log(ñ)

2ñ

)
≤ 2/n3

k. Putting this together, and recalling (S.5), we see that

P

(
∥ẑi(η) − z⋆

i ∥ >

√
3 log(ñ)

2ñ

)
≤ 4/n3

k .

By a union bound, with probability at least 1 − 4m/n3
k,

max
1≤i≤m

∥ẑi(η) − z⋆
i ∥ <

√
3 log(ñ)

2ñ
.

174
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In the following lemma, we prove that the estimate ν̂i satisfies a similar type of concentration inequality. The proof is175

identical to the one given above, so we omit the details.176

Lemma S2.5. If each zi is known, and the global parameter η is known, the estimator ν̂i defined in (S.3) satisfies the following:
With probability at least 1 − O(m/ñ3),

max
1≤i≤m(n)

|ν̂i(η) − νi| ≤

√
3 log(ñ)

2ñ
.

S2.2. Estimating Global Parameters in Latent Space Model. In this section, we provide estimates of the model parameters177

η. Our discussion comes in three parts. We first show how to estimate the within-group variance terms. To estimate the178

within-group variances, we equate the ARD responses of people in a group k to other nodes in the same group k with the179

probability that an arbitrary edge exists between nodes in group k. Since this probability depends on only the within-group180

variance, as all nodes from a given group are distributed about the same group center, we can therefore estimate the group181

variance in this way.182

To formally define our estimator, fix two groups Gk and Gk′ . The probability that an arbitrary node in group k connects to183

other nodes in group k is equal to, after integrating out all the parameters, E{exp(ν)}2Ekk[exp{−d(z, z′)}], where z, z′ are184

independent and z, z′ ∼ F (µ⋆
k, σ⋆

k). Note critically that this does not upon the mean parameter µ⋆
k.185

We let mk(n) be the number of nodes we sample that belong to group k. We define the quantity186

tkk′ = 1
mk(n)

∑
i∈Gk

yik′

nk′
. [S.6]187

Then, for large n (which implies that |Gk| = nk and mk(n) is large too), the ratio tk/tk′ converges in probability to188

E{exp(ν)}2Ekk[exp{−d(z, z′)}]
E{exp(ν)}2Ek′k′ [exp{−d(z, z′)}] = Ekk[exp{−d(z, z′)}]

Ek′k′ [exp{−d(z, z′)}] . [S.7]189

which depends again on just the unknown variance terms σ⋆
k and σ⋆

k′ . In other words, by looking at the ratio tk/tk′ , the term190

E(exp(ν))2, which we have not yet estimated and do not know in practice, cancels. So this ratio depends only on the unknown191

variance vector (σ⋆
1 , . . . , σ2

⋆). Motivated by this description, we define an estimator σ̂2(n) = {σ̂2
1(n), . . . , σ̂2

K(n)} as the root of192

the following system of equations193

tkk

tk′k′
= Ekk[exp{−d(z, z′)}]

Ek′k′ [exp{−d(z, z′)}] . [S.8]194

If K is large enough to ensure the above solution has a unique zero in the limit as m, n → ∞, this estimator is consistent195

for the true (σ⋆
1 , . . . , σ⋆

K).196

Lemma S2.6. The estimator σ̂2(n) = {σ̂2
1(n), . . . , σ̂2

K(n)} that is the root of the system from (S.8) is consistent as n → ∞.197

Proof. We first sketch an outline of our argument. We will define a sequence of random functions Ĥn such that limn E{Ĥn(σ2)} =198

0 only at the true σ⋆. This sequence of functions Ĥn is defined such that the estimator from the lemma minimizes this199

expression. Thus, to show consistency of the estimator, we can simply verify the two conditions from Theorem 5.7 of (5), which200

for completeness we give in Section S10. At a high level, Condition 1 requires that H have a well-separated zero, and Condition201

2 requires that Ĥn converge uniformly to H. Once we verify these two conditions, we can then conclude from Theorem 5.7 of202

(5) the desired consistency result.203

By recalling the definition of tk in (S.6), we define the sequence of random functions Ĥn : (0, ∞)K → [0, ∞) by

Ĥn(σ2) =
K∑

k=1

K∑
k′=1

{
tkk

tk′k′
− Ekk[exp{−d(z, z′)}]

Ek′k′ [exp{−d(z, z′)}]

}2

.

We then define Hn(σ2) = E{Ĥn(σ2)} and H(σ2) = limn→∞ Hn(σ2). By (S.7) and using the weak law of large numbers,204

combined with the continuous mapping theorem, it is clear that H evaluated at the true σ2 is zero. For sufficiently large K,205

this zero is unique, by using the same argument that we give in Lemma S10.3 or by using Theorem 3 of (7). So Condition206

S10.1 is satisfied.207

We now prove Condition S10.2. Recall that our goal is to show that

sup
σ2∈S

|Ĥn(σ2) − H(σ2)| p→ 0

It suffices to show that supσ2∈S |Ĥn(σ2) − Hn(σ2)| = oP (1), because Hn converges uniformly to H deterministically and hence
also in probability. To show this uniform law of large numbers, we will use Corollary 2.1 of (8). For completeness, we provide
this corollary in Section S10. The pointwise convergence is automatically satisfied, by recalling (S.7). We now fix a k, k′ and
expand inside the double sum in the expression for Ĥn as

tkk

tk′k′
− 2 tkk

tk′k′

Ekk[exp{−d(z, z′)}]
Ek′k′ [exp{−d(z, z′)}] + Ekk[exp{−d(z, z′)}]2

Ekk[exp{−d(z, z′)}]2 .
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By comparing the terms inside the expression |Ĥn(σ2) − Ĥn(σ̃2)|, we see that there are just two terms to consider. To208

show the Lipschitz condition required to use Corollary 2.1 of (8), let σ, σ̃ ∈ S ⊆ (0, ∞)K . To simplify the notation, we let209

Ekk[exp{−d(z, z′)}] denote the expectation using the variance vector σ and Ẽkk[exp{−d(z, z′)}] to denote the expectation210

using the variance σ̃.211

By assumption, the first term satisfies

2 tkk

tk′k′

∣∣∣∣ Ekk[exp{−d(z, z′)}]
Ek′k′ [exp{−d(z, z′)}] − Ẽkk[exp{−d(z, z′)}]

Ẽk′k′ [exp{−d(z, z′)}]

∣∣∣∣ ≤ C
tkk

tk′k′
||σ2 − σ̃2|| ,

where C is a constant. By assumption, the second term satisfies a similar Lipschitz condition:∣∣∣∣ Ekk[exp{−d(z, z′)}]2

Ek′k′ [exp{−d(z, z′)}]2 − Ẽkk[exp{−d(z, z′)}]2

Ẽk′k′ [exp{−d(z, z′)}]2

∣∣∣∣ ≤ C′||σ2 − σ̃2|| ,

where C′ is a constant. Putting this all together, we see that

|Ĥn(σ2) − Ĥn(σ̃2)| ≤
∑
k,k′

(C tkk

tk′k′
+ C′)||σ2 − σ̃2|| .

Since
∑

k,k′ E(Ctkk/tk′k′ + C′) = O(1), we conclude by Corollary 2.1 of (8) that Condition 2 holds. By Theorem 5.7 of (5),212

we conclude the consistency claim in the theorem.213

S2.2.1. Estimating Group Means. In this section, we show how to use the consistent estimates of the within-group variances
σ⋆

1 , . . . , σ⋆
K to estimate the group mean parameters. Motivated by the same approach we used to prove consistency of σ⋆

1 , . . . , σ⋆
K ,

consider now four group centers. The probability that nodes in the first two groups, say k and k′ connect, divided by the
probability that nodes in the last two groups, say ℓ and ℓ′, connect is

E{exp(ν)}2Ekk′ [exp{−d(z, z′)}]
E{exp(ν)}2Eℓℓ′ [exp{−d(z, z′)}] = Ekk′ [exp{−d(z, z′)}]

Eℓℓ′ [exp{−d(z, z′)}] .

Having estimated the within-group variances terms, and noting that tkk′ /tℓℓ′ estimates the probability above, we can estimate214

the terms µ⋆
1, . . . , µ⋆

K by solving the following system of equations: for every 4-tuple (k, k′, ℓ, ℓ′) with distinct entries,215

tkk′

tℓℓ′
= Ekk′ [exp{−d(z, z′)}]

Eℓℓ′ [exp{−d(z, z′)}] . [S.9]216

The following lemma shows that this estimator is consistent as n → ∞.217

Lemma S2.7. Let µ̂1(n), . . . , µ̂K(n) be a root of the system in (S.9). This estimator is consistent as n → ∞, up to an isometry218

on M.219

Proof. The proof is nearly identical to the one given for Lemma S2.6, so we only sketch the argument. We define the sequence
of random functions

Ĥn(µ) =
∑

k,k,ℓ,ℓ′

{
tkk′

tℓℓ′
− Ekk′ [exp{−d(z, z′)}]

Eℓℓ′ [exp{−d(z, z′)}]

}2

We also define Hn(µ) = E{Ĥn(µ)} and H(µ) = limn→ Hn. At the true µ⋆ parameter, H(µ⋆) = 0 for sufficiently large K. For220

sufficiently large K, this is the only zero, up to an isometry on M. (Again, by using the same argument that we give in Lemma221

S10.3 or by using Theorem 3 of (7).) Thus, Condition 1 is satisfied. To show Condition 2, we use the same argument as we give222

in the proof of Lemma S2.6. By assumption, we know that Condition 2 holds. Thus, by Theorem 5.7 of (5), we can conclude223

the desired consistency result.224

S2.2.2. Estimating Node Effect Expectation. In the previous two sections, we have shown how to obtain consistent estimates of225

the within-group variances and the group means. In this section, we show how to estimate the term τ = E[{exp(ν)}2]. The226

probability that any node in group k connects with any node in group k′ is, after integrating out all parameters,227

E[{exp(ν)}2]Ekk′ [exp{−d(z, z′)}] , [S.10]228

where z ∼ F (µ⋆
k, σ⋆

k) and z′ ∼ F (µ⋆
k′ , σ⋆

k′ ). By drawing ẑ ∼ F (µ̂k, σ̂k) independently of ẑ′ ∼ F (µ̂k′ , σ̂k), we can use
Ekk′ [exp{−d(ẑ, ẑ′)}] to estimate the quantity Ekk′ [exp{−d(z, z′)}]. Since

tkk′ = 1
nk

∑
i∈Gk

yik′

nk′

converges in probability to the expression in (S.10), we can estimate E[{exp(ν)}2] by

τ̂ = tkk′

Ekk′ [exp{−d(ẑ, ẑ′)}] .

where ẑ ∼ F (µ̂k, σ̂k) independently of ẑ′ ∼ F (µ̂k′ , σ̂k). By the continuous mapping theorem and by recalling (S.10), we can229

consistently estimate τ .230
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S2.3. Discussion of Assumptions for Theorem 3. In this section we discuss two of the assumptions made in the main paper and231

discuss when these hold.232

The p-dimensional normal distribution in Rp and the von-Mises Fisher distribution on the p-sphere are two models commonly
used in the literature. We now argue that these two model satisfy this assumption. Recall that the term in question, in the
case of a p-dimensional Gaussian distribution, is

zi 7→
∫
Rp

exp(−||zi − z||)f(z)dz ,

where f here is the pdf of the p-dimensional Gaussian distribution. Note that z 7→ d(zi, z) is Lipschitz, and x 7→ exp(−x) is233

Lipschitz over [0, ∞), and thus since exp(−x) is bounded by 1 on (0, ∞), we conclude that zi 7→ exp{−d(zi, z)} is Lipschitz.234

Because the integral of a Lipschitz function is again Lipschitz, we conclude that the assumption holds.235

We now look at the assumption that the inverse of the function zi 7→ G1(z) is invertible, where G1 is defined in (S.2). To236

begin the discussion, recall the simulation exercise in Figure S7. There are two group centers at (2, 2) and (−2, −2) in R2. The237

point we wish to estimate is at (0, 0), so the distance between each group center and this point is 2
√

2. There is a unique point238

in R2 that satisfies this constraint. However, consider the following two examples.239

Example S2.1. Consider two group centers at (2, 2) and (−2, −2) in R2. Suppose the point of interest zi is 2 unit away240

from the first point and 2 away from the second point. Then, the points (2, −2) and (−2, 2) will both solve the expression241

F (z) = log(pik) − log(pik′ ), where pik depends on the distance between zi and the group centers.242

Example S2.2. Now let Mp(κ) = S1(1), the circle with radius 1. Set two group centers at (0, 1) and (−1, 0) and suppose that243

the point of interest is π/2 away from the first group center and 3π/2 away from the second group center. Then there are two244

points at (0, 1) and (0, −1) that solve the expression F (z) = log(pik) − log(pik′ ), where pik depends on the distance between zi245

and the group centers.246

The discussion above highlights the fact that the mapping z 7→ G1(z) might not be invertible. We therefore suggest that the247

user select a representative element of the pseudo-inverse (hence our language in the main part of the paper).248

We now turn to discussing Assumption S2.4. We show that under mild distributional assumptions, the function σ 7→
Ekk′ [exp{−d(z,z′)}]
Eℓℓ′ [exp{−d(z,z′)}] is Lipschitz. The discussion of the function µ 7→ Ekk′ [exp{−d(z,z′)}]

Eℓℓ′ [exp{−d(z,z′)}] is very similar. Suppose first that the
function σk 7→ E[exp{−d(zi, z)}] is Lipschitz. Then, suppose that g : (σk, σk′ ) 7→ E(exp{−d(zi, z)})/E(exp{−d(zi, z′)}) is
differentiable. It then has a gradient ∇g = (∇kg, ∇k′ g), where

∇kg = ∂g

∂σk
= d

dσk
E[exp{−d(zi, z)}]]/E[exp{−d(zi, z′)}]]

Supposing that E[exp{−d(zi, z)}]] is bounded away from zero, then this partial derivative is bounded because we assumed that
the function σk 7→ E[exp{−d(zi, z)}]] is Lipschitz. The other partial derivative is given by

∂g

∂σk′
= E[exp{−d(zi, z)}]]/ d

dσk′
E[exp{−d(zi, z′)}]]

Supposing that the function σk′ 7→ E[exp{−d(zi, z′)}]] has a derivative that is bounded away from zero, we can thus conclude249

that g is Lipschitz since each of its partial derivatives is bounded.250

We now verify when the function σk 7→ E[exp{−d(zi, z)}] is Lipschitz. This function is given by

σk 7→
∫

M
exp{−d(zi, z)}fk(µk, σk)dz .

Supposing that σk 7→ fk(µk, σk) is Lipschitz, then we can use the Leibnitz rule (which allows us to pass the derivative inside251

the integral) to conclude that the function σk 7→ E[exp{−d(zi, z)}] is Lipschitz. By explicitly calculating the derivative of this252

expression in the cause of a Gaussian distribution, we see that σk 7→ fk(µk, σk) is Lipschitz. Since by assumption, each σk is in253

a compact (and hence bounded subset of (0, ∞)), we can conclude that for each zi, ∂g
∂σk

is bounded. To show this, we need to254

show that d
dσk′

E[exp{−d(zi, z′)}]] is bounded away from zero, which for a fixed zi is true because the σk are by assumption in255

a compact subset of (0, ∞). A similar argument applies to the function η 7→ Ekk′ [exp{−d(z,z′)}]2

Eℓℓ′ [exp{−d(z,z′)}]2 .256

S3. Consistency of plug-in estimator E{Si(gn) | θ̂n(y)} for Si(g⋆
n) (Theorem 4)257

Proof of Theorem 4. By the triangle inequality,

|E{Si(gn) | θ̂n(y)} − Si(g⋆
n)| ≤ |E{Si(gn) | θ̂n(y)} − E{Si(gn) | θn}| + |E{Si(gn) | θn} − Si(g⋆

n)| .

By Condition 2 of Theorem 4, |E{Si(gn) | θn} − Si(g⋆
n)| = oP (1). We now analyze the other term. Under Condition 3, the

function θn 7→ E{Si(gn) | θn} is differentiable, so by the mean value theorem, there exists a sequence of intermediate values θ̄n

such that
E{Si(gn) | θ̂n(y)} = E{Si(gn) | θn} + ∇Eθ̄n

· (Eθ̂n
− Eθn ) .
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By re-arranging, we see that

|E{Si(gn) | θ̂n(y)} − E{Si(gn) | θn}| = |
n∑

i=1

∂iEθ̄n
(θ̂n,i − θn,i)|

≤
n∑

i=1

|∂iEθ̄n
(θ̂n,i − θn,i)|

≤ sup
θ̃n

n∑
i=1

|∂iEθ̃n
| · |(θ̂n,i − θn,i)|

Under Condition 3, we have that supθn
∂iEθn ≤ C/n for some constant C, so we can then upper bound

|E{Si(gn) | θ̂n(y)} − E{Si(gn) | θn}| ≤ C

n

∑
j

|θ̂i(n) − θ⋆(n)i| ,

and this last term is oP (1) by Condition 1 of the theorem. This completes the proof.258

S4. Proofs of Taxonomy Results (Corollaries 1 and 2)259

Proof of Corollary 1. This is straightforward to calculate:

E

[{
E(gij) − g∗

ij

}2]
= E{E(gij)2 − 2E(gij)g∗

ij + g2
ij∗ } = p2

ij(θ) − 2pij(θ)g∗
ij +

(
g∗

ij

)2

which completes the proof.260

Proof of Corollary 2. To prove Corollary 2, we need to verify the three conditions from Theorem 4 in the main paper. We first261

verify condition 1. This condition requires that the average error 1/n
∑n

i=1 |θ̂i − θ⋆
i | = oP (1). This is true for the estimators262

from Theorems 1, 2, and 3 since we have shown that the maximum error converges to zero in probability.263

We now turn to proving that Condition 3 of 4 is satisfied. That is, we want to verify that |E{Si(gn) | θ⋆
n} − Si(g⋆

n)| p→ 0 as264

n → ∞.265

For part 1, density, we have ∑
j∈{1,...,n},j ̸=i

var(gij)
(n − 1)2 =

∑
j∈{1,...,n},j ̸=i

pij(θ) (1 − pij(θ))
(n − 1)2

≤
∑

j∈{1,...,n},j ̸=i

1
(n − 1)2 = 1

n − 1 → 0

so the Kolmogorov condition is satisfied and266

P

{
lim

n→∞

di

n
= E (di)

n

}
= 1267

which satisfies the conditions of Theorem 4.268

In part 2 we turn to diffusion centrality. Recall that.

DCi (g; qn, K) =
∑

j

{
K∑

t=1

(qng)t

}
ij

=
∑

j

K∑
t=1

Ct

nt

∑
j1,...,jt−1

gij1 · · · gjt−1j .

For any t, we have269

var

 1
nt

∑
j

∑
j1,...,jt−1

gij1 · · · gjt−1j

 = 1
n2t

∑
j

∑
j1,...,jt−1

var(gij1 · · · gjt−1j)

+ 1
n2t

∑
j

∑
j1,...,jt−1

∑
k

∑
k1,...,kt−1

cov(gij1 · · · gjt−1j , gik1 · · · gkt−1k)

where j0 = k0 = i and js = j, ks = k. var(gij1 · · · gjt−1j) has variance
∏t

s=1 pjs−1js

(
1 −

∏t

s=1 pjs−1js

)
≤ 1 and cov(gij1 · · · gjt−1j , gik1 · · · gkt−1k) ≤270

1. In order for cov(gij1 · · · gjt−1j , gik1 · · · gkt−1k) ̸= 0, gij1 · · · gjt−1j and gik1 · · · gkt−1k need to have at least one edge in common.271
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Notice that gij1 · · · gjt−1j has nt combinations since i is given. Therefore, given a fixed common edge that gij1 · · · gjt−1j and272

gik1 · · · gkt−1k share, gij1 · · · gjt−1j has nt−2 free choices of actors in the path, and gik1 · · · gkt−1k also has nt−2 free choices of273

actors in the path. Therefore, for a given fixed common edge, there are n2(t−2) non-zero covariance terms. Since there are n2
274

choices of a common edge, there are a total of n2t−2 non-zero covariance terms. Therefore,275

var

 1
nt

∑
j

∑
j1,...,jt−1

gij1 · · · gjt−1j

 ≤ nt + n2t−2

n2t
.276

Let DCi,t = 1
nt

∑
j

∑
j1,...,jt−1

gij1 · · · gjt−1j , we have277

P

{
DCi,t − E(DCi,t) ≥ ϵ

}
≤ nt + n2t−2

n2tϵ2 by Chebyshev’s inequality278

279

280

P

{
DCi,t − E(DCi,t) |< ϵ

}
≥ 1 − nt + n2t−2

n2tϵ2 → 1 as n → ∞281

Therefore, DCi,t goes in probability to E(DCi,t) as n → ∞ and, by continuous mapping theorem,

DCi (g; qn, K) =
K∑

t=1

Ct × DCi,t

tends to E(DCi (g; qn, K)) in probability.282

For part 3, clustering, the argument is identical to the convergence of clustering in Erdos-Renyi graphs because every link is283

conditionally edge independent. Let N(i) denote the set of neighbors of actor i and N(i) denote the size of neighbors, then284

clusteringi(g) =

∑
j,k∈N(i) gjk

N(i) · {N(i) | −1}285

Similar to the proof for density, we have∑
j,k∈N(i)

var(gjk)
[| N(i) | ×{| N(i) | −1}]2 =

∑
j,k∈N(i)

pjk(θ) (1 − pjk(θ))
[| N(i) | ×{| N(i) | −1}]2

≤
∑

j,k∈N(i)

1
[| N(i) | ×{| N(i) | −1}]2 = 1

| N(i) | ×{| N(i) | −1} → 0

so the Kolmogorov condition is satisfied and clusteringi(g) goes in probability to

Ezj ,νj ,zk,νk|j,k∈N(i){P(gjk = 1 | νj , νk, zj , zk)}

as n tends to infinity.286

Finally, we now verify Condition 2 of Theorem 4 of the main paper.287

The degree of a node i is Si(gn) = 1/(n − 1)
∑

j ̸=i
pij(θ). In this case, for any k,

∂kE{Si(gn) | θn} = 1
n − 1

d

dθk
pik(θ)

So, supposing that d
dθk

pik(θ) is uniformly bounded, which we assume in the statement of Corollary 2, we can conclude for some
constant C that d

dθk
pik(θ) ≤ C uniformly over k. We can then conclude that ∂kE{Si(gn) | θn} ≤ C/(n − 1) for some constant

C, so Condition 2 holds for the degree statistic. A similar argument applies to the clustering coefficient of a node, defined as

Si(gn) = 1(
Ni
2

) ∑
j,k∈Ni

gijgjk

where Ni is the set of neighbors of node i: Ni = {j : gij = 1}.288

We finally look at the centrality parameter of a node. We only look at the case of T = 2, since the argument for T > 2 is
similar. We begin by computing E{Si(gn) | θn}, which is equal to

E{Si(gn) | θn} =
∑

j

C

n
E[Aij ] +

∑
j

C2

n2 E{[A2]ij} .
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where A2 is the matrix square of the matrix A and A is the adjacency matrix of the graph g. We are interested in the derivative
of E{Si(gn) | θn}. Supposing that d

dθk
pik(θ) is uniformly bounded, the derivative of the first term satisfies Condition 3. So we

now turn to the second sum and expand

E{Aij}2 = E

{∑
k

AikAkj

}
=
∑

k

E{AikAkj} =
∑

k

E{Aik}E{Akj} =
∑

k

pik(θ)pkj(θ) .

Under the same assumption that the derivative d
dθk

pik(θ) is uniformly bounded, we can conclude that the second sum is also289

satisfies Condition 2.290

Thus, we have shown that the three statistics in Corollary 2 satisfy the three conditions in 4, which completes the proof.291

S5. Proof of Consistency of OLS estimators in many networks setting (Theorem 5)292

Proof of Theorem 5. We consider the case where there is no intercept (α = 0) to simplify the calculations, but the same293

argument applies to the case where α ̸= 0.294

We begin by expanding

Or = βE{Sr(gn) | θ̂r(n)} + ϵr = βS⋆
r +

(
ϵr + βE{Sr | θ̂r(n)} − βE{Sr | θr} + βE{Sr | θr} − βS⋆

r

)
Let ϵ̃n,r =

(
ϵr + βE{Sr | θ̂r(n)} − βE{Sr | θr} + βE{Sr | θr} − βS⋆

r

)
. Now, by using the analytic expression for the OLS

estimator, we have that

|β̂ − β| = 1∑R

r=1 E{Sr | θ̂r(n)}2

R∑
r=1

|E{Sr | θ̂r(n)}ϵ̃n,r|

= 1∑R

r=1 E{Sr | θ̂r(n)}2

R∑
r=1

E{Sr | θ̂r(n)}
(
|ϵr + βE{Sr | θ̂r(n)} − βE{Sr | θr} + βE{Sr | θr} − βS⋆

r |
)

≤ 1∑R

r=1 E{Sr | θ̂r(n)2

R∑
r=1

|E{Sr | θ̂r(n)}ϵr| + β∑R

r=1 E{Sr | θ̂r(n)}2

R∑
r=1

|E{Sr | θ̂r(n)}
(
E{Sr | θ̂r(n)} − E{Sr | θr}

)
|+

β∑R

r=1 E{Sr | θ̂r(n)}2

R∑
r=1

|E{Sr | θ̂r(n)} (E{Sr | θr} − S⋆
r ) |

= I + II + III .

Now, I is oP (1) assuming that E(ϵr|E{Sr | θ̂r(n)}) = 0. Now, let us look at the second term,

II = 1∑R

r=1 E{Sr | θ̂r(n)}2

R∑
r=1

E{Sr | θ̂r(n)} × |E{Sr | θ̂r(n)} − E{Sr | θr}| ,

and the third term is

III = 1∑R

r=1 E{Sr | θ̂r(n)}2

R∑
r=1

E{Sr | θ̂r(n)} × |E{Sr | θr} − S⋆
r |

For the third term, supposing that E{Sr | θ̂r(n)} ≤ C, I can upper bound

III ≤ C

R−1
∑R

r=1 E{Sr | θ̂r(n)}2

1
R

R∑
r=1

|E{Sr | θr} − S⋆
r |

Now suppose that that E{S⋆
r | θ} has finite mean. We then can then conclude that

III ≤ C

R−1
∑R

r=1 E{Sr | θ̂r(n)}2

1
R

R∑
r=1

|E{Sr | θr} − S⋆
r | .

By Hoeffding’s inequality, we can conclude that the average 1
R

∑R

r=1 |E{Sr | θr} − S⋆
r | = oP (1), and so by Slutksy’s lemma, we295

can conclude that III = oP (1) as n, R → ∞.296

We now move to the second term II. Using a Taylor series expansion, we can write

E{Sr | θ̂r(n)} − E{Sr | θr(n)} = DT (θ̄n)||θ̂r(n) − θr(n)||

=
n∑

i=1

∂iE{Sr | θ̄r(n)}|θ̂r(n) − θr(n)|i

Emily Breza, Arun G. Chandrasekhar, Shane Lubold, Tyler McCormick, and Mengjie Pan 13 of 26



for some sequence of intermediate values θ̄n. So,

II ≤ 1∑R

r=1 E{Sr | θ̂r(n)}2

R∑
r=1

E{Sr | θ̂r(n)}
n∑

i=1

∂iE{Sr | θ̄r(n)} × |θ̂r(n) − θr(n)|i

≤ C∑R

r=1 E{Sr | θ̂r(n)}2

R∑
r=1

1
n

n∑
i=1

|θ̂r(n) − θr(n)|i

= C

R−1
∑R

r=1 E{Sr | θ̂r(n)}2

1
R

R∑
r=1

n∑
i=1

|θ̂r(n) − θr(n)|i

where the first inequality follows from the Taylor series expansion and the second inequality follows from the assumptions of
this theorem. Supposing that that E(E{Sr | θ̂r(n)2) < ∞, we bound

II ≤ C

R−1
∑R

r=1 E{Sr | θ̂r(n)}2
max

1≤r≤R

n∑
i=1

|θ̂r(n) − θr(n)|i

Under the assumptions of the theorem, we have that max1≤r≤R

∑n

i=1 |θ̂r(n)−θr(n)|i = oP (1), so we conclude that |β̂n,R −β| =297

oP (1), as claimed.298

To prove that the estimator γ̂n,R is consistent, the argument is nearly identical. To see why, we simple re-arrange the299

supposed data generating model:300

S⋆
r = α + γTr + ϵr − E{Si(gn) | θ̂r(n)} + S⋆

r . [S.11]301

The same argument applies to show that the OLS estimates of γ are also consistent under the conditions of the theorem.302

S6. Checking conditions of Theorem 5 for common network statistics (Theorem 6)303

Proof of Theorem 6. We only prove the case for the density. The arguments for the other two statistics are similar.304

From the proof of Theorems 1, 2, 3, we showed that for any network, each estimator θ̂i,r(n) satisfies an exponential
concentration inequality, and by taking a union bound over all nodes in a network, we see that

P( 1
n

n∑
i=1

|θ̂i,r(n) − θ⋆
i,r| > ϵ) ≤ P( max

1≤i≤n
|θ̂i,r(n) − θ⋆

i,r| > ϵ) ≤ nC exp(−C′ϵ2n) .

for some constants C and C′. By taking a union bound over all R villages, we conclude that

P( max
1≤r≤R

1
n

n∑
i=1

|θ̂i,r(n) − θ⋆
i,r| > ϵ) ≤ Rn exp(−ϵ2n) .

Under the assumptions of the theorem, we have that Rn exp(−n) → 0, so Condition 2 holds. We now discuss Condition 3 of305

Theorem 5. One way to satisfy this is to require that the network statistic for each network is the same (i.e., we are considering306

just the centrality of a set of nodes). In this case, since the network statistic Si,r satisfies the required derivative condition, per307

Theorem 4, we can then conclude that the maximum also satisfies such a derivative condition. This completes the proof.308

S7. Results using fully-elicited graphs309

In this section we present additional results using fully-elicited, observed graphs. We use data from (9), which consists of310

completely observed graphs from 75 villages in rural India. The goal of these results is two-fold. First, we aim to demonstrate311

that our results hold in networks that have the level of sparsity and complexity that a user could reasonably find in practice.312

We explore the notion of sparsity further in Section S11 Second, we aim to show that the performance of our method improves313

as the graph size increases, as indicated by our results.314

In each village, about one-third of respondents were asked ARD questions. (7) compare statistics estimated with ARD from315

these graphs with the same statistics calculated using the complete graph. We leverage these results and present a different316

aspect, how the MSE changes as the size of the graph grows. We present results for individual-level statistics from these graphs317

and compute MSE across individuals. Figure S2 presents these results. Each point in the figure represents one village. The size318

of the village is along the x-axis. In practice we report the number of nodes that have ARD as the axis labels, which is about319

1/3 of the total number of nodes in the graph. For nodes that do not have ARD responses we use the procedure described320

in (7).321

S8. Additional simulation results with estimated formation model parameters322

In this section we present additional simulation results to complement the simulations we present in the main text. We present323

results when the parameters are estimated using the procedure in (7), rather than assumed to be consistently estimated. These324

simulations are presented in Figures S3, S4, and S5. The results we present here use the same simulation setup as Figure 2 in325

the main text.326
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Fig. S2. MSE and graph size. Each plot shows the MSE (computed across nodes) plotted as a function of the number of respondents who received ARD using data from (9).
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Fig. S3. Boxplot of β̂ for β in regression yij,r = α + βS̄ij,r + ϵr , where Sij,r and S̄ij,r represent a true and mean individual-level measure, respectively. Each box
represents the distribution of β̂ for one measure and use of R=50, 100 or 200 networks in regression. 50 actors and 1000 pairs (for link) are randomly selected for each
network. The middle line of the boxplot denotes median, and borders of the boxes denote first and third quartile. The red line denotes the true β = 1 used to generate
yij,r = α + βS∗

ij,r + ϵr in the simulation. These results corroborate the theoretical intuition developed in Theorems 4 and 5.
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Fig. S4. Boxplot of β̂ for β in regression yr = α + βS̄r + ϵr , where Sr and S̄r represent a true and mean network-level measure, respectively. Each box represents the
distribution of β̂ for one measure and use of R=50, 100 or 200 networks in regression. The middle line of the boxplot denotes median, and borders of the boxes denote first and
third quartile. The red line denotes the true β = 1 used to generate yr = α + βS∗

r + ϵr in the simulation. These results corroborate the theoretical intuition developed in
Theorems 4 and 5.
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Fig. S5. Boxplot of percentage errors of γ̂ for γ in regression S̄r = α + γTr + ϵr , where Sr and S̄r represent a true and mean network-level measure, respectively. Each
box represents the distribution of percentage errors for one measure and use of R=50, 100 or 200 networks in regression. The middle line of the boxplot denotes median, and
borders of the boxes denote first and third quartile. These results corroborate the theoretical intuition developed in Theorems 4 and 5.
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S9. Simulations to Demonstrate Consistency of Latent Space Model Parameter Estimators327

In this section, we study simulation experiments to we show that the estimates of z⋆
i and ν⋆

i are consistent as n → ∞.328

We start with the estimates of the node locations. To do this, we create two group centers µ1 = (2, 2) and µ2 = (−2, −2)329

and set z0 = (0, 0). Our goal is to estimate the location of z0. In Figure S6, we plot a sample realization of the zi and z0 for330

n = 500.331

We assign n nodes to be in group 1, and n nodes to be in group 2. Given these group memberships ci, we draw

zi | {ci = j} ∼ N
(

µj ,
1
3I2

)
j = 1, 2 .

where I2 is the 2 × 2 identity matrix. We then create generate edges between the node at location zi and z0 by defining

Pi = exp(−||zi − z0||) = exp(−||zi||) .

where the second equality follows since z0 = (0, 0). We then generate the edges between nodes in groups 1 and 2 and the node
at z0 in this way:

Gi1 = Bernoulli(Pi), ci = 1
Gi2 = Bernoulli(Pi), ci = 2 .

The ARD responses are then yi1 =
∑n

i=1 Gi1 and yi2 =
∑2n

i=n+1 Gi2. We then estimate the node location z0 by the estimation332

procedure described above. In particular, the estimate ẑi solves ẑi = G1(a), where a = log(Yi1/n) − log(Yi2/n). We repeat the333

above process 25 times for each value of n = 50, 100, 500, 1000, 104. In Figure S7, we plot ||ẑi − zi|| = ||ẑi||. We see that the334

norm is decreasing as n increases.335

To demonstrate the consistency claim for the node effect estimate ν̂i, we simulate n locations zi ∼ N
(
(2, 2), 1

3 I2
)

and
ν⋆

i
i.i.d.∼ Unif(−2, 0). We then let ν⋆

i = −1. Our estimate of the node effects is, recalling (S.3), the ν̂i that solves

yik

nk
= E{exp(ν⋆)} exp(ν̂i)E[exp{−d(zi, z)}] ,

where z ∼ F (µ⋆
k, σ⋆

k). We suppose that the terms zi, E{exp(ν⋆)} and µ⋆
k, σ⋆

k are known, which allows us to solve for the estimate336

ν̂i. We repeat this process 100 times for n = 250, 500, 1000, 104. In Figure S8, we plot the estimation error and see that as n337

increases, the error decreases.338

S10. Supplemental results used to prove Theorem 3339

In this section, we prove Lemma S2.1 which is used to prove Theorem 3. To do that, we introduce the pseudo-log likelihood340

of the ARD. We note here that maximizing the pseudo-likelihood is equivalent to the method-of-moments (or equivalently,341

Z-estimator) approach taken in Section S2 but by maximizing the pseudo log likelihood, we are able to use the classical342

M-estimator results to conclude consistency (5).343

We now discuss the pseudo-likelihood of the ARD. As described above, the data we observe, when conditioned on the ego’s
parameters and marginalizing over the alters’ parameters, are simply Binomial draws. We can write the log-likelihood for the
number of links that i has to a random set of nk members of group k as

log f(yik | νi, zi, η) = log
{(

nk

yik

)}
+ yik log(pik) + (nk − yik) log(1 − pik). [S.12]

for an arbitrary νi, zi, η.344

We can build our target objective function by summing up over all k traits for each node and then all nodes

m∑
i=1

K∑
k=1

log f(yik | νi, zi, η).

For each i, the counts of links across groups are independent conditional on the latent positions. We describe this as the345

pseudo-likelihood because the full likelihood also accounts for correlation between Yik(j) and Yjk(i), where k(i) is person i’s346

group. Nonetheless, this pseudo-likelihood delivers consistent estimates, similar to other recent work in consistent estimators347

for graph models. See (10) and its references for a discussion on this point. In practice, we do not know the parameter η⋆,348

which contains the means and variances of the distribution of node locations as well as the expxected value of exp(νi). Suppose349

that we have a consistent estimator η̂
p→ η⋆. We can then use this plug-in estimator in place of η⋆, which leads to the final350

ARD pseudo-likelihood351

ℓ̂n(y | θ) =
m∑

i=1

K∑
k=1

log f(yik | νi, zi, η̂). [S.13]352
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Fig. S6. Plot of n = 500 locations (black circle) centered at (2, 2) and (−2, 2). The point at (0, 0) (the red triangle) is the location we want to estimate with the ARD.
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Fig. S7. Norm of difference ẑi − z0 for various values of n on the x-axis.

Emily Breza, Arun G. Chandrasekhar, Shane Lubold, Tyler McCormick, and Mengjie Pan 21 of 26



250 500 1000 10000

−
2.

5
−

2.
0

−
1.

5
−

1.
0

−
0.

5

Estimate of node effect νi

n

E
st

im
at

e 
of

 n
od

e 
ef

fe
ct

Fig. S8. Estimate of the node effect ν⋆
i using the esimate defined in (S.3). We set ν⋆

i = −1 and generate estimates of this parameter using various values of n on the other
x-axis. As n increases, we see convergence of the estimate to ν⋆

i .
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We then define the estimates of the node locations and effects as the maximisers of the following pseudo-likelihood:353

(ν̂1, . . . , ν̂m, ẑ1, . . . , ẑm) = arg max
ν[1:m],z[1:m]

ℓ̂n

(
y | ν[1:m], z[1:m], η̂

)
. [S.14]354

We begin by including the following result, Theorem 5.7 of (5), that allows us to conclude consistency of an M-estimator.355

This result requires two conditions, which we now state below.356

Condition S10.1. For all ϵ > 0,
sup

θ:d(θ⋆,θ)≥ϵ

Q(θ) < Q(θ⋆) .

When Θ is compact, which we assume is true in Condition S10.3 below, a sufficient condition for Condition S10.1 to hold is357

that Q has a unique maximum at θ⋆.358

Condition S10.2 (Uniform law of Large Numbers). We require that

sup
θ∈Θ

|Q̂n(θ) − Q(θ)| p→ 0 .

Under these two conditions, we can conclude that any M-estimator of the form θ̂n = arg max Qn(θ) is consistent, in the359

sense specified below.360

Lemma S10.1 (Theorem 5.7 of (5)). Let Q̂n be a sequence of random functions indexed by θ ∈ Θ, where (Θ, d) is a metric361

space. Suppose that Conditions S10.1 and S10.2 hold. Then, d(θ̂, θ⋆) p→ 0 as n → ∞.362

There are many ways to verify the uniform law of large numbers result in Condition S10.2. See, among others, (8, 11, 12). In363

this work, we follow the approach outlined by (8), which requires a compact parameter space, that the functions Q̂n converge364

pointwise to E(Q̂n), and that the functions Q̂n satisfy a Lipschitz-type condition.365

The following two conditions are used in the uniform law of large numbers results from (8).366

Condition S10.3 (Compact Parameter Space). We suppose that (Θ, d) is a compact metric space.367

Condition S10.4 (Pointwise Convergence). For each θ ∈ Θ, Q̂n(θ) = Q̄(θ) + oP (1)368

Lemma S10.2 (Corollary 2.1 of (8)). Suppose Conditions S10.3 and S10.4 hold and that Q̄n is equicontinuous. Also suppose369

that Θ is a metric space with metric d(θ, θ′) and there exists Bn such that for all θ, θ′ ∈ Θ, |Q̂n(θ) − Q̂n(θ′)| ≤ Bnd(θ, θ′) and370

Bn = OP (1). Then supθ∈Θ |Q̂n(θ) − Q̄n(θ)| = oP (1).371

As (8) points out immediately after Corollary 2.1, if Q̄n = E(Q̂n) and E(Bn) is bounded, then we can drop the assumption372

that Q̂n is equicontinuous and instead include it as a conclusion to the lemma. In other words, we do not need to check the373

condition of equicontinuity to use the lemma above.374

Lemma S10.3. The likelihood function of the data yik, conditioned on node i’s parameters, which we denote by f(νi, zi), from375

the proof of Lemma S2.1 has a unique maximum at (ν⋆
i , z⋆

i , η⋆) for sufficiently large K.376

Proof. By the information decomposition, and again using f to denote the likelihood of yik given node i’s parameters, we have
that

E[log{f(yik | νi, zi)}] = Hik(θ⋆) − KLik(θ | θ⋆) .

where H is the entropy of yik | ν⋆
i , z⋆

i and KL is the KL-divergence between yik|ν⋆
i , z⋆

i and yik|νi, zi. See (13) for more377

information on this decomposition.378

So to maximize the E[log{f(yik | νi, zi)}], we need to minimize the KL divergence. Hence, by summing over k = 1, . . . , K,
K∑

k=1

KLk(θ | θ⋆) =
K∑

k=1

log
{

pik(νi, zi)
pik(ν⋆

i , z⋆
i )

}
nkpik(νi, zi)+

log
{

1 − pik(νi, zi)
1 − pik(ν⋆

i , z⋆
i )

}
nk{1 − pik(νi, zi)} .

Now, note first that the KL divergence is always greater than or equal to zero. Second, the KL divergence is zero if and only if
θ = θ⋆. Note that there are just two parameters νi and zi. For any k = 1, . . . , K, we define the set Ak to be

Ak = {(νi, zi) : exp(νi)Hk(zi)E{exp(ν)} = pik(ν⋆
i , z⋆

i )} .

In words, Ak is the set of parameters (νi, zi) that lead to the same probability pik(ν⋆
i , z⋆

i ). Since the KL divergence is always379

greater than or equal to zero, with equality if and only if the parameters are equal, we see that
⋂K

k=1 Ak is the set of maximizers380

of the function f.381

Clearly, (νi, zi) ∈ Ak for each k and thus (ν⋆
i , z⋆

i ) ∈
⋂K

k=1 Ak. To argue that f has a unique maximum at (ν⋆
i , z⋆

i ), we now382

need to argue that {(ν⋆
i , z⋆

i )} =
⋂K

k=1 Ak. Supposing that pik(ν⋆
i , z⋆

i ) ̸= pik′ (ν⋆
i , z⋆

i ) for some k ̸= k′, meaning we have at least383

two distinct probabilities, then f has a unique maximum. For K sufficiently large, we will have that {(ν⋆
i , z⋆

i )} =
⋂K

k=1 Ak.384

Thus, f has a unique maximum.385
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Proof of Lemma S2.1. To show consistency of the estimates based on maximizing the pseudo-likelihood, we first note that
each pair νi, zi appears in exactly K of the terms in the expression from (S.13). That is,

(ν̂i, ẑi) = arg max
ν,z

K∑
k=1

n−1
k log f(yik | νi, zi, η̂)

Thus, we will show that each pair (ẑi, ν̂i) converges to the true value. By recalling that yik | ν⋆
i , z⋆

i is Binomial, we see that

K∑
k=1

n−1
k log f(yik | νi, zi) =

K∑
k=1

{
n−1

k log
(

nk

yik

)
+ yik

nk
pik+(

1 − yik

nk

)
log(1 − pik)

}
.

To argue consistency, we will use Theorem 5.7 of (5). To simplify the analysis, first note that the term n−1
k log

(
nk
yik

)
does not

depend on the parameters, and also yik | νi, zi =
∑

j∈Gk
gij , so the maximum pseudo likelihood estimates (ν̂i, ẑi) also satisfy

(ν̂i, ẑi) = arg max
ν,z

K∑
k=1

1
nk

∑
j∈Gk

{
gij log(p̂ik) + (1 − gij) log(1 − p̂ik)

}
= arg max

ν,z

f̂n(y, νi, zi, η̂) .

We now define the term p̂ in the expression above. Given estimates of the structural parameters E{exp(ν)}, µk, σ2
k, we define

p̂ik := exp(νi)Ê{exp(ν)}Ĥk(zi)

where Ĥk(zi) = E[exp{−d(zi, z)}] is computed using zj drawn iid from F (µ̂k, σ̂2
k) and Ê{exp(ν)} is the estimate of E{exp(ν)}386

defined in the previous section.387

Define fn(νi, zi) = E{f̂n(y, νi, zi, η̂)} and f(νi, zi) = limn→∞ fn(νi, zi). In the defintion of fn, the expectation is over the
distribution of y (and note that the distribution of η̂ is also determined by the distribution of y). To see why, see our discussion
where we define particular estimates of η̂ and note that these estimates depend on y. By Lemma S10.3, f has a unique
maximum at (ν⋆

i , z⋆
i , η⋆). Thus, since V × M × E is compact, it follows that Condition S10.3 is satisfied. To verify Condition

S10.2, we first use the triangle inequality to see that supνi,zi
|f̂n(y, νi, zi, η̂) − f(y, νi, zi, η̂)| is upper bounded by

sup
νi,zi

|f̂n(y, νi, zi, η̂) − fn(y, νi, zi, η̂)| + sup
νi,zi

|fn(y, νi, zi, η̂) − f(y, νi, zi, η̂)| .

The second term, which is deterministic, converges to zero uniformly over all (νi, zi) by the Weierstrassstrass M-test, which we388

provide for completeness as Lemma S10.4 and state below:389

Lemma S10.4 (Weierstrass M-test). Let fn(x) =
∑n

i=1 fi(x) and f = limn fn(x). Suppose that there exists Mn such that for390

each n, |fn(x)| ≤ Mn for all x and
∑∞

i=1 Mi < ∞. Then fn converges uniformly to f .391

Hence this second term converges uniformly in probability over all (νi, zi). We now look at the first term. To show that this392

converges uniformly in probability to zero, we will use Corollary 2.1 from (8) which for completeness we provide in Section S10.393

In particular, if we can show (1) that f̂n converges pointwise to E(f̂n) and (2) that f̂n satisfies the Lipschitz inequality394

|f̂n(y, νi, zi, η̂) − f̂n(y, ν′
i, z′

i, η̂)| ≤ Bnd{(νi, zi), (ν′
i, z′

i)} , [S.15]395

where Bn = OP (1), then Condition 2 holds by Corollary 2.1 of (8).396

We first show the pointwise convergence. By assumption, p̂ik = exp(νi)τ̂ Ĥ(zi) is a continuous function of its arguments,397

and since η̂
p→ η⋆, p̂ik

p→ pik as n → ∞ by the continuous mapping theorem. Also, conditioned on the ego’s parameters,398

yik/nk
p→ pik (by Chebyshev’s inequality, since gij are independent and bounded), so we conclude the pointwise convergence.399

To show (S.15), we upper bound the left hand side by t1 + t2, where

t1k = gij | log(p̂ik) − log(p̂ik)| ≤ gij |νi − ν′
i + log Ĥ(zi) − log Ĥ(z′

i)|

t2k = (1 − gij)| log(p̂ik) − log(p̂ik)| ≤ gij |νi − ν′
i + log Ĥ(zi) − log Ĥ(z′

i)| .

By assumption, Ĥ is Lipschitz in z and so | log{Ĥ(zi)} − log{Ĥ(z′
i)}| ≤ Cd(zi, z′

i) for some constant C, so

t1k ≤ gij

{
|νi − ν′

i| + Cd(zi, z′
i)
}

≤ gijC′d((νi, zi), (ν′
i, z′

i)) ,

and a similar argument holds for t2k. Since the left hand side of (S.15) is upper bounded by
∑K

k=1 t1k + t2k, and since400 ∑
j∈Gk

n−1
k gij is OP (1), we conclude that (S.15) holds and so we conclude by Corollary 2.1 of (8) that Condition 2 holds. It401

follows from Theorem 5.7 of (5) that the maximum pseudo-likelihood estimator (ν̂i, ẑi) is consistent.402
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S11. Additional simulations with lower density403

We simulated 250 networks of size 250 using a stochastic blockmodel with K=10 traits and C=5 communities under two404

conditions: (i) degree/density similar to the Banerjee et al. (9) data and (ii) with an average degree/density similar to the405

average across Table 1 in Chandrasekhar (14). The goal is to understand how the MSE of estimators derived using the proposed406

method change when using networks that are overall less dense. Figure S9 shows the MSE (scaled by the 1/E(Si)2 to compare407

across the statistics, where Si is the network statistic) using density and network size similar to the Banerjee et al. (9) data.408

The average degree across the villages is 17.38 and the density is 0.081. We see that overall, similar to the results in Figure 1 of409

the paper, the scaled MSE is small, with the exception of predicting the presence of a single link (consistent with the results410

presented in the main body of the paper).411

In Figure S10 we have simulated networks with an average degree of 9 and the density of 0.036, which is comparable to412

the averages presented in Table 1 in Chandrasekhar (14), where the average degree is 8.17 and the density is 0.054. In this413

table, Chandrasekhar (14) reviews the density of networks observed in several different contexts, making this table a potential414

benchmark for the level of sparsity a researcher may find in practice. We see that the MSE remains small for the statistics that415

satisfy our taxonomy results, even when we reduce the density well below the average from the Chandrasekhar (14) table.416

0
5

10
15

sc
al

ed
 M

S
E

pr
ox

im
ity

av
g 

pa
th

 le
ng

th

clo
se

ne
ss

de
gr

ee

ce
nt

ra
lity

dis
tfr

om
se

ed

su
pp

or
t

clu
ste

rin
g

be
tw

ee
nn

es
s

lin
k

0.
00

0
0.

00
0

0.
00

0
0.

00
6

0.
00

6
0.

00
0

0.
00

6
0.

00
2

0.
02

7

5.
25

0

(a) Individual level statistics.

0
4

8

sc
al

ed
 M

S
E

%
 g

ian
t c

om
po

ne
nt

pr
ox

im
ity

av
g 

pa
th

 le
ng

th

dia
m

et
er

pe
rc

en
t c

ut

m
ax

 e
ige

n

clu
ste

rin
g

nu
m

 co
m

po
ne

nt
s

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

01
0

0.
00

10
6

0.
00

00
6

0.
00

00
0

(b) Graph level statistics.

Fig. S9. MSE results for a stochastic block model on n = 250 nodes using K = 10 traits and C = 5 communities.
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Fig. S10. MSE results for a stochastic block model on n = 250 nodes using K = 10 traits and C = 5 communities.
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