Abstract

We study a non-parametric multi-armed bandit problem with
stochastic covariates, where a key complexity driver is the
smoothness of payoff functions with respect to covariates.
First, we establish that adapting to unknown smoothness of
payoff functions is, in general, impossible. However, under a
self-similarity condition (which does not reduce the minimax
complexity of the problem at hand), we establish that adapting
to unknown smoothness is possible, and further devise a gen-
eral policy for achieving smoothness-adaptive performance.

Formualtion:
Non-parametric Contextual Bandits

o T steps, K = 2 arms, context space |0, 1]d

e In each decision period, agent selects an arm
Before selection, context X; '*% Py observed
Rewards Yy, € |0,1] s.t. E Yy, = fu(Xy)

e f;. payoff tunction of arm k£

e Performance of a policy m measured by regret
w.r.t. a dynamaic oracle:

RT(P;T) = B™ S fi(X)) = fr(X2)

e Complexity depends on payofl structure

nyis
4,1

e In non-parametric model, smoothness of
payoils drives complexity

e [ixisting work assumes prior knowledge about

smoothness (not a practical assumption)

General Model Assumptions

* Payoft smoothness: payofl tunctions are

(B, L)-Holder; 438 € |8, 8], L > 0s.t. Va, 2

fk(l’) o Ta(fkv LﬁJ,QZ’/; J;)

Taylor expansion of degree | 3]
e larger 8 = smoother payoffs = easier problem

< Lz —2'||x

e Context distribution:

0 <p<p:p<px(x)<p

e ¢.¢.. uniform distribution

Vo

e Margin:
Px {0 < [fi(X) = fo(X)| <0} < Cpo® Vo > 0

e captures mass of contexts near decision boundary
e Jarger @ = less context mass near decision boundary
= eagsier problem
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Minimax Regret Rate with the Knowledge of Smoothness

[t has been shown (see Rigollet and Zeevi (2010), Perchet and Rigollet (2013), Hu et al. (2019)) that
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R™(P;T) = 0O (T where ((3,a.d) =1

inf  sup
mell PeP(B,a,d)

e Minimax regret rate depends on smoothness parameter 3

e Previous policy design based on knowledge of smoothness parameter 3

Impossibility of Costless Adaptation to Smoothness

Theorem (Impossibility of adapting to smoothness)

Fix two Holder exponents 3 < . Assume policy 7 is rate-optimal over vy-smooth problems.

TC(%oz,d)] _25+ccll—ozﬁ :

o (At most Lipschitz-smooth) For 0 < <~y < 1. sup R™(P;T)>CT I~ Gaprian ;

PeP(3,a,d)

sup R7(P:T) > CT 2

T¢ (%a,d)]_é |
PeP(1,a,d)

@ (At least Lipschitz-smooth) For =1 < ~

e Lower bound on performance over rough problems as a function of performance over smooth problem
o Implies existance of pairs (3, ) s.t. optimality for both impossible (see the following examplea)

e Sioothness-adaptivity impossible, without additional requirements

Example (Impossibility of adapting to smoothness)
_ — 7 =2

1007 P = 2 100~y ?
for policies that are rate-optimal over y-smooth problems without knowledge of 3 is © (7"%) while with

knowledge of 3, the optimal rate is OQ(TV2M45%).
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® (At most Lipschitz-smooth) ~ and d = 1: Optimal rate over S-smooth problems

@ (At least Lipschitz-smooth) v > 1, =1, a = 1 and d = 1: Optimal rate over S-smooth problems for

policies that are rate-optimal over v-smooth problems without knowledge of (5 is €2 (T »+1| while with

knowledge of 3, the optimal rate is O(T° %).

A Sufficient Condition for Aapting to Smoothness

Definition (Self-similarity): A set of payoft functions { fi }reic is self-similar if for some £ € |3, S]

e all payofts are S-Holder; .

edb > 0,1y > 0st. VI > ly: maxges maxpex SUP,ep |17 fr(2:B) — fu(z)| > 02717 Vp € {WJ, o LBJ}
o [/ fr(x; B): projection of fi to polynomials of degree p over B
o5, = {Bm, m=1,... ,QZd} is a collection of the hypercubes: B,, = B,, = {x c 10, 1]%

mi—l
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ZEZS%, ZG{l,,d}}

e Effectively implies a global lower bound on the estimation bias

e Can be viewed as complementing Holder smoothness, which implies upper bound on bias

e Does not reduce regret complexity
o Example: fi(z) = %, folx) = 2" for some f <1 =0

Smoothness-Adaptive Contextual
Bandits (SACB) Policy

Algorithm 1 SACB

Require: Set of non-adaptive policies {7(50)} g,¢(5,5, horizon
length T', minimum and maximum smoothness exponents (3

and 3, and a tuning parameter

(f+d—1)log, T}_

1: Initialize: g < [ (25+d)?

r < |21 A (Qg - 4) log, log T']

2: Partition the context space [0, 1] into equal sized hypercubes

with side-length 279; Denote the set of hypercubes by 5,

3: Sampling: Collect samples in each hypercube B € B, by
alternating between the arms for r € {1,...,7} rounds; in
each round collect 2" samples for each arm

4. Estimation: At the end of each sampling round r in each
hypercube B € 5,, form two separate estimates of each payoff

function using polynomial regression of degree | 3| and bad-

nwidths 277 for j = j, = ¢, and j = jo = g + (% log, log T'];
Denote the estimates by ﬁgB’r)(x;j)

5: Hypothesis test: At the end of each sampling round 7 in
each hypercube B € B5,, check whether the difference between

the estimation using the two bandwidths exponents j; and 7
exceeds a pre-determined threshold for some tuning param. ~:

v (log T)**

>
27“/2

Sup
kelC,xeB

fi?" s %) = 7w 12

Denote by Tl(ai)t

the smallest round index for which the above
inequality holds in hypercube B

6: Smoothness estimation: After sampling finished, set
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7: Model selection: Choose the corresponding non-adaptive
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BSACB = 10g2 10g T

policy 7y «— mp(min|max|8, Bsace], 3]) and run it for the re-

maining time steps

Estimates smoothness by comparing estimation
bias and variance

Key idea of estimation: estimation bias of
self-similar and Holder-smooth payofts is bounded
from above and below

e Adaptively integrates a smoothness estimation
sub-routine with some collection of non-adaptive

rate-optimal policies {m 0(50)}506[5 B]
e Achieves smothness-adaptivity when paired with
rate-optimal off-the-shelf policies {my(5y) } Boc|B,A)



