Smoothness-Adaptive Contextual Bandits

Yonatan Gur, Ahmadreza Momeni, and Stefan Wager

Stanford University, Stanford, CA 94305
\{ygur, amomenis, swager\}@stanford.edu

Abstract

We study a non-parametric multi-armed bandit problem with stochastic covariates, where a key complexity driver is the smoothness of payoff functions with respect to covariates First, we establish that adapting to unknown smoothness of payoff functions is, in general, impossible. However, under a sel-similarity condition (which does not reduce the minimax complexity of the problem at hand), we establish that adapting to unknown smoothness is possible, and further devise a general policy for achieving smoothness-adaptive performance.

Formualtion:
Non-parametric Contextual Bandits

- T steps, $K=2$ arms, context space $[0,1]^{d}$
- In each decision period, agent selects an arm
- Before selection, context $X_{t} \stackrel{\text { i.id }}{d} P_{X}$ observed
- Rewards $Y_{k, t} \in[0,1]$ s.t. $\mathbb{E}\left[Y_{k, t}\right]=f_{k}\left(X_{t}\right)$
- f_{k} payoff function of arm k
- Performance of a policy π measured by regret w.r.t. a dynamic oracle:
$\mathcal{R}^{\pi}(\mathrm{P} ; T)=\mathbb{E}^{\pi}\left[\Sigma_{t=1}^{T} \max _{k} f_{k}\left(X_{t}\right)-f_{\pi_{t}}\left(X_{t}\right)\right]$
- Complexity depends on payoff structure
- In non-parametric model, smoothness of payoffs drives complexity
- Existing work assumes prior knowledge about smoothness (not a practical assumption)

General Model Assumptions

- Payoff smoothness: payoff functions are
(β, L)-Hölder; $\exists \beta \in[\beta, \bar{\beta}], L>0$ s.t. $\forall x, x^{\prime}$

$$
f_{k}(x)-\frac{\operatorname{TE}\left(f_{k},\lfloor\beta\rfloor, x^{\prime} ; x\right)}{\text { Taylor expansion of degree }[\beta]} \leq L\left\|x-x^{\prime}\right\|_{\infty}^{\beta}
$$

- larger $\beta \Rightarrow$ smoother payoffs \Rightarrow easier problem

- Context distribution:

$\exists 0<\rho \leq \bar{\rho}: \rho \leq p_{X}(x) \leq \bar{\rho} \quad \forall x$

- e.g., uniform distribution
- Margin:
$P_{X}\left\{0<\left|f_{1}(X)-f_{2}(X)\right| \leq \delta\right\} \leq C_{0} \delta^{\alpha} \forall \delta>0$
- captures mass of contexts near decision boundary
- larger $\begin{aligned} \alpha & \Rightarrow \text { less context mass near decision boundary } \\ & \Rightarrow \text { easier problem }\end{aligned}$
\Rightarrow easier problem

Minimax Regret Rate with the Knowledge of Smoothness
It has been shown (see Rigollet and Zeevi (2010), Perchet and Rigollet (2013), Hu et al. (2019)) that

$$
\inf _{\pi \in \Pi} \sup _{\mathrm{P} \in \mathcal{P}(\beta, \alpha, d)} \mathcal{R}^{\pi}(\mathrm{P} ; T)=\Theta\left(T^{\zeta(\beta, \alpha, d)}\right), \quad \text { where } \quad \zeta(\beta, \alpha, d)=1-\frac{\beta(1+\alpha)}{2 \beta+d}
$$

- Minimax regret rate depends on smoothness parameter β
- Previous policy design based on knowledge of smoothness parameter β

Impossibility of Costless Adaptation to Smoothness
Theorem (Impossibility of adapting to smoothness)
Fix two Hölder exponents $\beta<\gamma$. Assume policy π is rate-optimal over γ-smooth problems.
(1) (At most Lipschitz-smooth) For $0<\beta<\gamma \leq 1: \sup _{P \in \mathcal{P}(\beta, \alpha, d)} \mathcal{R}^{\pi}(\mathrm{P} ; T) \geq C T^{1-\frac{d}{\alpha(2 \beta, d-\alpha \beta)}}\left[T^{\zeta(\gamma, \alpha, d)}\right]^{-\frac{d}{2 \beta+d-\alpha \beta}}$;
(2) (At least Lipschitz-smooth) For $\beta=1<\gamma: \operatorname{Sup}_{\mathrm{P} \in \mathcal{P}(1, \alpha, d)} \mathcal{R}^{\pi}(\mathrm{P} ; T) \geq C T^{1-\frac{1}{2 \alpha}}\left[T^{\zeta(\gamma, \alpha, d))^{-\frac{1}{2}}}\right.$.

- Lower bound on performance over rough problems as a function of performance over smooth problem - Implies existance of pairs (β, γ) s.t. optimality for both impossible (see the following examplea) - Smoothness-adaptivity impossible, without additional requirements

Example (Impossibility of adapting to smoothness)

(1) (At most Lipschitz-smooth) $\gamma=\frac{15}{100}, \beta=\frac{\gamma}{2}, \alpha=\frac{99}{100 \gamma}$, and $d=1$: Optimal rate over β-smooth problems for policies that are rate-optimal over γ-smooth problems without knowledge of β is $\Omega\left(T^{0.58}\right)$ while with knowledge of β, the optimal rate is $\mathcal{O}\left(T^{0.504348}\right)$.
(2) (At least Lipschitz-smooth) $\gamma>1, \beta=1, \alpha=1$ and $d=1$: Optimal rate over β-smooth problems for policies that are rate-optimal over γ-smooth problems without knowledge of β is $\Omega\left(T^{2 \gamma+1}\right)$ while with knowledge of β, the optimal rate is $\mathcal{O}\left(T^{\frac{1}{3}}\right)$.

A Sufficient Condition for Aapting to Smoothness

> | Definition (Self-similarity): A set of payoff functions $\left\{f_{k}\right\}_{k \in \mathcal{K}}$ is self-similar if for some $\beta \in[\beta, \bar{\beta}]$ |
| :--- |
| - all payoffs are β-Hölder; |
| - $\exists b>0, l_{0}>0$ s.t. $\forall l \geq l_{0}: \max _{\mathrm{B} \in \mathcal{B}_{l}} \max _{k \in \mathcal{K}} \sup _{x \in \mathrm{~B}}\left\|\Gamma_{l}^{p} f_{k}(x ; \mathrm{B})-f_{k}(x)\right\| \geq b 2^{-l \beta} \quad \forall p \in\{\lfloor\beta\rfloor, \ldots,\lfloor\bar{\beta}\rfloor\}$ |
| - $\Gamma_{l}^{p} f_{k}(x ; \mathrm{B})$: projection of f_{k} to polynomials of degree p over B |
| $\bullet \mathcal{B}_{l}=\left\{\mathrm{B}_{m}, m=1, \ldots, 2^{d}\right\}$ is a collection of the hypercubes: $\mathrm{B}_{m}=\mathrm{B}_{\mathrm{m}}=\left\{x \in[0,1]^{d}: \frac{\mathrm{m}_{i}-1}{2^{l}} \leq x_{i} \leq \frac{\mathrm{m}_{i}}{2^{l}}, i \in\{1, \ldots, d\}\right\}$ |

- Effectively implies a global lower bound on the estimation bias
- Can be viewed as complementing Hölder smoothness, which implies upper bound on bias
- Does not reduce regret complexity
- Example: $f_{1}(x)=\frac{1}{2}, f_{2}(x)=x^{\beta}$ for some $\beta \leq 1=\bar{\beta}$

Smoothness-Adaptive Contextual Bandits (SACB) Policy

Algorithm 1 SACB

Require: Set of non-adaptive policies $\left\{\pi_{0}\left(\beta_{0}\right)\right\}_{\beta_{0} \in[\beta, \bar{\beta}]}$, horizon length T, minimum and maximum smoothness exponents $\underline{\beta}$ and $\bar{\beta}$, and a tuning parameter γ
1: Initialize: $g \leftarrow\left[\frac{\left.(\beta+d-1) \log _{2} T\right]}{\left.(2 \beta+d)^{2}\right)}\right.$;

$$
\bar{r} \leftarrow\left\lceil 2 l \bar{\beta}+\left(\frac{(2 d}{\beta}+4\right) \log _{2} \log T\right\rceil
$$

2: Partition the context space $[0,1]^{d}$ into equal sized hypercubes with side-length 2^{-g}; Denote the set of hypercubes by \mathcal{B}_{g}
3: Sampling: Collect samples in each hypercube $B \in \mathcal{B}_{g}$ by alternating between the arms for $r \in\{1, \ldots, \bar{r}\}$ rounds; in each round collect 2^{r} samples for each arm
4: Estimation: At the end of each sampling round r in each hypercube $\mathrm{B} \in \mathcal{B}_{g}$, form two separate estimates of each payoff function using polynomial regression of degree $\lfloor\bar{\beta}\rfloor$ and badnwidths 2^{-j} for $j=j_{1}=g$, and $j=j_{2}=g+\left\lceil\frac{1}{\beta} \log _{2} \log T\right\rceil$; Denote the estimates by $\hat{f}_{k}^{(\mathrm{B}, r)}(x ; j)$
5: Hypothesis test: At the end of each sampling round r in each hypercube $\mathrm{B} \in \mathcal{B}_{g}$, check whether the difference between the estimation using the two bandwidths exponents j_{1} and j_{2} exceeds a pre-determined threshold for some tuning param. γ :

$$
\sup _{k \in \mathcal{K}, x \in \mathrm{~B}}\left|\hat{f}_{k}^{(\mathrm{B}, r)}\left(x ; j_{1}^{\mathrm{B})}\right)-\hat{f}_{k}^{(\mathrm{B}, r)}\left(x ; j_{2}^{(\mathrm{B})}\right)\right| \geq \frac{\gamma\left(\log T T^{\frac{d}{2 \beta}+1}\right.}{2^{r / 2}}
$$

Denote by $r_{\text {last }}^{(B)}$ the smallest round index for which the above inequality holds in hypercube B
6: Smoothness estimation: After sampling finished, set

$$
\hat{\beta}_{\mathrm{SACB}}=\frac{1}{2 g}\left[\min _{\mathrm{B} \in \mathcal{B}_{g}} r_{\operatorname{last}}^{(\mathrm{B})}-\left(\frac{2 d}{\beta}+4\right) \log _{2} \log T\right]
$$

7: Model selection: Choose the corresponding non-adaptive policy $\pi_{0} \leftarrow \pi_{0}\left(\min \left[\max \left[\beta, \hat{\beta}_{\text {SACB }}\right], \bar{\beta}\right]\right)$ and run it for the remaining time steps

- Estimates smoothness by comparing estimation bias and variance
- Key idea of estimation: estimation bias of self-similar and Hölder-smooth payoffs is bounded from above and below
- Adaptively integrates a smoothness estimation sub-routine with some collection of non-adaptive rate-optimal policies $\left\{\pi_{0}\left(\beta_{0}\right)\right\}_{\beta_{0} \in[\beta, \bar{\beta}]}$
- Achieves smothness-adaptivity when paired with rate-optimal off-the-shelf policies $\left\{\pi_{0}\left(\beta_{0}\right)\right\}_{\beta_{0} \in[\beta, \bar{\beta}]}$

