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Abstract

We study a non-parametric multi-armed bandit problem with
stochastic covariates, where a key complexity driver is the
smoothness of payoff functions with respect to covariates.
First, we establish that adapting to unknown smoothness of
payoff functions is, in general, impossible. However, under a
self-similarity condition (which does not reduce the minimax
complexity of the problem at hand), we establish that adapting
to unknown smoothness is possible, and further devise a gen-
eral policy for achieving smoothness-adaptive performance.

Formualtion:
Non-parametric Contextual Bandits

•T steps, K = 2 arms, context space [0, 1]d

• In each decision period, agent selects an arm
•Before selection, context Xt

i.i.d.∼ PX observed
•Rewards Yk,t ∈ [0, 1] s.t. E [Yk,t] = fk(Xt)
• fk payoff function of arm k

•Performance of a policy π measured by regret
w.r.t. a dynamic oracle:
Rπ(P;T ) = Eπ

ΣT
t=1max

k
fk(Xt)− fπt(Xt)



•Complexity depends on payoff structure
• In non-parametric model, smoothness of
payoffs drives complexity
•Existing work assumes prior knowledge about
smoothness (not a practical assumption)

General Model Assumptions

•Payoff smoothness: payoff functions are
(β, L)-Hölder; ∃ β ∈ [β, β̄], L > 0 s.t. ∀x, x′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
fk(x)− TE(fk, bβc, x′;x)︸ ︷︷ ︸

Taylor expansion of degree bβc

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ L‖x− x′‖β∞

• larger β ⇒ smoother payoffs ⇒ easier problem

•Context distribution:
∃0 < ρ ≤ ρ̄ : ρ ≤ pX(x) ≤ ρ̄ ∀x

• e.g., uniform distribution

•Margin:
PX {0 < |f1(X)− f2(X)| ≤ δ} ≤ C0δ

α ∀δ > 0
• captures mass of contexts near decision boundary
• larger α⇒ less context mass near decision boundary

⇒ easier problem

Minimax Regret Rate with the Knowledge of Smoothness

It has been shown (see Rigollet and Zeevi (2010), Perchet and Rigollet (2013), Hu et al. (2019)) that

inf
π∈Π

sup
P∈P(β,α,d)

Rπ(P;T ) = Θ
T ζ(β,α,d) , where ζ(β, α, d) = 1− β(1 + α)

2β + d
.

•Minimax regret rate depends on smoothness parameter β
•Previous policy design based on knowledge of smoothness parameter β

Impossibility of Costless Adaptation to Smoothness

Theorem (Impossibility of adapting to smoothness)

Fix two Hölder exponents β < γ. Assume policy π is rate-optimal over γ-smooth problems.

1 (At most Lipschitz-smooth) For 0 < β < γ ≤ 1: sup
P∈P(β,α,d)

Rπ(P;T ) ≥ CT 1− d
α(2β+d−αβ)

T ζ(γ,α,d)

− d

2β+d−αβ ;

2 (At least Lipschitz-smooth) For β = 1 < γ : sup
P∈P(1,α,d)

Rπ(P;T ) ≥ CT 1− 1
2α

T ζ(γ,α,d)

−1

2 .

•Lower bound on performance over rough problems as a function of performance over smooth problem
• Implies existance of pairs (β, γ) s.t. optimality for both impossible (see the following examplea)
•Smoothness-adaptivity impossible, without additional requirements

Example (Impossibility of adapting to smoothness)

1 (At most Lipschitz-smooth) γ = 15
100, β = γ

2, α = 99
100γ, and d = 1: Optimal rate over β-smooth problems

for policies that are rate-optimal over γ-smooth problems without knowledge of β is Ω (T 0.58) while with
knowledge of β, the optimal rate is O(T 0.504348).

2 (At least Lipschitz-smooth) γ > 1, β = 1, α = 1 and d = 1: Optimal rate over β-smooth problems for
policies that are rate-optimal over γ-smooth problems without knowledge of β is Ω

T
γ

2γ+1
 while with

knowledge of β, the optimal rate is O(T 1
3).

A Sufficient Condition for Aapting to Smoothness

Definition (Self-similarity): A set of payoff functions {fk}k∈K is self-similar if for some β ∈ [β, β̄]
• all payoffs are β-Hölder;
•∃b > 0, l0 > 0 s.t. ∀l ≥ l0 : maxB∈Bl maxk∈K supx∈B |Γ

p
l fk(x; B)− fk(x)| ≥ b2−lβ ∀p ∈

bβc, . . . , bβ̄c


• Γpl fk(x; B): projection of fk to polynomials of degree p over B
• Bl =

Bm, m = 1, . . . , 2ld
 is a collection of the hypercubes: Bm = Bm =

x ∈ [0, 1]d : mi−1
2l ≤ xi ≤ mi

2l , i ∈ {1, . . . , d}


•Effectively implies a global lower bound on the estimation bias
•Can be viewed as complementing Hölder smoothness, which implies upper bound on bias
•Does not reduce regret complexity
•Example: f1(x) = 1

2, f2(x) = xβ for some β ≤ 1 = β̄

Smoothness-Adaptive Contextual
Bandits (SACB) Policy

Algorithm 1 SACB
Require: Set of non-adaptive policies {π0(β0)}β0∈[β,β̄], horizon
length T , minimum and maximum smoothness exponents β
and β̄, and a tuning parameter γ

1: Initialize: g ←

(β+d−1) log2 T

(2β+d)2

;
r̄ ← d2lβ̄ + (2d

β + 4) log2 log T e
2:Partition the context space [0, 1]d into equal sized hypercubes
with side-length 2−g; Denote the set of hypercubes by Bg

3: Sampling: Collect samples in each hypercube B ∈ Bg by
alternating between the arms for r ∈ {1, . . . , r̄} rounds; in
each round collect 2r samples for each arm

4: Estimation: At the end of each sampling round r in each
hypercube B ∈ Bg, form two separate estimates of each payoff
function using polynomial regression of degree bβ̄c and bad-
nwidths 2−j for j = j1 = g, and j = j2 = g + d1

β log2 log T e;
Denote the estimates by f̂ (B,r)

k (x; j)
5: Hypothesis test: At the end of each sampling round r in
each hypercube B ∈ Bg, check whether the difference between
the estimation using the two bandwidths exponents j1 and j2

exceeds a pre-determined threshold for some tuning param. γ:

sup
k∈K,x∈B

∣∣∣∣∣∣∣∣f̂
(B,r)
k (x; j(B)

1 )− f̂ (B,r)
k (x; j(B)

2 )
∣∣∣∣∣∣∣∣ ≥

γ (log T )
d

2β+1
2

2r/2 .

Denote by r(B)
last the smallest round index for which the above

inequality holds in hypercube B
6: Smoothness estimation: After sampling finished, set

β̂SACB = 1
2g

min
B∈Bg

r
(B)
last −


2d
β

+ 4
 log2 log T



7: Model selection: Choose the corresponding non-adaptive
policy π0 ← π0(min[max[β, β̂SACB], β̄]) and run it for the re-
maining time steps

•Estimates smoothness by comparing estimation
bias and variance
•Key idea of estimation: estimation bias of
self-similar and Hölder-smooth payoffs is bounded
from above and below
•Adaptively integrates a smoothness estimation
sub-routine with some collection of non-adaptive
rate-optimal policies {π0(β0)}β0∈[β,β̄]
•Achieves smothness-adaptivity when paired with
rate-optimal off-the-shelf policies {π0(β0)}β0∈[β,β̄]


