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Collecting complete network data is expensive, time-consuming, and often infeasible.
Aggregated Relational Data (ARD),which ask respondents questions of the form “How
many people with trait X do you know?” provide a low-cost option when collecting
complete network data is not possible. Rather than asking about connections between
each pair of individuals directly, ARD collect the number of contacts the respondent
knows with a given trait. Despite widespread use and a growing literature on ARD
methodology, there is still no systematic understanding of when and why ARD should
accurately recover features of the unobserved network. This paper provides such a
characterization by deriving conditions under which statistics about the unobserved
network (or functions of these statistics like regression coefficients) can be consistently
estimated using ARD. We first provide consistent estimates of network model
parameters for three commonly used probabilistic models: the beta-model with node-
specific unobserved effects, the stochastic block model with unobserved community
structure, and latent geometric space models with unobserved latent locations. A
key observation is that cross-group link probabilities for a collection of (possibly
unobserved) groups identify the model parameters, meaning ARD are sufficient for
parameter estimation. With these estimated parameters, it is possible to simulate
graphs from the fitted distribution and analyze the distribution of network statistics.
We can then characterize conditions under which the simulated networks based on
ARD will allow for consistent estimation of the unobserved network statistics, such as
eigenvector centrality, or response functions by or of the unobserved network, such as
regression coefficients.

social networks | aggregated relational data | consistency | survey methods

The empirical study of social networks has grown rapidly across a variety of disciplines,
including but not limited to economics, psychology, public health, sociology, and
statistics. The aim ranges from researchers trying to understand features of the network
structure across populations, to parameters in models of network formation, to how
network features affect socioeconomic behavior, to how interventions can affect the
structure of the social network. Studying network structure and its relationship to other
phenomena can be demanding particularly in contexts where survey-based research
methods are used: Obtaining high-quality network data from large populations can be
expensive and often infeasible for cost, privacy, or logistical reasons. The challenges
associated with collecting complete network data mean that researchers must choose to
either i) reuse one of a handful of existing full graph datasets, likely not designed with
their particular research goals in mind or ii) postpone their research agenda while raising
sufficient capital.

One recent approach to address these issues is known as Aggregated Relational Data
(ARD), which solicit summaries of respondents’ connections by asking for the number of
people a respondent knows with a given trait. ARD questions take the form “How many
people with trait k are you linked to?” and can be integrated into standard probability-
based survey sampling schemes because they do not directly solicit any connections in
the graph (1). One major advantage of collecting ARD over more traditional network
surveys is the reduced cost. In the context of one large-scale randomized controlled trial
studying the relationship between network structure and household finance in 60 villages,
ref. 1 showed that ARD implementation is shorter (3 vs. 8 mo) and cheaper ($34,000 vs.
$189,000) compared to full network enumeration and yet delivered the same economic
conclusions that would have been obtained using the full network data. Because it is
cheaper to collect, ARD also enable practitioners to collect panel data across multiple
networks.

ARD were originally proposed to estimate the size of hard-to-reach populations,
such as the number of HIV-positive men in the United States (2–4). Since then,
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the use of ARD has expanded significantly, particularly in the so-
cial sciences (5–7) where ARD enable researchers to estimate core
features of respondent networks (e.g., a respondent’s centrality or
the extent of clustering). In terms of methodology for analyzing
ARD, ref. 8 connects a model for ARD responses to network
models of the fully observed graph. Specifically, ref. 8 established
a connection between ARD and the latent distance model, a
common statistical approach for modeling fully observed network
data. The key result is that ARD are sufficient to identify
parameters in a generative model for graphs, allowing inference
about the distribution of graphs that plausibly correspond to the
ARD. Ref. 1 exploits this connection to generate a distribution
over network statistics, such as the centrality of an individual
or the average path length of the graph, and shows examples
where using statistics generated from ARD gives similar results
to using statistics from the completely observed graph. ARD
have also been used to estimate common econometric models
and outcomes, such as the linear-in-means model (9), choosing
the optimal seeding for maximal information flow (10), and can
be used to assess network model goodness-of-fit (11).

Despite its increasingly widespread use, there is still little un-
derstanding of when or why ARD contain sufficient information
to estimate model parameters or estimate network properties of
the unobserved network. We provide such a characterization in
two steps. First, we show that we can consistently estimate the
parameters of a rich class of generative network models using only
ARD. This fact relies on a simple but powerful observation that
if the cross-type link probabilities allow us to identify the model
parameters, then ARD are sufficient for consistent estimation.
Critically, this insight allows us to sidestep maximizing the
complicated log-likelihood directly and instead solve a system of
equations based on the cross-trait linking probabilities. We show
that three common generative models fall into this class. The
graphs we consider all have the property that the average degree of
the graph grows as the graph size increases. Practically, this means
that the results we present may not be suitable for extremely
large, very sparse graphs (e.g., social media communications,
massive cities, or lower scale peer-to-peer financial networks). We
refer readers to ref. 12 for a discussion of density in empirically
observed network data. We provide evidence in this paper using
simulations on graphs with properties similar to the networks
observed in ref. 13, which has an average degree of 17 and an
average size of 213 nodes. We also conduct simulations to show
that we are able to recover graph and individual-level statistics
when the average degree is 9 and the density is .036. These
simulation results are in SI Appendix, section S11. Extending
this work to additional generative models that do not have this
property could be a fruitful avenue for future work.

Next, we provide sufficient conditions to consistently estimate
features of the underlying, unobserved network using ARD. The
intuition is that, for sufficiently large graphs, some statistics of
graphs converge to their expected value, where the expectation
is taken over graphs from the same generative process. In such
cases, ARD suffice to recover the value of the graph statistics, so
long as the statistics are not too sensitive to error introduced by
using estimates for the generative network models parameters. In
such cases, the information in ARD is sufficient to consistently
estimate generative model parameters as well as graph statistics
of interest.

We investigate this both theoretically and empirically in two
settings. The first is when researchers can consistently estimate
features of the underlying, unobserved network structure itself.
Examples include centrality or clustering measures for nodes.

This analysis studies the case of a single large network. The second
is when researchers can consistently estimate response functions
of or by the network. That is, how do changes in network
features correspond to changes in socioeconomic outcomes or
how might an intervention affect the structure of the network.
This analysis studies the case of many networks. Our evaluation
includes experiments with previously analyzed data, with IRB
approval from MIT IRB COUHES # 1010004040.

Aggregated Relational Data

We begin by defining ARD formally. Take an undirected,
unweighted graph g = (V, E) with vertex set V and edge set E .
There are n = |V | nodes, so we sometimes write gn to emphasize
the graph size, and gij = 1{ij ∈ E} denotes that i and j are
connected in the graph. Suppose each node has one of K traits,
where K is fixed and K > 3. Let Gk denote the nodes with trait
k, for k = 1, . . . , K , where nk = |Gk| is the number of nodes
with trait k. We write t?i = k to denote that node i has trait
k. We suppose that the traits are binary and mutually exclusive,
so every node has one of K traits. Researchers using existing
data will need to check this assumption and may need to use a
subset of ARD questions (e.g., first names) on existing data. We
recommend researchers collecting new data construct mutually
exclusive ARD questions. Imagine there are L characteristics (e.g.,
rural/urban or college educated/not), and for simplicity, assume
that these are binary. Then, it is clear that we can always construct
K traits, mutually exclusive, with K = 2L. The extension to
multivalued characteristics is straightforward. Additionally, traits
constructed through intersecting characteristics (e.g., men with
a given occupation below a particular age) also reduce the size of
the target population, which can limit recall bias (14).

To collect Aggregated Relational Data (ARD), the researcher
asks m randomly chosen nodes “How many people with trait k
are you linked to?” for each of these K traits. Linking is typically
defined as knowing a potential connection (e.g., having interacted
with the person in the past 2 y or recognizing the person if
passing on the street). Ref. 15 provides an extensive discussion
and experimental evidence regarding the definition of linking.
To simplify exposition, we will set m = n, meaning we have
ARD from all nodes. Our results also apply when m << n, as
is common in practice. In such cases, we would either need to
impute parameters for nodes without ARD (ref. 1, for example)
or make an assumption about node equivalence. For example,
under a stochastic block model, all nodes in a given community
have the same linking behavior. So, by collecting ARD from at
least one node in each community, we can then estimate the
parameters of all nodes.

Let yik denote node i’s response to this question about trait
k, with yik =

∑
j∈Gk

gij. Critically, when collecting ARD, the
researcher does not observe any edges, just how many edges are
present between a node i and people of a given trait. We use y to
denote the m × K matrix of ARD responses. Since the K traits
are mutually exclusive, ARD responses count distinct alters across
each trait group. Otherwise, if trait group A and trait group B
overlap, then a person in both groups would be counted twice,
once in response to the ARD question about trait A and once
about B.

To model the network, we consider a general graph model
P(gn|θ

?), where edges form independently in the network,
conditional on the unknown parameter vector θ?. We call
such models conditional edge-independent graph models. The
number of elements in the vector θ? can depend on the graph
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size n (to accommodate node-level heterogeneity parameters,
for example), but we omit this dependence to simplify the
notation (θ? = θ?n ). In most settings, each component of
the vector θ?, which we denote by θ?i for i = 1, . . . , n, is
independently and identically drawn from F . In other cases,
sometimes, the distribution of θ?i depends on the traits that node
i possesses, which we write as θ?i |t

?
i = k ∼ Fk. This conditional

independence representation relies on exchangeability among
nodes and, thus, implies that the resulting asymptotic sequence
of networks generated by these models are dense, meaning that
the average degree for a given n is a constant times n (16).

We define pij = pij(θ) to be the probability that i and j
connect, given the model parameters. Proving consistency of a
maximum likelihood estimate of the model parameters (θ̂n :=
arg maxθ Ln(y | θ)) is challenging due to the complex nature of
the log-likelihood, since each parameter θi appears in n terms of
the likelihood. We explore a different approach to estimate θ?.
Specifically, we work directly with the probability that node i
connects to an arbitrary node with trait k, Pik, which is

Pik := P(gij = 1|θ?i , j ∈ Gk) =
∫
2k

P(gij = 1|θ?i , θj)dFk(θj),

where again θj ∼ Fθ ,k for nodes i with trait k, and 2k denotes
the support of Fk. In the latent space model, 2k might be p-
dimensional Euclidean, spherical, or hyperbolic space, and node
locations are drawn according to a mixture model along the
surface of the latent space (17–19). In the beta-model, 2k is a
subset of the real line. For any node i,

yik

nk
=

1
nk

∑
j∈Gk

gij
p
→ Pik, [1]

as nk → ∞, where Pik is again the probability that node i
connects with someone of trait k and nk is the number of
nodes with trait k. Here, we have assumed that the weak law
of large numbers applies to the average yik/nk, as is the case for
conditionally edge-independent graphs. In the conclusion, we
discuss extensions for settings where edges could be correlated or
where edge probability scales with the graph size.

Supposing that (1) holds, we can then equate the vector of
normalized ARD responses with their respective edge probabili-
ties Pik(θ?) and use an estimating equation approach to estimate
the model parameters. Supposing that this system has a unique
solution in θ (or unique up to an isometry, as in the latent
space model), this general approach allows us to derive estimators
of model parameters and prove uniform convergence of these
estimators in a host of rich and frequently used network models.
When this system does have a unique solution, we say informally
that such a model “identifies” the model parameters.

By equating observed ARD responses and the probability of
connection between a node and nodes in a given trait group,
we can invert that equation to solve for the parameters θ?i . In
the next three sections, we consider three common generative
network models and derive consistent estimates of the parameters
in each model using this intuition.

Beta-Model

We first consider the generalized beta-model (20, 21). The
original version of this model states that an edge forms between
nodes i and j with probability expit(ν?i +ν?j ) for some sequence of
parameters ν?1 , . . . , ν?n that encode the popularity of nodes. Here,
expit(x) = exp(x)/(1 + exp(x)). The generalized beta-model

includes a term that measures the effect of dyad-level covariates
Xij ∈ Rp on linking probability, so

P(gij = 1|ν?i , ν?j ,β?) = expit(ν?i + ν?j + β?Xij).

Refs. 20 and 21 propose estimates of the parameters using a
fixed-point procedure using the full network data. This procedure
only requires the degree of a node. Suppose that we observe
ARD about a collection of traits that are mutually exclusive and
exhaustive. Then, the degree of node i is di =

∑K
k=1 yik. Let ν̂i

and β̂ denote the fixed-point estimates of νi and β from refs.
20 and 21 computed using the ARD, which is by the preceding
comments equivalent to the estimate computed from the full
network data.

In the theorem below, we require that the support of the
parameters in the beta-model be compact subsets of R. This
regularity condition was also imposed in ref. 21.

Theorem 1. Suppose the support of each node effect ν?i and of β?

are compact subsets of R. Then, with probability 1− O(1/n2),

max
1≤i≤n

|ν̂i − ν
?
i | ≤ C

√
log(n)

n
,

for some constant C that does not depend on n. In addition, β̂
p
→ β

as n→∞.

Here, we have not made any assumption about the relationship
between traits and the distribution of the node parameters.

In cases where ARD are collected at the characteristic level
and not at the trait level (which creates a mutually exclusive
partition), or when the mutually exclusive traits do not exhaust
the space,

∑K
k=1 yik does not need to equal di, the degree of

node i. In these cases, we can estimate the degree of a node
via other methods. One such example is the network scale-up
method (2, 22), which assumes that given a node’s degree, ARD
responses are modeled as yik|di ∼ Binomial(di, nk

n ). This leads
to the estimator d̂i = n

∑K
k=1 yik/

∑K
k=1 nk, where nk is the size

of group k and n is the total size of the population (2, 14, 23).
Typically, these ARD questions are based on characteristics with
known group sizes, so that each nk is known. We can then plug
in d̂i in place of di in the estimation procedures from refs. 20 and
21 to estimate the model parameters.

Stochastic Block Model

We consider a generalized version of the stochastic block
model (SBM), in which observable traits are dependent on, but
potentially distinct from, latent community structure. Edges are
determined by latent community structure. This setting corre-
sponds to a case where nodes belong to unobserved communities
and a researcher observes traits that are (imperfectly) associated
with community membership. We show that ARD allow us
to use links to observable groups to infer latent community
membership.

We begin by describing the model for edge formation, based on
latent communities, and then relate this model to the observable
traits. First, assign node communities c?i independently with
probabilities π1, . . . ,πC . Conditioned on these parameters,
edges are generated independently with probabilities

P(gij = 1|c?i = c, c?j = c′) = Pcc′ ,

where P is a C ×C matrix of within- and cross-community edge
probabilities. Here, we suppose that the graph is undirected, so
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that P is assumed to be symmetric. The intuition for this model is
that the probability that two nodes connect depends only on their
latent group membership. Typically, the community structure is
unknown a priori and unobservable. We show that it is possible to
recover this community structure with observable traits, so long
as people with similar traits play similar roles in the network. We
let the C × K matrix Q encode the probability of having trait k,
given that a node is in community c, so

P(t?i = k|c?i = c) = Qck. [2]

Since traits are mutually exclusive, each node is assigned exactly
one of the K traits with probabilities in Eq. 2. The intuition
behind this model is that nodes with the same traits form edges
in a similar way.

We suppose that the ARD we have access to are about these
K traits and not about the unobserved community structure. To
estimate the parameters in the SBM, we begin by making the
following assumption, which allows us to consistently cluster the
ARD to estimate community structure in the unobserved graph.
Specifically, we assume that no two communities have the same
linking pattern to all other traits, which is clearly required for
identification.

Assumption 1. The following condition holds:

min
c,c′
||Zc − Zc′ || > 0,

where Zc := (P̃c1, . . . , P̃cK ) and P̃ck := P(gij = 1|ci = c, tj = k)
is the probability that a node in community c connects to a node

with trait k: P̃ck =
(∑C

`=1 Q`kπ`
)−1∑C

`′=1 Pc`′Q`′kπ`′ .

To understand this assumption, let us consider a simple case
when C = K = 2. Assumption 1 then requires that(

P̃11
P̃12

)
6=
(

P̃21
P̃22

)
.

We now explore further when these equalities do not hold. If
the probabilities of belonging to community 1 and 2 are equal
(π1 = π2), the first inequality is then equivalent to requiring
that

(P11 − P21)Q11 + (P12 − P22)Q21 6= 0.

If P11 = P12 = P22 = P22, which corresponds to no community
structure in the model, then Assumption 1 is not satisfied for
any Q matrix. If Q12 = Q21, which means that there is no
relationship between traits and community membership, then
Assumption 1 is satisfied whenever P11 − P21 6= P22 − P21,
which occurs in undirected networks whenever P11 6= P22.
In this case, even if there is no relationship between traits
and network structure, Assumption 1 is satisfied provided that
communities behave differently in the network (i.e., there is
meaningful community structure).

We now provide a classification algorithm to estimate the
community membership of nodes. This procedure does not
require us to know the number of communities. We initialize
W = V , the set of nodes in the sample, so |W | = n. Let
ỹi = (yi1/n1, . . . , yiK /nK ). While W 6= ∅, do the following,
which we refer to as Algorithm 1:

1. Select a node i randomly from W . Set W = W \ {i}.
2. For any j ∈ W : If ||ỹi − ỹj||

2
≤ n−1 log(n), assign node j to

be in the same community as i, and second set W = W \ {j}.

This procedure returns a consistent estimate of the community
membership and the number of communities. The distribution
of ARD responses for people in a given community c collapses to
a point mass as the sample size grows, and so, clustering in our
problem is easier than clustering in general clustering problems,
where the distribution of data does not need to change with the
sample size. We therefore propose the algorithm above, over more
standard clustering algorithms, because our clustering algorithm
lends itself easily to concluding the uniform consistency in
Theorem 2 that we need later in Theorems 4 and 5.

We prove in Theorem 2 that this classification algorithm
returns consistent community labels. Given the community
memberships ĉ, let Ĉc denote the set of nodes in our sample that
are estimated to be in community c, under the membership vector
ĉ, with |Ĉc| =: mc(n). The term

∑K
k=1 yik × P(cj = c′ | tj = k)

is the expected number of connections that node i has to a node
in community c′. Since the communities are latent, we now relate
P(cj = c′ | tj = k) to terms that we are more familiar with:

P(cj = c′ | tj = k) =
P(tj = k, cj = c′)

P(tj = k)

=
P(tj = k | cj = c′)P(cj = c′)

P(tj = k)

=
Qc′k × πc′

P(tj = k)
.

Now, these terms we can estimate from data. Given an estimated
community membership vector ĉ, we can estimate P̂(cj = c′) =
1
n
∑n

i=1 1{ĉi = c′}. We can estimate Qck with

Q̂ck =
1

mc(n)

∑
i∈Ĉc

1{ti = k},

where ti is the observed trait of node i, and we can estimate π
with entries π̂c = 1

n
∑n

i=1 1{ĉi = c}. Let P̂(cj = c′ | tj = k)
denote the estimate of P(cj = c′ | tj = k) based on the estimated
probabilities, as described above. Then, we can estimate

P̂cc′ =


1

mc(n)
∑

i∈Ĉc

∑
k

yikP̂(cj=c′|tj=k)
nc′

, c 6= c′

1
mc(n)

∑
i∈Ĉc

∑
k

yikP̂(cj=c′|tj=k)
nc′−1 , c = c′

.

Here, yik is the ARD response from node i about trait k.

Theorem 2. Suppose Assumption 1 holds. Then, up to a permu-
tation on the community labels, the community membership vector
estimated using Algorithm 1, ĉ, satisfies

max
1≤i≤n

1{ĉi 6= c?i }
p
→ 0,

as n→∞. The estimated number of communities Ĉ as well as P̂,
Q̂, and π̂ are all consistent as n→∞.

Latent Space Model

We consider a broad class of latent space models. Broadly
speaking, each node has a position in a latent (or unobserved)
space, and the closer two nodes are in this space, the more
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likely they are to connect. Each node also has a gregariousness
parameter, which controls the baseline edge probability for that
node (17–19, 24, 25).

We formally define one variant of the latent space generative
model, which we study in this work. We draw the gregariousness
parameter ν?i from a distribution Fν with compact support
in (a, 0) for some a < 0. We draw traits t?i ∈ {1, . . . , K }
independently with probabilities π1, . . . ,πK . Conditioned on
traits, we also draw node positions z?i |t

?
i = t ∼ Ft , where Ft is

some distribution over the latent surfaceMp(κ). Here,Mp(κ)
is a complete, simply connected Riemannian manifold with
constant curvature κ , which means by the Killing–Hopf theorem
that it is Euclidean, spherical, or hyperbolic space of dimension
p and curvature κ (26). We suppose that Ft is a symmetric
distribution overM and is uniquely determined by its mean µt
and variance σ 2

t . Some examples of this include the Gaussian
distribution over Rp and the von Mises–Fisher distribution over
the p-sphere. In words, the node positions z?i are drawn from
a mixture distribution on Mp(κ), with weights determined by
πk = P(t?i = k). Conditioned on these parameters, we draw
edges independently with probability

P(gij = 1|ν?i , ν?j , z?i , z?j ) = exp{ν?i + ν?j − d(z?i , z?j )}. [3]

Again, we suppose that we only have access to ARD about these
K traits.

We write η = (µ1, . . . ,µK , σ 2
1 , . . . , σ 2

K ) to refer to the
“global” parameters. To build our estimators ν̂i, ẑi, and η̂, we
proceed in two steps: a) estimate the global parameters and b) use
them as a plug-in to estimate the node parameters. Our proof is
based mainly on the following calculation. Consider the marginal
probability of a connection between person i and group k, Pik.
The form of Pik comes from integrating across all individuals in
group k in Eq.3, which is consistent with the information in ARD
since no individual connections are observed. Further, following
refs. 8 and 17, we can model yik | ν

?
i , z?i ∼ Binomial(nk, Pik),

where Pik is the probability that i connects to a member of group
k (the explicit form is derived in SI Appendix and is a function of
ν?i and z?i ) and nk is the number of nodes in group k.

In step (a), we derive the estimators for the global parameters,
η̂, in SI Appendix, section S.1 but provide the intuition here.
If we consider the probability of an arbitrary link between two
members of the same group k, it does not depend on µk but only
on the variance σ 2

k and the expected shift in linking probability
due to node effect νi. Similarly, if we consider the probability of
an arbitrary link across two groups k, k′ knowing the variance
terms, then this provides information on centers µk,µ′k. We can
therefore equate the probability of connection between traits with
the observed number of traits and solve for the parameterη. Given
estimates of the global parameters η, we now estimate the node
locations and fixed effects. Since E(yik) = Pik/nk, we construct
a system of equations by equating the ratio of the marginal
probability of connection for person i in group k to that in
group k′ (Pik/pik′ ) to the ratio of sample averages (yiknk′/yik′nk),
which does not depend on the fixed effect of node i. This allows
us to estimate the locations of all nodes, up to a global isometry
in the latent space. We then similarly estimate the node fixed
effects once we have estimated the node locations and global
parameters, by equating yik and pik. In summary, we construct
Z-estimators of the global parameters, the node locations, and the
node fixed effects by constructing 4 systems of equations, which
allows us to consistently estimate all of the parameters in the
latent space model. Equivalently, one can interpret the moments-
based estimators for the location and fixed effects parameters as

coming from maximizing a pseudolikelihood, which we describe
in SI Appendix.

We now state the assumptions for consistency of these
estimators. Ekk′ [exp{−d(z, z′)}] denotes the expectation of
exp{−d(z, z′)}, where z ∼ F (µ?k, σ ?k ) is independent of z′ ∼
F (µ?k′ , σ

?
k′).

Assumption 2. For each k, µk is in a compact subset of Mp(κ)
and σk is in a compact subset of (0,∞).

Assumption 3. The node effects ν?i
iid
∼ H satisfy E{exp(ν?i )} <

∞.

Assumption 4. The distribution F is a symmetric distribution on
Mp(κ) that is completely characterized by its mean and variance
and satisfies the following two conditions. The function zi 7→
Ek[exp{−d(zi, z)}] is Lipschitz for every k ∈ {1, . . . , K } and zi 7→
Ek[exp{−d(zi, z)}]/Ek′ [exp{−d(zi, z′)}] has a pseudoinverse that
is Lipschitz.

Assumption 5. Define the function F1 : (zi, σk, σk′) 7→
Ek[exp{−d(zi, z)}]/Ek′ [exp{−d(zi, z′)}]. The inverse function
F−1

1 is continuous in σ , and for every k, k′, `, and `′, the following
two functions are Lipschitz:

η 7→
Ekk′ [exp{−d(z, z′)}]
E``′ [exp{−d(z, z′)}]

, η 7→
Ekk′ [{exp(−d(z, z′)}]2

E``′ [{exp(−d(z, z′)}]2
.

Assumptions 4 and 5 ensure that the probabilities from Eq. 3
vary smoothly with changes in the distribution of points on
Mp(κ). In SI Appendix, we verify that common distributional
choices (e.g., Gaussian in Euclidean space or von Mises–Fisher
on the hypersphere) satisfy these assumptions and discuss the
pseudoinverse defined in the assumptions above. For simplicity,
we suppose that nk = n/K for each trait, so that traits are evenly
divided among the nodes, and write ñ = n/K .

Theorem 3. Suppose Assumptions 2, 3, 4, and 5 hold. The
estimators ẑi and ν̂i computed from equating the ARD responses
and the marginal probability of connections, as well as η̂ (defined in
SI Appendix), are consistent for z?i , ν?i , and η? as m, n→∞, up to
isometry onMp(κ) and satisfy

max
1≤i≤m(n)

dMp(κ)(ẑi, z?i ) ≤

√
3 log(ñ)

2ñ
,

max
1≤i≤m(n)

|ν̂i − ν
?
i | ≤

√
3 log(ñ)

2ñ
,

with probability 1− O(m/ñ3).

The proof of Theorem 3 and associated simulations are in
SI Appendix.

A Taxonomy for Estimating Graph Statistics

We assume that data arise from one of three models considered
in the previous work (beta-model, stochastic block model, or
latent space model) and that ARD allow us to estimate the model
parameters θ?. We leverage Theorems 1, 2, and 3 and assume
throughout the rest of this work that the researcher has access to
an estimator θ̂n(y) of θ?. Here, θ? denotes the true parameters
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of one of the three models, and θ̂n(y) denotes the estimates of
the model parameters from Theorems 1, 2, and 3. We separate
our discussion into two cases: 1) The researcher has a single
large network with n nodes, and 2) the researcher has many
independent networks. We recall for convenience that the user
has access to an ARD survey from m ≤ n nodes.

Single LargeNetwork. Starting with the first case, assume that the
researcher is interested in estimating a network statistic, Si (g?n)
for node i computed on the graph g?n . For simplicity, we write this
as a function of a single node, though it can easily be extended to
functions of multiple nodes. For the purposes of this argument,
there is one actual realization of the graph, g∗n . This is what we
would have observed if we had collected information about all
actual connections between members of the population, rather
than collecting ARD. Importantly, the researcher collecting ARD
cannot observe g∗n . This actual network realization does, however,
come from a generative model with parameters that can, by
Theorems 1, 2, and 3, be estimated from ARD.

In the following results, we characterize settings where network
statics can be consistently estimated using only the n×K matrix
of ARD, y. For simplicity, we set m = n, though our results
hold when m < n as well, though a researcher would need to
sample a sufficiently large fraction of the graph to capture the
structure of interest (27). Based on observing ARD, we compute
E{Si (gn) | θ̂(y)}, where θ̂(y) is the estimator from Theorems
1, 2, or 3 using the ARD y. We are interested in the condition
when E{Si(gn) | θ̂n(y)} is a good estimator of E{Si(gn) | θ?} and
therefore of Si(g?n).

There are two general conditions required to consistently
estimate graph parameters from ARD. First, the statistic of
interest must be one that is relatively stable between draws from
the graph-generating process. This condition is required since
our estimators in the previous section concern parameters of the
network formation model, but the goal is to estimate a statistic
for a particular draw from this generating process, g∗n . Second,
we require that these estimates of generating model parameters
are sufficiently precise, and the form of the statistics is such that
we can control the variation in the estimated network statistic in
the presence of small variance in the estimated model parameters.
We formalize these conditions in the following theorem. We use
the notation θ?j,n to refer to the jth entry of the vector of true
parameter values θ? ∈ Rn. Finally, let the partial derivative with
respect to the ith component be denoted by ∂iE{Si(gn) | θn}.

Theorem 4. Let g?n denote the graph of interest drawn from a con-
ditional edge-independent graph model with parameters θ?1 , . . . , θ?n ,
and let θ̂n denote estimates of these parameters. Suppose that

1. 1/n
∑

j |θ̂j,n − θ
?
j,n|

p
→ 0,

2. |E{Si(gn) | θ?} − Si(g?n)|
p
→ 0, and

3. the function θn 7→ E{Si(gn) | θn} is differentiable and

max
j

sup
θn

∂jE{Si(gn) | θn} ≤ C/n

for some finite constant C > 0.

Then, |E{Si(gn) | θ̂n(y)} − Si(g?n)|
p
→ 0 as n→∞.

We provide a proof of Theorem 4 in SI Appendix. The
proof relies on a Taylor series approximation of the network
statistic E{Si(gn) | θ̂n(y)}. In particular, we require that the

approximation term due to the estimation of θ?n with θ̂n(y)
disappear as n→∞. One sufficient condition for this to occur
is given in Conditions 1 to 3 of Theorem 4.

Condition 1 of Theorem 4 requires that the average estimation
error goes to zero in probability as the graph size grows. The
estimators from Theorems 1, 2, and 3 satisfy Condition 1 of
Theorem 4 since the average estimation error is always upper-
bounded by the maximum estimation error. Thus, Theorem 4
implies that the researcher can use E{Si(gn) | θ̂n(y)} to estimate
Si(g?n), provided the network statistic Si(g?n) satisfies Conditions
2 and 3.

Condition 2 of Theorem 4 requires that |E{Si(gn) | θ?} −

Si(g?n)|
p
→ 0, which must be true regardless of the estimator used

to estimate θ?. Many network statistics are an average of terms,
such as the clustering coefficient or the centrality coefficient, and
so, this condition holds for many statistics of interest. Condition 3
of Theorem 4 requires that changing the graph model parameters
slightly does not change the value of E{Si(gn) | θn} too much.
For many common network statistics, this condition is true, as
we show in Corollary 2.

To clarify when the conditions of Theorem 4 hold and when
they fail, we provide several pedagogical examples. Our first
example is an obvious failure of the second condition. Specifically,
we show that the statistic from a given realization does not
converge to its expectation; then, even after more nodes are
observed, there is no increasing information, and the mean-
squared error of the estimate should not go to zero. Let pij(θ?)
denote the probability that nodes i and j connect.

Corollary 1. Consider a sequence of distributions of conditional
edge-independent graphs P(gn|θ

?) on n nodes, where θ? is known.
Given an (unobserved) graph of interest, g∗n , and 0 < pij(θ?) <
1, then the mean squared error for E{Si (gn)} = E

(
gij
)
, the

expectation of a draw from the distribution of any single link gij, is

E [{E(gij)− g∗ij }
2] = pij(θ?){1− pij(θ?)}.

When a link exists, the mean squared error is {1− pij(θ?)}2 and
when a link does not, it is pij(θ?)2. In edge-independent models,
node-level exchangeability ensures that pij(θ?) does not vanish
with n, which means that the mean squared error cannot go to
zero as n → ∞. However, for graph models in which pij tends
to zero, Condition 2 does hold.

However, for many commonly used and nontrivial network
statistics, the conditions of Theorem 4 do hold. By verifying the
conditions of Theorem 4, we have the following result.

Corollary 2. Suppose g?n is drawn from the β-model, stochastic
block model, or latent space model, and θ̂n is computed from
Theorems 1, 2, and 3, respectively. Suppose that the function θi 7→
pij(θ) is differentiable and has a uniformly bounded derivative for
any i and j and any parameter vector θ . For the following statistics
Si(gn), we have that |E{Si(g?n) | θ̂n(y)} − Si(g?n)|

p
→ 0.

1. Density (normalized degree): The density of node i is Si(gn) =∑
j gij/n.

2. Diffusion centrality (nests eigenvector centrality and Katz–
Bonacich centrality): Define Si(gn) = Si(gn, qn, T ) =∑

j{
∑T

t=1 (qngn)t
}ij for some qn = C/n and any T .

3. Clustering: Let N (i) = {j : gij = 1} denote the neighbors
of node i. The clustering coefficient is defined as Si(gn) =∑

j,k∈N(i) gjk/(|N (i)||N (i)− 1|).
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Diffusion centrality is a more general form which nests eigen-
vector centrality when qn ≥ 1/λn

1, and because the maximal
eigenvalue is on the order of n, this meets our condition. Here,
λn

1 is the largest eigenvalue of the adjacency matrix of gn. It also
nests Katz–Bonacich centrality. In each of these, T →∞. It also
captures a number of other features of finite-sample diffusion
processes that have been used particularly in economics (13, 28).
These notions each relate to the eigenvectors of the network—
objects that are ex ante not obviously captured by the ARD
procedure but ex post work since in this model, statistics converge
to their expectations.

These results give two practical extreme benchmarks. ARD
should not perform well for estimating a realization of any given
link in the network. In contrast, it should perform quite well for
statistics such as density or eigenvector centrality. Other statistics
may fall somewhere in the middle of this spectrum. For example,
whether a notion of centrality such as betweenness—which relies
on the specifics of the exact realized paths in the network—
works well may depend on the specific statistic and network
distribution. We explore these predictions empirically in Fig. 1.

Many Independent Networks. Consider the setting where the
researcher has R networks each of size nr , and the networks are
over disjoint sets of nodes. This setting occurs in practice in areas
such as economics (29–34), psychology (35), and health (36).
We use the terminology independent networks to refer to such
a collection of networks. For each network r, we observe ARD
nr × K matrix yr . We take nr = n for simplicity, but our
results do not require this. Also, we drop the dependence on n
in the notation gr . Every network is generated from a network
formation process with true parameter θ?r . In this case of many
networks, we consider how well the ARD procedure performs
when the researcher wants to learn about network properties,
aggregating across the R graphs. This is the case in a large literature
(32, 37, 38).

Let S∗r = S (g∗r ) be a network statistic from the R unobserved
graphs generating the ARD. For any given graph from the data
generating process, define Sr = S (gr). For notational simplicity,
we consider network-level statistics, but the argument can easily
be extended to node, pair, or subset-based statistics. We use the
notation θ?i,n,r to denote the ith entry of the vector of parameters
θ?n,r ∈ Rn for network r.We use similar notation for the estimator
θ̂i,n,r .

We consider two regression problems. In the first problem, the
goal of the researcher is to estimate the model

Or = α + βS∗r + εr r = 1, . . . , R,

where Or is some socioeconomic outcome of interest and the
parameter of interest is β. As before, S∗r is unobserved because
g∗r is unobserved and the researcher only has ARD, yr . The
researcher instead estimates the expectation of the statistic given
using ARD, S̄r = E{Sr | θ̂n,r}. The regression becomes

Or = α + βS̄r + ur . [4]

and β̂ = β̂n,R is the ordinary least squares (OLS) estimator of β
from Eq. 4. Critically, β̂ depends on the size of each network n
and the number of networks R.

In the second regression model we consider, the network
feature is an outcome that responds to an intervention, Tr :

S∗r = α + γTr + εr .

We let γ̂n,R denote the OLS estimator of γ from the regression

S̄r = α + γTr + εr . [5]

Theorem 5. Let β̂n,R denote the OLS estimate from Eq. 4 and let
γ̂n,R denote the OLS estimate from Eq. 5. Suppose that

1. the estimators of the parameters for the rth network, denoted by
θ̂r(n), satisfy

max
1≤r≤R

1
n

n∑
i=1
|θ̂i,n,r − θ

?
i,n,r |

p
→ 0 as n, R→∞;

2. the function θn 7→ E{Sr | θr,n} is differentiable for each network
r and each network size n. Suppose also that

max
1≤r≤R

max
j

sup
θn,r

∂jE{Sr | θn,r} ≤
C
n

,

for some finite constant C > 0.

If E{εr | S?r } = 0, E{Sr | θn,r} < ∞ for any θn,r , and the design
matrix has full rank, then |β̂n,R − β|

p
→ 0 and |γ̂n,R − γ |

p
→ 0 as

n, R→∞.

The following theorem shows that the three conditions from
Theorem 5 hold.

Theorem 6. Suppose that each network g?n,r is known to be drawn
from the beta-model, stochastic block model, or latent space model
and θ̂n is computed from Theorems 1, 2, and 3, respectively. If S?r
is the density, centrality, or clustering of a node in network r, as
defined in Corollary 2, then Conditions 1 and 2 of Theorem 5 hold
if Rn/ exp(n)→ 0.

Fig. 1. Scaled mean squared error of node-level (panel A) and graph-level (panel B) network features. These results corroborate the theoretical intuition we
developed. Specifically, we show in Corollary 1 that the mean squared error should be large for a single link and in Corollary 2 that the mean squared error
should diminish for (normalized) degree and diffusion at the node level and clustering at the graph level.
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In words, Theorem 6 states that a researcher is able to run the
regression in Eq. 4 using the estimators in Theorems 1, 2, and 3
to consistently estimate β, the true effect of the network statistics
on the observed socioeconomic outcomes.

Take the most extreme example of a single link, where we
know that its presence cannot be identified in a single large
network. Even if we were interested in a regression of y12,r =
α + βg12,r + εr , where whether nodes 1 and 2 are linked affects
some outcome variable of interest across all R networks, we can
use E{g12,r | θ̂(yr)} in the regression to consistently estimate
β. Here, nodes 1 and 2 refer to arbitrarily labeled nodes and
can be different across the R networks. In contrast to the single
network case, where the mean squared error of the estimate of
g12,r does not tend to zero as n grows, here, simply having the
conditional expectation is enough to estimate the slope of interest,
β. Therefore, with many graphs, the ARD procedure works well
under weaker conditions on the network statistics. However,
despite the generality of Theorem 5, Condition 2 of Theorem
5 still must hold. Some statistics are more sensitive to the input
parameters and thus might not satisfy Condition 2. For example,
the number of connected components has a higher mean squared
error than the other statistics, which suggests that this statistic
might lead to poor OLS estimators in Eqs. 4 and 5.

Simulation Results

Single Large Graph. We explore the results for a single large
graph through simulation exercises on 250 simulated graphs.
Each network consists of 250 nodes, similar to the size of villages
in ref. 13. We first generate traits for each node and then simulate
connections independently using the generating process in Eq.
3. We then draw a sample of nodes from the graph and construct
ARD using traits. Our simulation does not reflect error in the
ARD, which may arise if, for example, a person is a member of
a group but the respondent does not have this information (e.g.,
refs. 15, 23, 39, or 40). We then estimate graph statistics using
the procedure outlined in ref. 1, which uses a latent space model
with positive curvature (8) for the underlying network.

Fig. 1 plots the mean squared errors of our estimation
procedure across a range of common network statistics. These
mean squared errors reflect uncertainty in estimation of the model
parameters and in the underlying network statistics. In order to
make the mean squared errors comparable across statistics, we
scale by 1/E(Si)2. Fig. 1A focuses on node-level statistics. We
compile 11 node-level statistics: 1) proximity (average of inverse
of shortest paths); 2) average path length; 3) closeness centrality
(the average inverse distance from i over all other nodes); 4) degree
(the number of links); 5) diffusion centrality (as defined in ref.
13—an actor’s ability to diffuse information through all possible
paths); 6) eigenvector centrality (the ith entry of the eigenvector
corresponding to the maximal eigenvalue of the adjacency matrix
for node i); 7) the average distance from a randomly chosen seed
(as in a diffusion experiment where the seed has a new technology
or piece of information); 8) support (as defined in ref. 41—
whether linked nodes ij have some k as a link in common);
9) clustering (the share of a node’s links that are themselves
linked); 10) betweenness centrality (the share of shortest paths
between all pairs j and k that pass through i); and 11) whether
link ij exists. The results from the simulation, ordered in terms
of scaled mean squared error in the figure, are consistent with
the theoretical results. Statistics such as density and centrality
take values for each realization that are nearly their expectation,
meaning that we can recover the statistics with low mean squared

error. For a single link, this is not the case and, correspondingly,
the simulations show higher error.

Fig. 1B focuses on graph-level statistics. The graph-level
statistics are as follows: 1) share of nodes in the giant component;
2) average proximity (average of inverse of shortest paths); 3)
average path length; 4) diameter; 5) the share of links across the
two groups relative to within the two groups where the cut is
taken from the sign of the Fiedler eigenvector (this reflects latent
homophily in the graph); 6) maximal eigenvalue; 7) clustering;
and 8) number of components. All network statistics, with the
exception of the number of components one, have small scaled
mean squared error. This reflects the intuition of Corollary 2.
ARD recover statistics that converge to their expectations, such
as density, and might fail to recover statistics that do not.

We also evaluate our approach using observed, fully elicited
graphs. We use data from ref. 13, which consists of completely
observed graphs from 75 villages in rural India. In each village,
about one-third of respondents were asked ARD questions.
Ref. 1 compares statistics estimated with ARD (using estimated
formation model parameters) from these graphs with the same
statistics calculated using the complete graph. We leverage these
results and present a different aspect: How the mean squared
error changes as the size of the graph grows. We present results
for individual-level statistics from these graphs and compute
mean squared error across individuals. Our results using graphs
with real-world complexity and properties (e.g., density and
community structure) confirm the results from our simulation
experiments. These results are presented in SI Appendix, Fig. S2.

Many Independent Networks. Multiple independent networks
often arise in experiments, so we simulate a setting where we
assign graph-level treatment randomly to half of the graphs.
Graphs in the control group have expected degree generated
from a normal distribution with mean 15 and variance 25, while
graphs in the treatment group are generated from a normal
density with mean 25 and variance 25. Each graph has 250
nodes. All graphs have a minimum expected degree of 5 and a
maximum expected degree of 35. Due to the association between
density and treatment, we expect treatment effects on graph-
level statistics, such as average path length and diameter. The
average sparsity over all graphs is 20/250 = 0.08, which is a value
similar to Karnataka data discussed in ref. 13. For individual
measures, 50 actors are randomly selected in each network. For
links measured between actors, 1,000 pairs are randomly selected
in each network. For network-level measures, there is one measure
per network, so the regression consists of R data samples, where
R is the number of networks.

Fig. 2 shows the simulation exercise with multiple independent
networks. We use formation model parameters, θ? from the
positive curvature latent space model (8), to get S̄ij,r or S̄r
and include results using estimated model parameters in (SI
Appendix, Figs. S3, S4, and S5), where we obtain estimates using
the procedure in ref. 1. We present results with R = 200
(R = 50, 100, 200 are in SI Appendix). εr comes from a normal
distribution with zero mean, and var(εr) = var(S∗ij,r) to maintain
a 0.5 noise to signal ratio.

The first two panels in Fig. 2 show the distribution of the
estimate of β in a regression where the network statistic predicts
an outcome of interest. The middle line of each boxplot is the
median β̂, and the borders of boxes denote the first and third
quartiles. All boxplots have outliers removed. The Leftmost panel
gives results for individual-level measures, while the center panel
gives network-level measures. Among the node-level statistics, we
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Fig. 2. Boxplots for the simulation experiments with multiple independent networks. In the Left figure, we consider a regression where the node-level network
statistics determine outcomes on one network. In the Middle figure, we consider a regression where network-level statistics determines outcomes on multiple
networks. In the Right figure, we consider a regression where a treatment determines a network-level statistics. On the x-axis, we provide the network statistics
used, and the y-axis represents the value of the regression coefficients estimators. The red line indicates the true value of the regression coefficients. These
results corroborate the theoretical intuition developed in Theorems 4 and 5.

see that all estimated β̂s are close to the simulation value of one.
The individual link measure, though empirically similar, is not
centered around the true simulated value. The downward bias
is an example of attenuation bias or regression dissolution since
there is variability in the network statistic acting as the covariate.
The indicator of the presence/absence of a single link is the
most variable of the network measures, and thus, bias persists
for the link measure when it does not for the others. For graph-
level measures, all estimated coefficients are centered around the
generated values.

The Rightmost panel in Fig. 2 shows results for the case where
the network statistic is the outcome and is predicted by another
covariate, in this case, treatment status. The percentage error is
defined as (γ̂−γ )/γ . Percent cut and diameter has large variation
of percent errors than the other measures. This is due to the fact
that the treatment effect, density differences between treatment
and control, has a smaller effect on percent cut and diameter than
on other measures. The average percent of variation explained by
treatment in Sr for percent cut and diameter is around 0.3, while
it is around 0.5 for other measures.

Discussion

Collecting full network data in large networks (e.g., a city)
or across many networks (e.g., villages or schools) requires
enumerating all egos and alters and therefore can be prohibitively
expensive, logistically hard, or face privacy concerns. The use
of ARD allows the researchers to overcome these problems by
fitting frequently used and rich generative models, which can be
then used to estimate socioeconomic quantities and parameters
of interest. This can include features of the network but also
responses in network structure to interventions as well as how
socioeconomic outcomes are affected by network structure.

In this work, we first demonstrated that by using ARD, we
are able to consistently estimate parameters in several families
of frequently used generative network models, including ones
where the number of parameters grows as the graph size grows.
Second, we provided a taxonomy to describe when we may expect
to estimate socioeconomic features consistently using ARD.
Together, our theoretical results and supportive simulations using
empirical data present insights into settings where researchers can
count on ARD to reliably estimate socioeconomic quantities of
interest. This makes the study of socioeconomic networks much
more accessible to a wide set of researchers; in our own setting,

using ARD delivers the same economic conclusions as the full
network data does but at 80% less cost (1).

There are several promising avenues for future work. First, the
techniques studied here are likely more relevant for networks of
the scale of villages or cities/counties but certainly not necessarily
things like large social media networks. It is true that when the
number of nodes is very large, one needs many more traits K to
exceed the number of latent communities C (since presumably a
large C is needed to fit the network well). Note that geography
can be included, to some degree, in a reasonably natural way.
After all, one can imagine carving out a aset of locations (as set
if L regions) and now a “type” K is the subtrait (e.g., caste)
crossed with the location. So, K = T × L, and we would use
K > C in this way. This is not the only approach, but we leave
a complete exposition of this strategy to future work. Second, we
demonstrate consistent estimation for edge-independent network
models. To do this, we use a strategy based on the insight from
Eq. 1, which requires the fraction of connections between a
person and a group, k, concentrates in the sense of a weak law
of large numbers as the graph grows. If, for example, the edge
probability depended on the graph size (e.g., in an asymptotically
sparse model), then we would not have this property. Extending
these results to a broader class of models, particularly those that
are asymptotically sparse or which have correlated edges, would
extend the reach of our work, and we believe that much of the
infrastructure we developed around the necessary properties of
network statistics would still apply (42–44). Third, a natural
question to ask is whether other data collection strategies might
be more useful to deliver consistent estimates for quantities that
fall outside of the taxonomy of statistics that are estimable with
ARD.

Data, Materials, and Software Availability. Previously published data were
used for this work https://dataverse.harvard.edu/dataset.xhtml?persistentId=
doi:10.7910/DVN/U3BIHX.
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