Chapter 16 .
TWO-SIDED MATCHING

ALVIN E. ROTH® and MARILDA SOTOMAYOR"

*University of Pittsburgh and
"Pontificia Universidade Catolica do Rio de Janeiro

Contents
1. Introduction 486
2. Some empirical motivation 486
2.1. The case of American physicians 486
2.2. Bidder rings in auctions 490
3. Several simple models: Stability, and the polarization of interests
in the core h 491
3.1. The marriage model 492
3.2. The reformulated college admissions model 494
3.3. Complex preferences over groups 498
3.4. The assignment model 502
4. The structure of the set of stable matchings 507
4.1. Size of the core 511
4.2. The linear structure of the set of stable matchings in the
marriage model 512
4.3. Comparative statics: New entrants : 514
5. Strategic results 515
5.1. Strategic behavior in models of one-to-one matching 518
5.2. Many-to-one matching: The college admissions model 525
5.3. Incomplete information 527
6. Empirical overview 530
6.1. Some further remarks on empirical matters 532
Bibliography ' 535

Handbook of Game Theory, Volume 1, Edited by R.J. Aumann and S. Hart
© Elsevier Science Publishers B.V., 1992. All rights reserved



486 A.E. Roth and M. Sotomayor

1. Introduction

The games we consider in this chapter are “two-sided matching markets”. The
phrase “two-sided” refers to the fact that agents in such markets belong, from
the outset, to one of two disjoint sets—e.g. firms or workers. The term
“matching” refers to the bilateral nature of exchange in these markets — e.g. if
I work for some firm, then that firm employs me. In recent years the
game-theoretic analysis of these markets has proved useful in various empiri-
cally oriented studies. To emphasize the close connection between empirical
and theoretical work in this area, this chapter begins by describing some of the
phenomena the theory should be able to explain. Much of the available theory
will be summarized in the body of the chapter, and the chapter will conclude
by returning to consider how the theory addresses the empirical questions
raised at the beginning.

We will be concerned both with the core of the game, and with the dominant
and equilibrium strategies under various rules about how the game might be
played. Thus this material will serve to emphasize that the distinction between
“cooperative” and ‘“‘noncooperative” game theory is often somewhat artificial,
since the tools of both kinds of theory can be used to study the same
phenomena.

This chapter is adapted from our monograph, Roth and Sotomayor (1990a),
in which a much more complete treatment can be found.

2. Some empirical motivation
2.1. The case of American physicians

Hospitals began offering newly-graduated medical students internship positions
around the turn of the century. Not until 1945 were the relevant medical
associations able to institute a single market with uniform dates at which such
positions would be offered.! Once this was accomplished, however, both
students and hospitals were dismayed by the chaotic conditions that developed
between the time offers of internships were first made, and the time by which
students were required to accept or reject them. The situation is described as
follows in Roth (1984a).

'See Roth (1984a) for a description of the difficulties encountered in setting uniform appoint-
ment dates prior to 1945, which will not be discussed here.
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Basically, the problem was that a student who was offered an internship at,
say, his third choice hospital, and who was informed he was an alternate (i.e.
on a waiting list) at his second choice, would be inclined to wait as long as
possible before accepting the position he had been offered, in the hope of
evantually being offered a preferable position. Students who were pressured
into accepting offers before their alternate status was resolved were unhappy
if they were ultimately offered a preferable position, and hospitals whose
candidates waited until the last minute to reject them were unhappy if their
preferred alternate candidates had in the meantime already accepted posi-
tions. Hospitals were unhappier still when a candidate who had indicated
acceptance subsequently failed to fulfil his commitment after receiving a
preferable offer. In response to pressure originating chiefly from the hospi-
tals, a series of small procedural adjustments were made in the years
1945-51. The nature of these adjustments, described next, makes clear how
these problems were perceived by the parties involved.

For 1945, it was resolved that hospitals should allow students ten days
after an offer had been made to consider whether to accept or reject it. For
1946, it was resolved that there should be a uniform appointment date (July
1) on which offers should be tendered . . ., and that acceptance or rejection
should not be required before July 8. By 1949, [the Association of American
Medical Colleges] proposed that appointments should be made by telegram
at 12:01 AM (on November 15), with applicants not being required to accept
or reject them until 12:00 Noon the same day. Even this twelve-hour waiting
period was rejected by the American Hospital Association as too long: the
joint resolution finally agreed upon contained the phrase “no specified
waiting period after 12:01 AM is obligatory,” and specifically noted that
telegrams could be filed in advance for delivery precisely at 12:01 AM. In
1950, the resolution again included a twelve-hour period for consideration,
with the specific injunction that “Hospitals and/or students shall not follow
telegrams of offers of appointment with telephone calls’ until after the
twelve-hour grace period.” [. .. the injunction against telephone calls was
two-way, in order to stem a flood of calls both from hospitals seeking to
pressure students into an immediate decision, and from students seeking to
convert their alternate status into a firm offer].

It was eventually recognized that these problems could not be solved by
compressing still further the time allowed for the last stage of the matching
process, and it was agreed to try instead a centralized matching algorithm, on a
voluntary basis. Students and hospitals would continue to exchange informa-
tion via applications and interviews as before, but then both students and
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hospitals would submit rank-orderings of their potential assignments,” and the
algorithm would be used to suggest a matching of students to hospitals, who
would then, it was hoped, sign employment contracts with their suggested
assignments.

The first algorithm proposed was abandoned after a year because it was
observed to give students the incentive to submit a rank-ordering different
from their true preferences. The algorithm proposed in its place was used for
the first time in 1951, and remains in use to this day. (This algorithm will be
called the NIMP algorithm, for National Intern Matching Program, the name
under which the algorithm was initially administered.)

This system of arranging matches was voluntary — students and hospitals
were free to try to arrange their own matches outside the system, and there
was no way to enforce compliance on those who did participate.’ This makes it
all the more remarkable that, in the first years of operation, over 95 percent of
eligible students and hospitals participated in the system, and these high rates
of participation continued until the early 1970s.

Since then, although the overall rate of participation remains high, increas-
ing numbers of students, particularly those among the growing number of
medical students who are married to other medical students, have begun to
seek to arrange their own matches, without going through the centralized
clearinghouse. Another aspect of this market which has caused some concern
in medical circles has been the resulting distribution of physicians among
hospitals, with rural hospitals getting fewer interns than they wish, and a much
higher percentage of interns who are graduates of foreign medical schools.

The chief phenomena we would like a theory to explain in this case are:
® What accounted for the disorderly operation of the market between 1945 and

19517
® Why was the centralized procedure instituted in the 1951-52 market able to

achieve such high rates of voluntary participation?
® Why did these high rates start to diminish by the 1970s, particularly among

the growing number of medical students who were married to other medical
students?

We will also want to investigate “strategic” questions of the kind that led to
the scrapping of the first algorithm.
® Does the NIMP algorithm, as claimed by the sponsoring medical associations,

’Regarding the problem of formulating a rank-ordering, note that the complete job description
offered by a hospital program in a given year was customarily specified in advance. Thus the
responsibilities, salary, etc. associated with a given internship, while they might be adjusted from
year to year in response to a hospital’s experience in the previous year’s market, were not a subject
of negotiation with individual job candidates.

>The experience prior to 1950 amply demonstrated that no amount of moral suasion was
effective at preventing participants from acting in what they perceived as their own best interests.
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give students and hospitals the incentive to submit rank-orderings corre-

sponding to their true preferences?

Finally, we would like to be able to get some idea of which aspects of the
market could be influenced by modifying its organization, while preserving
those features that have led to high rates of voluntary participation. In this
regard, we will want to know:
¢ Can the defection of married couples be halted?
® Can the distribution of interns to rural hospitals be changed?

A preview of the proposed explanation

When we see that, in the late 1940s, there is a lot of two-way telephone traffic
between hospitals and students, who sometimes renege on previous verbal
agreements, we can hypothesize that there is some systematic incentive to the
parties involved to behave in this way. These incentives must be mutual: if
students who called hospitals that had not extended them offers were uniformly
told that no places were available, the practice would be unlikely to persist in
the virulent form that was observed. Situations in which there are some
students and hospitals who are not matched with each other, but who both
prefer to be matched one to the other, will therefore be called “unstable”. By
the same token, if the matching suggested by the NIMP algorithm was unstable
in this way —i.e. if there were students and hospitals that would prefer to be
matched to one another rather than to accept the suggested match — then we
would expect that these students and hospitals would continue to try to locate
each other, and subsequently decline to accept the assignment suggested by the
matching procedure. The very high rates of voluntary participation in the years
following the introduction of the NIMP procedure suggest this was not the
case, and that the set of suggested assignments produced by the NIMP
procedure must be ““stable”, i.e. must have the property that, if some student
would prefer another hospital to his suggested assignment, then that hospital
does not return the favor, but prefers the students assigned to it to the student
in question. In Section 6 we will see that the NIMP assignments do indeed have
this property. So our explanation of why the chaotic market conditions prior to
1951 vanished following the introduction of the NIMP procedure will be that it
introduced this kind of stability to the market.

In a similar vein, we will observe that, as married couples became more
common in this market, the procedures used to deal with them introduced
instabilities once again, so that married couples could find hospitals that they
preferred to their assigned matches and that were willing to offer them jobs.
This will be the basis of our explanation of the defection of married couples
from the system, which became so noticeable in the mid-1970s. We will also
argue that the answers to our questions about how much freedom there is to
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alter the organization of the market while maintaining high rates of voluntary
participation also hinge on whether any given organization of the market leads
to stable market outcomes.

A complementary set of ideas, having to do with the strategies of individual
agents in the market, will be used to explore the question of whether, as
claimed, it is always in the interest of all parties to state their true preferences.
‘We will see it is not, and that it cannot be for any procedure that produces
stable outcomes. However, it is possible to arrange things so that it is always in
the best interest of some of the parties to state their true preferences. The
development of these ideas will involve us in a number of subtle issues, not the
least of which is that we will be forced to reconsider and re-evaluate our
conclusions about stability. If the students and hospitals may not be stating
their true preferences when they submit rank-order lists for the NIMP al-
gorithm, is there still reason to believe that the outcome is a stable set of
assignments? When we look at equilibrium behavior we will see that there is.

2.2. Bidder rings in auctions

Strategic considerations of a somewhat different sort arise in the study of
auction markets. The opportunities to profitably deviate from straightforward
behavior are different for buyers and sellers. The sellers (and their agent the
auctioneer) would like prices to be high, and the buyers would like prices to be
low. The most commonly reported ‘“strategic”” behavior on the part of auc-
tioneers or sellers is to introduce imaginary bids into the proceedings, which
when practiced by auctioneers is called by a variety of colorful names, such as
“pulling bids off the chandelier”. And the most commonly reported strategic
behavior on the part of buyers is to form rings that agree to coordinate their
bidding in an effort to keep down the price. Cassady (1967) reports that in
antique and art auctions, the subsequent auction among members of the ring,
called a “knockout” auction, serves both to determine which of the ring
members will receive what the ring has bought, and what payments shall be
made by ring members among themselves. (The Oxford English Dictionary
cites nineteenth-century sources for this meaning of the word “knockout”,
suggesting that the organization of bidder rings in this way is not only a
widespread phenomenon, but also not a new one.) Cassady remarks that buyer
rings are common in many kinds of auctions all over the world, although in
auctions of divisible commodities (such as fish in England, timber in the United
States, and wool in Australia), rings commonly divide the purchases among
themselves, rather than conducting a knockout auction. An unusually detailed
description of the strategic behavior of rings and auctioneers in New Jersey
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machine tool auctions is given by Graham and Marshall (1984). The analysis
that follows will shed some light on the strategic opportunities facing the
auctioneer and individual bidders, and the opportunities for bidders to organ-
ize themselves into rings.

3. Several simple models: Stability, and the polarization of interests in the core

Most theoretical work on this topic traces its history to the papers of Gale and
Shapley (1962), and Shapley and Shubik (1972). Gale and Shapley formulated
a model of two-sided matching without sidepayments which they called the
marriage problem, and Shapley and Shubik formulated a sidepayment game
which they called the assignment game. Each paper studied the core of the
game, and showed it is nonempty for any preferences of the agents. Curiously,
although Gale and Shapley were unaware of the 1951 NIMP algorithm, they
showed the core was nonempty by formulating what can be regarded as an
equivalent algorithm [Roth (1984a)]. Both for the marriage problem and the
assignment game, these early papers demonstrated that, within the core, there
is a surprising coincidence of interest among players on the same side of the
market, and a polarization of interest between the two sides of the market.
These two models are introduced in Subsections 3.1 and 3.4.

Both models involve one-to-one matching, i.e. each agent on one side of the
market can be matched to at most one agent on the other side. Gale and
Shapley also discussed the case of many-to-one matching, which they called the
college admissions problem, but they treated this as essentially equivalent to
the marriage problem. Although they considered that agents on one side of the
market (e.g. colleges) could be matched to more than one agent on the other
side (e.g. students), colleges’ preferences were only considered to be defined
over individual students, not over groups. For a number of years thereafter,
the case of many-to-one matching was regarded as equivalent to one-to-one
matching.

That this is not the case was observed in Roth (1985a), where some
erroneous conclusions that had been reached about many-to-one matching
were considered, and where a model of many-to-one matching was reformu-
lated as a well-defined game. That model, presented in Subsection 3.2, is a
straightforward generalization of the marriage model, in that colleges continue
to have preferences over individual students, and their preferences over groups
of students are constrained by their preferences over individuals in a simple
way. The model of Subsection 3.3, in contrast, is a further generalization in
which firms’ preferences over groups of workers need not reflect an underlying
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preference over individuals.* We will see that while these generalizations and
alternative formulations differ in important ways from the simple marriage
problem, all of these models also share a number of their most striking
properties.

As in any game-theoretic analysis, it will be important to keep clearly in
mind the “rules of the game” by which agents may become matched to one
another, as these will influence every aspect of the analysis. We will suppose
the general rules are that any pair of agents on opposite sides of the market
may be matched to one another if they both agree, and any agent is free to
remain unmatched. We will consider more detailed descriptions of possible
rules (concerning, for example, how proposals are made, or whether a
marriage broker plays a role) at various points in the discussion.

3.1. The marriage model

The two finite and disjoint sets of agents in the marriage model are the set
M={m,,m,,...,m,} of men, and W= {w,, w,,...,w,} of women. Each
man has preferences over the women, and each woman has preferences over
the men. These preferences are transitive and complete, and may be such that
a man m, say, would prefer to remain single rather than marry some woman w
he does not care for.

The preferences of each man m will be represented by an ordered list, P(m),
on the set WU {m}. That is, a man m’s preferences might be of the form
P(m)=w,, w,, m, wy, ..., w,, indicating that his first choice is to be married
to woman w,, his second choice is to be married to woman w,, and his third
choice is to remain single. Similarly, each woman w in W has an ordered list of
preferences, P(w), on the set M U{w}. (An agent may also be indifferent
between several possible mates.) We will usually describe an agent’s prefer-
ences by writing only the ordered set of people that the agent prefers to being
single. Thus the preferences P(m) described above will be abbreviated by
P(m)=w,, w,.

Denote by P the set of preference lists P={P(m,),..., P(m,),
P(w,),...,P(w,)}, one for each man and woman. A specific marriage
market is denoted by the triple (M, W; P). We write w>, w’' to mean m
prefers w to w', and w =, w' to mean m likes w at least as well as w'. Similarly

“The model presented here is a special case of one formulated in Roth (1984c), which in turn
builds upon the work of Kelso and Crawford (1982). (In each of these models we may refer to the
agents as firms and workers, but in the marriage model we will also refer to them as men and
women, in the reformulated college admissions model as colleges and students, and in the
assignment model as buyers and sellers, in order to keep in mind the particular assumptions of
those models.)
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we write m>_m' and m =, m'. Woman w is called acceptable to man m if he
likes her at least as well as remaining single, i.e. if w =, m. Analogously, m is
acceptable to w if m =, w. If an individual is not indifferent between any two
acceptable alternatives, he or she has strict preferences.

An outcome of the marriage market is a set of marriages. In general, not
everyone may be married — some people may remain single. (We will adopt the
convention that a person who is not married to someone is self-matched.)
Formally we have

. Definition 1. A matching p is a one-to-one correspondence from the set
M U W onto itself of order two [that is, u’(x) = x] such that if u(m) # m, then
p(m) is in W and if w(w) # w, then u(w) is in M. We refer to u(x) as the mate
of x.

Note that u’(x) = x means that if man m is matched to woman w [i.e. if
p(m)=w], then woman w is matched to man m [i.e. u(w)=m]. The
definition also requires that individuals who are not single be matched with
agents of the opposite set - i.e. men are matched with women. A matching will
sometimes be represented as a set of matched pairs, e.g.

W, wp ow, wy (my)

m= s
m, m, m; m, M,

has m, married to w, and m; remaining single, i.e. u(m,) = w, and u(m;) =
ms, etc.

We will assume that each agent’s preferences over alternative matchings
correspond exactly to his (her) preferences over his own mates at the two
matchings. Thus man m, say, prefers matching u to matching v if and only if he
prefers pu(m) to v(m).

A matching u is individually irrational if it contains a matched pair (m, w)
who are not mutually acceptable, and we say such a matching can be improved
upon by an individual, since the rules allow any agent to remain single if he or
she chooses. Similarly, a matching u can be improved upon by some pair
consisting of a man m and woman w if m and w are not matched to one
another at u, but prefer each other to their assignments at u, i.e. if w>, u(m)
and m >, u(w). The motivation of this terminology should be clear. Suppose
such a matching u should be under consideration - e.g. suppose no agreements
have yet been reached, but courtships are under way that if successfully
concluded will result in the matching u. This state of affairs would be unstable
in the sense that man m and woman w would have good reason to disrupt it in
order to marry each other, and the rules of the game allow them to do so. This
leads to the following definition.
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Definition 2. A matching p is stable if it cannot be improved upon by any
individual or any pair of agents.

Note that unstable matchings are those dominated via coalitions consisting of
individuals or pairs, and so unstable matchings are not in the core of the game.
But the core is the set of matchings undominated by coalitions of any size, and
so the set of stable matchings might strictly contain the core. But for this model
of one-to-one matching, that is not the case.

Theorem 1.  The core of the marriage market equals the set of stable matchings.

Proof. If u is not in the core, then u is dominated by some matching u’ via a
coalition A. If u is not individually irrational, this implies u'(w) € M for all w
in A, since every woman w in A prefers u'(w) to u(w), and A is effective for
p'. Let w be in A and m = u'(w). Then m prefers w to wu(m) and the pair
(m, w) can improve upon u, so u is unstable. O

We will continue to speak of stable (rather than core) matchings since in the
more general models of many-to-one matching that follow, the set of stable
matchings will be a subset of the core. For the marriage model, Gale and
Shapley proved the following.

Theorem 2 [Gale and Shapley (1962)]. The set of stable matchings is always
nonempty. And when all men and women have strict preferences it contains an
M-optimal stable matching, which all the men like at least as well as every other
stable matching, and, similarly, a W-optimal stable matching.

We will defer discussion of the proof until the more general model of
Subsection 3.3.° We turn next to a many-to-one generalization of the marriage
model in which it continues to be meaningful to speak of firms as having
preferences over individual workers.

3.2. The reformulated college admissions model

There are two finite and disjoint sets, € = {C,, ..., C,} and S={s,,...,s,},
of colleges and students, respectively. Each student has preferences over the

*Roth and Vande Vate (1990) construct another kind of existence proof, based on the
observation that a sequence of matchings generated by allowing randomly chosen blocking pairs to
form must converge with probability one to a stable matching. (The difficulty lies in the fact that
cycles of unstable matching may arise.)
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colleges, and each college has preferences over individual students, exactly as
in the marriage model.

The first difference from the marriage model is that, associated with each
college C is a positive integer g called its quota, which indicates the maximum
number of positions it may fill. (That all qc positions are identical is reflected in
the fact that students’ preferences are over colleges — they do not distinguish
between positions.) ‘

An outcome is a matching of students to colleges, such that each student is
matched to at most one college, and each college is matched to at most its
quota of students. A student who is not matched to any college will be
“matched to himself” as in the marriage model, and a college that has some
number of unfilled positions will be matched to itself in each of those positions.
A matching is bilateral, in the sense that a student is enrolled at a given college
if and only if the college enrolls that student. To give a formal definition, first
define, for any set X, an unordered family of elements of X to be a collection of
elements, not necessarily distinct. So a given element of X may appear more
than once in an unordered family of elements of X. ‘

Definition 3. A matching u is a function from the set € U § into the set of
unordered families of elements of € U S such that:

(1) |m(s)| =1 for every student s and m(s)=sif u(s)€%€;

(2) |u(C)| = g, for every college C, and if the number of students in n(C),
say , is less than g, then u(C) contains qc — r copies of C;

(3) wm(s)=Cif and only if s is in n(C).

So u(s;) = C denotes that student s, is enrolled at college C at the matching
&, and u(C) = {s,, s;, C, C} denotes that college C, with quota g, = 4, enrolls
students s, and s, and has two positions unfilled.

At this point in our description of the marriage model we had only to say
that each agent’s preferences over alternative matchings correspond exactly to
his preferences over his own assignments at those matchings. We can now say
this about students, since at each matching a student is either unmatched or
matched to a college, and we have already described student’s preferences over
colleges. But, while we have described colleges’ preferences over students,
each college with a quota greater than 1 must be able to compare groups of
students in order to compare alternative matchings, and we have yet to
describe the preferences of colleges over groups. (Until we have described
colleges’ preferences over matchings, the model will not be a well-defined
game.)

The assumption we will make connecting colleges’ preferences over groups
of students to their preferences over individual students is one insuring that,
for example, if u(C) assigns college C its third and fourth choice students, and
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1'(C) assigns it its second and fourth choice students, then college C prefers
w'(C) to u(C). Specifically, let P*(C) denote the preference relation of
college C over all assignments u(C) it could receive at some matching p. A
college C’s preferences P*(C) will be called responsive to its preferences P(C)
over individual students if, for any two assignments that differ in only one
student, it prefers the assignment containing the more preferred student. That
is, we assume colleges’ preferences are responsive, as follows.

Definition 4. The preference relation P*(C) over sets of students is responsive
[to the preferences P(C) over individual students] if, whenever w'(C)=
w(C)U {sk}\{o} for o in u(C) and s, not in u(C), then C prefers u'(C) to
©(C) [under P*(C)] if and only if C prefers s, to o [under P(C)].

We will write u'(C) >, u(C) to indicate that college C prefers u'(C) to
©(C) according to its preferences P*(C), and u'(C) =, u(C) to indicate that
Clikes u'(C) at least as well as u(C), where the fact that u'(C) and u(C) are
not singletons will make clear that we are dealing with the preferences P*(C),
as distinct from statements about C’s preferences over individual students.
Note that C may be indifferent between distinct assignments u(C) and u'(C)
even if C has strict preferences over individual students.

Note also that different responsive preference orderings P*(C) exist for any
preference P(C), since, for example, responsiveness does not specify whether a
college prefers to be assigned its first and fourth choice students instead of its
second and third choice students. However, the preference ordering P(C) over
individual students can be derived from P* (C) by considering a college C’s
preferences over assignments w(C) containing no more than a single student
(and g.—1 copies of C). The assumption that colleges have responsive
preferences is essentially no more than the assumption that their preferences
for sets of students are related to their ranking of individual students in a
natural way. (Of course the assumption that colleges have preferences over
individual students is nontrivial, and it is this assumption which is relaxed in
Subsection 3.3.)

Some of the results that follow will depend on the assumption that agents
have strict preferences. Surprisingly, we will only need to assume that colleges
have strict preferences over individuals: it will not be necessary to assume they
have strict preferences over groups of students. The reasons for this will not
become completely clear until Corollary 17, which says that when colleges have
strict preferences over individuals, they will not be indifferent between any
groups of students assigned to them at stable matchings, even though they may
be indifferent between other groups of students.

A matching w is individually irrational if w(s) = C for some student s and
college C such that either the student is unacceptable to the college or the
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college is unacceptable to the student. We will say the unhappy agent can
improve upon such a matching. Similarly, a college C and student s can
improve upon a matching w if they are not matched to one another at M, but
would both prefer to be matched to one another than to (one of) their present
assignments. That is, the pair (C,s) can improve upon u if u(s)# C and if
C>, pu(s) and s> o for some o in u(C). [Note that o may equal either some
student s" in u(C), or, if one or more of college C’s positions is unfilled at
©(C), o may equal C.] It should be clear that matchings blocked in this way by
an individual or by a pair of agents are unstable in the sense discussed for the
marriage model, since there are agents with both the incentive and the power
to disrupt such matchings. So, as in the marriage model, we now define stable
matchings — although we will immediately have to ask whether the set of stable
- matchings defined this way can serve the same role as in the marriage model.

Definition 5. A matching u is stable if it cannot be improved upon by any
individual agent or any college—student pair.

It is not obvious that this definition will still be adequate, since we now might
need to consider coalitions consisting of colleges and several students (all of
whom might be able to enroll simultaneously at the college), or even coalitions
consisting of multiple colleges and students. However, when preferences are
responsive, nothing is lost by concentrating on simple college—students pairs.
The set of stable matchings is equal to the core defined by weak domination
[Roth (1985b)].° So it is a subset of the core. To see why an outcome which is
not strictly dominated might nevertheless be unstable, suppose college C with
quota 2 is the first choice of students s,,s,, and s3, and has preferences
P(C)=s,, s,, 55. Then a matching with u(C) = {s,, s;} can be improved upon
by (C,s,), but the resulting match, u'(C) = {s,,s,}, involves a coalition of
three agents, {C, s,,s,}, and s, is indifferent between w# and w', since he is
matched to C at both matchings.

We will defer until the next section the proof that the set of stable matchings
is always nonempty, and contains optimal stable matchings for each side of the
market. But note that if the preferences of the colleges for groups of students
are not responsive (to some set of preferences over individual students), the
core may be empty.

°A matching p dominates another matching ' if there is a coalition A of agents which is
effective for y —i.e. whose members can achieve their parts of u by matching among themselves,
without the participation of agents not in A — and such that all members of A prefer their matches
under u to those under u'. In contrast, a matching u weakly dominates another matching u’ if only
some of the members of the effective coalition A prefer u to #', so long as no other members of A
have the reverse preference. The core is the set of matchings that are not dominated, and the core
defined by weak domination is the set of matchings that are not (even) weakly dominated.
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3.3. Complex preferences over groups

Let the two sets of agents be n firms #={F,,...,F,}, and m workers
W= {w,,...,w,}. For simplicity assume all firms have the same quota, equal
to m, so each firm could in principle hire all the workers. This will allow us to
describe matchings a little more simply, since it will not be necessary to keep
track of each firm’s quota by saying, for example, that a firm that does not
employ any workers is matched to m copies of itself.

Definition 6. A matching p is a function from the set F U W into the set of all
subsets of & U W such that:

(1) |m(w)| =1 for every worker w and w(w) = w if u(w) & F;

(2) |u(F)|<m for every firm F [u(F)=0 if F is not matched to any
workers];

(3) m(w)=Fif and only if w is in w(F).

Workers have preferences over individual firms, just as in the college
admissions problem, and firms have preferences over subsets of W. For
simplicity assume all preferences are strict. So a worker w’s preferences can be
represented by a list of acceptable firms, e.g. P(w) = F,, F;, F,, w; and a firm’s
preferences by a list of acceptable subsets of workers, e.g. P*(F)=
81,85, ...,8.0; where each S, is a subset of W. Each agent compares
different matchings by comparing his (its) own assignment at those matchings.
The preferences of all the agents will be denoted by P = (P*(F,), ..., P*(F,),
P(w,),..., P(w,)). Keep in mind that firms’ preferences are over sets of
employees.

Faced with a set S of workers, each firm F can determine which subset of S it
would most prefer to hire. Call this F’s choice from S, and denote it by
Ch,(S). That is, for any subset S of W, F’s choice set is Ch.(S) =S’ such that
§" is contained in S and S’ > §” for all S” contained in S. Since preferences are
strict, there is always a single set S’ that F most prefers to hire, out of any set §
of available workers. (Of course S’ could equal S, or it could be empty.)

We will assume that firms regard workers as substitutes rather than comple-
ments, as follows.”

Definition 7. A firm F’s preferences over sets of workers has the property of
substitutability if, for any set S that contains workers w and w’, if w is in
Ch,(S), then w is in Ch (S — w’).

That is, if F has “substitutable” preferences, then if its preferred set of

"This kind of condition on preferences was proposed by Kelso and Crawford (1982).
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employees from S includes w, so will its preferred set of employees from any
subset of S that still includes w. [By repeated application, if w € Ch £(S), then
for any S’ contained in § with w € S', w € Ch(S").] This is the sense in which
the firm regards worker w and the other workers in Ch #(S) more as substitutes
than complements: it continues to want to employ w even if some of the other
workers -become unavailable. .

So substitutability rules out the possibility that firms regard workers as
complements, as might be the case of an American football team, for example,
that wanted to employ a player who could throw long passes and one who
could catch them, but if only one of them were available would prefer to hire a
different player entirely. Note that responsive preferences have the sub-
stitutability property: in the college admissions model, the choice set from any
set of students of a college with quota g is either the g most preferred
acceptable students in the set, or all the acceptable students in the set,
whichever is the smaller number. ~

A matching u can be improved upon by an individual worker w if
w>,, u(w), and by an individual firm F if u(F) # Ch.( u(F)). Note that M may
be improved upon by an individual firm F without being individually irrational,
since it might still be that w(F) >, @. This definition reflects the assumption
that workers’ preferences are over firms (and not over coworkers), so that F
may fire some workers in u(F) if it chooses, without affecting other members
of w(F). Similarly, u can be improved upon by a worker—firm pair (w, F) if w
and F are not matched at u but would both prefer if F hired w: i.e. if uw(w)#F
and if F>_ u(w) and w €& Ch (u(F)Uw). If the firms have responsive
preferences this is equivalent to the definition we used for the college admis-
sions model. We define stable matchings the same way also.

Definition 8. A matching w is stable if it cannot be improved by any individual
agent or any worker—firm pair.

Since “improvement” is now defined in terms of firm’s preferences over sets
of workers, this definition of stability has a slightly different meaning than the
same definition for the college admissions model. Nevertheless, it is still a
definition of pairwise stability, since the largest coalitions it considers are
worker—firm pairs. So we still have to consider whether something is missed by
not considering larger coalitions. It turns out that pairwise stability is still
sufficient: as when preferences are responsive, we can show that, for any
preferences P, the set S(P) of stable matchings equals the core defined by weak
domination, C,,(P), and is always nonempty.

Theorem 3. When firms have substitutable preferences (and all preferences are
strict) S(P) = C,,(P).
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Theorem 4. When firms have substitutable preferences, the set of stable
matchings is always nonempty.

The proof of Theorem 4 will be by means of the following algorithm:

In Step 1, each firm proposes to its most preferred set of workers, and each
worker rejects all but the most preferred acceptable firm that proposes to it. In
each subsequent step, each firm which received one or more rejections at the
previous step proposes to its most preferred set of workers that includes all of
those workers who it previously proposed to and have not yet rejected it, but
does not include any workers who have previously rejected it. Each worker
rejects all but the most preferred acceptable firm that has proposed so far. The
algorithm stops after any step in which there are no rejections, at which point
each firm is matched to the set of workers to which it has issued proposals that
have not been rejected.

Proof of Theorem 4. The matching u produced by the above algorithm is
stable. The key observation is that, because firms have substitutable prefer-
ences, no firm ever regrets that it must continue to offer employment at
subsequent steps of the algorithm to workers who have not rejected its earlier
offers. That is, at every step in the algorithm each firm is proposing to its most
preferred set of workers that does not contain any workers who have previous-
ly rejected it. So consider a firm F and a worker w not matched to F at u such
that w € Ch(u(F) U w). At some step of the algorithm, F proposed to w and
was subsequently rejected, so w prefers u(w) to F, and u is not improvable by
the pair (w, F). Since w and F were arbitrary, and since u is not improvable by
any individual, u is stable. [J

We call this algorithm a “deferred acceptance” procedure, to emphasize that
workers are able to hold the best offer they have received, without accepting it
outright. For the moment we present this algorithm only to show that stable
matchings always exist. That is, although the algorithm is presented as if at
each step the firms and workers take certain actions, we will not consider until
Section 5 whether they would be well advised to take those actions, and
consequently whether it is reasonable for us to expect that they would act as
described, if the rules for making and accepting proposals were as in the
algorithm. .

This result also establishes the nonemptiness of the set of stable matchings
for the marriage and college admissions models, which are special cases of the
present model. The algorithm and proof presented here are simple generaliza-
tions of those presented by Gale and Shapley (1962). And, as in the marriage
and college admissions models, we can further note the surprising fact that the
set of stable matchings contains elements of the following sort.

[
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Definition 9. A stable matching is firm optimal if every firm likes it at least as
well as any other stable matching. A stable matching is worker optimal if every
worker likes it at least as well as any other stable matching.

Theorem 5 [Kelso and Crawford (1982)]. When firms have substitutable
preferences, and preferences are strict, the deferred acceptance algorithm with
firms proposing produces a firm-optimal stable matching.

Theorem 5 can be proved by showing that in the deferred acceptance algorithm
with firms proposing, no firm is ever rejected by an achievable worker, where a
worker w is said to be achievable for a firm F if there is some stable matching p
at which u(w)=F.

Since, unlike the marriage model and like the college admissions model, this
model is not symmetric between firms and workers, it is not immediately
apparent that a deferred acceptance algorithm with workers proposing will
have an analogous result, but it does. In the algorithm with workers proposing,
workers propose to firms in order of preference, and a firm rejects at any step
all those workers who are not in the firm’s choice set from those proposals it
has not yet rejected. We can state the following result.

Theorem 6 [Roth (1984c)]. When firms have substitutable preferences, and
preferences are strict, the deferred acceptance algorithm with workers proposing
produces a worker-optimal stable matching.

The key observation for the proof is that, because firms have substitutable
preferences, no firm ever regrets that it rejected a worker at an earlier step,
when it sees who proposed at the current step. One can then show that no
worker is ever rejected by an achievable firm.

These results cannot be generalized in a strightforward way to the symmetric
case of many-to-many matching in which workers may take multiple jobs, even
when both sides have substitutable, or even responsive, preferences.8 The
reason is not that the analogously defined pairwise stable matchings do not
have similar properties in such a model, but that pairwise stable matchings are
no longer always in the core. ,

Before moving on, an example will help clarify things.

Example 7. An example in which firms have substitutable (but nonrespon-
sive) preferences. There are two firms and three workers, with preferences as
follows.

*See Blair (1988) and Roth (1991).
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P#(Fl) ={wp, wo}, {wy, wi}, {w,, Wit {ws}, {w,}, {w,},
P#(Fz) ={ws},

P(w,)=F,, F,,
P(w,)=F,, F,,
P(w;)=F,, F,.
Note that
_ F, F,
T ww) (w)

is the unique stable matching.

If we look just at single workers, we see that F, prefers w, to w, to w,. But
P*(F,) is not responsive to these preferences over single workers, since
{wi, w,} >, {w,, w;} even though w, alone is preferred to w, alone. But the
preferences are substitutable. Recall the earlier discussion of why the college
admissions model needed to be reformulated to include colleges’ preferences
over groups; and observe once again that the class of many-to-one matching
problems, of which this is an example, would not be well-defined games if we
specified only the preferences of firms over individuals. Indeed, if we defined
stability only in terms of preferences over individuals, the matching u would be
unstable with respect to the pair (F,, w,) since w, prefers F, to F, and F,
prefers w; (by himself) to w, (by himself). But x is not unstable in this
example because F; does not prefer {w,, w;} to {w,, w,}. O

3.4. The assignment model

In this model money plays an explicit role. There are two finite disjoint sets of
players P and Q, containing m and n players, respectively. Members of P will
sometimes be called P-agents and members of Q called Q-agents, and the
letters i and j will be reserved for P and Q agents, respectively. Associated with
each possible partnership (i, j) € P X Q is a non-negative real number a;. A
game in coalitional function form with sidepayments is determined by
(P, Q, @), with the numbers a;, being equal to the worth of the coalitions {i, j}
consisting of one P agent and one Q agent. The worth of larger coalitions is
determined entirely by the worth of the pairwise combinations that the
coalition members can form. That is, the coalitional function v is given by

v(S)=a; if S={i, j} for i€ P and j € Q;

v(S) =0 if S contains only P agents or only Q agents; and
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u(S) = max(v(i;, j,) + v(iy, j,) + - +v(i, j,)) for arbitrary coalitions S,
with the maximum to be taken over all arrangements of 2k distinct players
iy, 1, ..., belonging to S, and j, j,, ..., j, belonging to Sy, where S, and
S, denote the sets of P and Q agents in S (i.e. the intersection of the coalition
$ with P and with Q), respectively.

So the rules of the game are that any pair of agents (i, /)€ P X Q can
together obtain «;, and any larger coalition is valuable only insofar as it can
organize itself into such pairs. The members of any coalition may divide among
themselves their collective worth in any way they like. An imputation of this
game is thus a non-negative vector (u,v) in R™ X R" such that %, , u, +
Lo U; = v(PU Q). The easiest way to interpret this is to take the quantities
a; to be amounts of money, and to assume that agents’ preferences are
concerned only with their monetary payoffs.

We might think of P as a set of potential buyers of some objects offered for
sale by the set Q of potential sellers, and each seller owns and each buyer
wants exactly one indivisible object. If each seller j has a reservation price ¢
and each buyer i has a reservation price r;; for object j, we may take ; to be
the potential gains from trade between i and j; that s, a; =max{0, r,; —c;}. If
buyer i buys object j from seller j at a price p, and if no other monetary
transfers are made, the utilities are u, = riy —p and v;=p —c;. So, when no
other monetary transfers are made, u; + v; = a;; when i buys from j. But note
that transfers between agents are not restricted to those between buyers and
sellers; e.g. buyers may make transfers among themselves as in the bidder rings
of Subsection 2.2.°

We can also think of the P and Q agents as being firms and workers, etc. As
in the marriage model, we look here at the simple case of one-to-one matching,
with firms constrained to hire at most one worker."’ In such a case, the a,’s
represent some measure of the joint productivity of the firm and worker, while
transfers between a matched firm and worker represent salary. Transfers can
also take place between workers (as when workers form a labor union in which
the dues of employed members help pay unemployment benefits to un-
employed members), or between firms.

The maximization problem to determine v(S) for a given matrix a is called
an assignment problem, so games of this form are called assignment games. We
will be particularly interested in the coalition PU Q, since v(PU Q) is the

°A model in which it is assumed that transfers cannot be made between agents on the same side
of the market is considered by Demange and Gale (1985), who show that many of the results
presented here for other models can be obtained in a model of this kind allowing rather general
utility functions.

“The case of many-to-one matching has some important differences, analogous to those found
between the marriage and college admissions models: see Sotomayor (1988).
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maximum total payoff available to the players, and hence determines the
Pareto set and the set of imputations.
Consider the following linear programming (LP) problem P,:

maximize 2, ;" X;
ij

subject to (a) 2, x;<1
(b) X x;<1,
j
(©) x,;=0.

We may interpret x;; as, for example, the probability that a partnership (i, j)
will form. Then the linear inequalities of type (a), one for each j in Q, say that
the probability that j will be matched to some i cannot exceed 1. The
inequalities of form (b), one for each i in P, say the same about the probability
that i will be matched.

It can be shown [see Dantzig (1963, p. 318)] that there exists a solution of
this LP problem which involves only values of zero and one. [The extreme
points of systems of linear inequalities of the form (a), (b), and (c) have integer
values of Xij» i.e. each x; equals O or 1. ] Thus the fractions artificially
introduced in the LP formulation disappear in the solution and the (continu-
ous) LP problem is equivalent to the (discrete) assignment problem for the
coalition of all players, that is, the determination of v(P U Q). Then v(PU
Q) =L a; - x;;, where x is an optimal solution of the LP problem.
Definition 10. A feasible assignment for (P, Q, a) is a matrix x = (x;) (of
zeros and ones) that satisfies (a), (b) and (c) above. An optimal asszgnment isa
feasible as&gnment x such that L, ; a; - x, =1, ; @, - x;, for all feasible assign-
ments x'.

l]’

So if x is a feasible assignment, x; = 1 if i and j form a partnership and x;=0
otherwise. If £, x;; =0, then i is unasszgned and if X, x;; =0, then j is likewise
unassigned. A feasxble assignment x corresponds exactly to a matching u as in

Definition 1, with u(i) = if and only if x, =

Definition 11. The pair of vectors (u,v), * €R™ and v ER" is called a
feasible payoff for (P, Q, ) if there is a feasible assignment x such that

Eu +EU E ;X

iepP i€Q i€EP,jEQ
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In this case we say (u, v) and x are compatible with each other, and we call
((u, v); x) a feasible outcome. Note again that a feasible payoff vector may
involve monetary transfers between agents who are not assigned to one
another.

As in the earlier models, the key notion is that of stability.

Definition 12. A feasible outcome ((u, v); x) is stable [or the payoff (u, v)
with an assignment x is stable] if

(i) u;=0,v,=0,

(i) u;+v,=aq, for all (i, ))EP x Q.

Condition (i) (individual rationality) reflects that a player always has the
option of remaining unmatched (recall that v(i) = v(j)=0 for all individual
agents i and j). Condition (ii) requires that the outcome cannot be improved
by any pair: if (ii) is not satisfied for some agents i and j, then it would pay
them to break up their present partnership(s) (either with one another or with
other agents) and form a new partnership together, because this could give
them each a higher payoff.
From the definition of feasibility and stability it follows that

Lemma 8. Let ((u, v), x) be a stable outcome for (P, Q, a). Then
(i) u;+v;= a; for all pairs (i, j) such that x;=1;
(ii) u; =0 for all unassigned i, and v; =0 for all unassigned j at x.

The lemma implies that at a stable outcome, the only monetary transfers that
occur are between P and Q agents who are matched to each other. (Note that
this is an implication of stability, not an assumption of the model.)

Now consider the LP problem P} that is the dual of P,, i.e. the LP problem
of finding a pair of vectors (u, v), u € R™ v € R", that minimizes the sum

Eui+20j

iep ieQ

subject, for all i€E P and j € Q, to

(@*) u,=0, v, >0,

(b*) u,+v,=a,.

Because we know that P, has a solution, we know also that P* must have an
optimal solution. A fundamental duality theorem [see Dantzig (1963, p. 129)]
asserts that the objective functions of- these dual LPs must attain the same
value. That is, if x is an optimal assignment and (u, v) is a solution of Py, we
have that

2w+ 2v=2 a-x,=v(PUQ). (1)

iep i€Q PxQ
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This means that ((u, v), x) is a feasible outcome. Moreover, ((&, v), x) is a
stable outcome for (P, Q, a), since (a*) ensures individual rationality and
u; +v;= o for all (i, j) € P X Q by (b*). It follows, by the definition of v(S),
that for any coalition $= S, U Sy, where S, is contained in P and S, in Q,

Z u; + z v, =u(S). 2)

i€Sp €S,

But (1) and (2) are exactly how the core of the game is determined: (1)
ensures the feasibility of (u, v) and (2) ensures its nonimprovability by any
coalition. Conversely, any payoff vector in the core, i.e. satisfying (1) and (2),
satisfies the conditions for a solution to P*. Hence we have shown

Theorem 9 [Shapley and Shubik (1972)]. Let (P, Q, @) be an assignment
game. Then

(a) the set of stable outcomes and the core of (P, Q, a) are the same;

(b) the core of (P, Q, a) is the (nonempty) set of solutions of the dual LP of
the corresponding assignment problem.

The following two corollaries make clear why, in contrast to the discrete
models considered earlier, we can concentrate here on the payoffs to the
agents rather than on the underlying assignment (matching)."

Corollary 10. If x is an optimal assignment, then it is compatible with any
stable payoff (u, v).

Corollary 11.  If ((u,v), x) is a stable outcome, then x is an optimal assignment.

In this model also there are optimal stable outcomes for each side of the
market. Note that in view of Corollary 10, the difference between different
stable outcomes in this model has to do only with the payments to each player,
not to whom players are matched.

Theorem 12 [Shapley and Shubik (1972)]. There is a P-optimal stable payoff
(&, v), with the property that for any stable payoff (u, v), i = u and v < v; there
is a Q-optimal stable payoff (u, U) with symmetrical properties.

""Becker (1981), who uses the assignment model to study marriage and household economics,
makes use of the fact that stable outcomes all correspond to optimal assignments, and that the
optimal assignment is typically unique, to study which men are matched to which women (e.g. if

high wage earners marry good cooks), for different assumptions about how the assignment matrix
is derived.
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4. The structure of the set of stable matchings

In each of the models we have described, the set of stable matchings is
nonempty.'? In fact, for each side of the market, there exists an optimal stable
matching that all agents on that side of the market like at least as well as any
other stable matching.”> That such side-optimal stable matchings always exist is
more than a little surprising in models in which firms compete with one another
for good workers, and workers compete with one another for desirable jobs. It
turns out to be only the tip of the iceberg, in terms of the welfare comparisons
which can be made between different stable matchings. In this section we
describe some of these.

One question is whether the optimal stable matching for agents on one side
of the market is Pareto optimal for them as well. This turns out to be one of
the respects in which many-to-one matching is not equivalent to the special
case of one-to-one matching. In the marriage model the optimal stable
matching for each side of the market is weakly Pareto optimal for that side.
(Since the market is symmetric between men and women, we consider here
only the man-optimal stable matching w,,.)

Theorem 13 [Roth (1982a)]. Weak Pareto optimality for the men. In the
marriage model there is no individually rational matching u (stable or not) such
that u =, wu,, for all min M.

However, the following example shows that this result cannot be
strengthened to strong Pareto optimality. '

Example 14 [Roth (1982a)]. Let M={m,,m2,m3} and W= {w, w,, w,;}
with preferences over the acceptable people given by:

P(m,)=w,, w;, ws; P(w))=m, my, my;

P(m,)=wy, wy, wy; P(wy)=my, m, m,;

Pimy)=w,w,, w;; P(wy)=m,, m,, m, .
Then

Wy W, W,

P~ m m, m,

“This nonemptiness is related to the two-sidedness of the models: one-sided and three-sided
models may have empty cores.

BFor the discrete markets this is only the case when preferences are strict: when they are not, it
is easy to see that although the set of stable matchings remains nonempty, it may not contain any
such side-optimal matchings.
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is the man-optimal stable matching. Nevertheless,

o= W, W, W,
ms; m; m,

leaves m, no worse than under p,,, but benefits m, and m,. So there may in
general be matchings that all men like at least as well as the M-optimal stable
matching, and that some men prefer. We shall return to this fact in our
discussion of the strategic options available to coalitions of men.

Theorem 13 cannot be generalized to both sides of the college admissions -
model. We can state the following result instead.

Theorem 15 [Roth (1985a)]. When the preferences over individuals are strict,
the student-optimal stable matching is weakly Pareto optimal for the students,
but the college-optimal stable matching need not be even weakly Pareto optimal
for the colleges.

However, as we have already seen through the existence of optimal stable
matchings for each side of the market, there are some important properties
concerning welfare comparisons within the set of stable matchings that hold
both for one-to-one and many-to-one matching. There are also welfare com-
parisons that can be made in the case of many-to-one matching that have no
counterpart in the special case of one-to-one matching.

We first consider some comparisons of this latter sort, for the college
admissions model, concerning how well a given college might do at different
stable matchings. Theorem 16 says that for every pair of stable matchings, each
college will prefer every student who is assigned to it at one of the two
matchings to every student who is assigned to it in the second matching but not
the first. An immediate corollary is that in a college admissions problem in
which all preferences over individuals are strict (and responsive), no college
will be indifferent between any two (different) groups of students that it enrolls
at stable matchings. The manner in which these results are mathematically
unusual can be understood by noting that this corollary, for example, can be
rephrased to say that if a given matching is stable (and hence in the core), and
if some college is indifferent between the entering class it is assigned at that
matching and a different entering class that it is assigned at a different
matching, then the second matching is not in the core. We thus have a way of
concluding that an outcome is not in the core, based on the direct examination
of the preferences of only one agent (the college). Since the definition of the
core involves preferences of coalitions of agents, this is rather unusual.
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Theorem 16 [Roth and Sotomayor (1989)]. Let preferences over individuals
be strict, and let p and p' be stable matchings for a college admissions problem
(S, 6, P)). If u(C) >, p'(C) for some college C, then s> s’ for all s € u(C)
and s' € u'(C) — w(C). That is, C prefers every student in its entering class at p
to every student who is in its entering class at u’ but not at w.

Given that colleges have responsive preferences, the following corollary is
immediate.

Corollary 17 [Roth and Sotomayor (1989)]. If colleges and students have strict
preferences over individuals, then colleges have strict preferences over those
groups of students that they may be assigned at stable matchings. That is, if u
and p' are stable matchings, then a college C is indifferent between u(C) and

r'(C) only if u(C)=p'(C).

And since the set of stable matchings depends only on the preferences over
individuals, and not on the preferences over groups (so long as these are
responsive to the preferences over individuals) the following result is also
immediate.

Corollary 18 [Roth and Sotomayor (1989)]. Consider a college C with prefer-
‘ences P(C) over individual students, and let P*(C) and P*(C) be preferences
over groups of students that are responsive to P(C ) (but are otherwise arbitrary).

Then for every pair of stable matchings u and p', n(C) is preferred to u'(C)
under the preferences P*(C) if and only if u(C) is preferred to p "(C) under
P*O).

An example will illustrate Theorem 16 and Corollaries 17 and 18.

Let the preferences over individuals be given by

P(s); = Cs, Cy 5 P(C)y =51, 53,83, 54, S5, 565575
P(s); =G, Cs, Cp 5 P(C),=s5,5;3

P(s);=C5, Cy5 P(C); = 56,575,833

P(s), = C,, Cy; P(C)y= 57,545

P(s)s = Cy, Gy P(C)s =55, 8¢5

P(s)s = Cy, Gy

P(S)7= Cly C37 C4 ’
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and let the quotas be 4c, =3, gc,=1for j=2,...,5. Then the set of stable
outcomes is {u;, u,, ps, p,} Where

C ¢, G C, C
Hi=5.538, S5 S¢ S7 8
My =835,8s 8, S¢ §; 5,
Hy=S385Sg S, S5 Sa 8

Mg =S58¢87 S, 83 8, 8

Note that these are the only stable matchings, and
m(Cy) >, Mo (Cy) e #s(Cy) >, ma(Cy),
for any responsive preferences.

We turn next to consider welfare comparisons involving more than one
agent, on the set of stable matchings. Again, we concentrate primarily on the
college admissions model. (The proofs all involve some version of Theorem
16.) However, these results [which are proved in Roth and Sotomayor (1990a)]
all have parallels in the case of one-to-one matching, where they were first
discovered.

We begin with a result which says that if an agent prefers one stable
matching to another, then any agents on the other side of the market who are
matched to that agent at either matching have the opposite preferences.'*

Theorem 19. If u and ,u.’hre two stable matchings for (S, €, P) and C = u(s)
or C=pu'(s), with CE € and s € S, then if u(C) = p'(C) then p'(s) =, u(s)
[and if w'(s) >, u(s) then u(C)=, pu'(C)].

The equivalent result for the assignment model, which is easy to prove, says
that if i prefers a stable payoff (u,v) to another stable payoff (u',v"), his
mate(s) will prefer (u’, v').

Theorem 20. Let ((u, v), x) and ((u', v'), x') be stable outcomes for (P, Q, a).
Then if x;; =1, u; > u, implies v} < v;.

Proof. Suppose v;=v,;. Then a;=u;+v;>u +v;=q, which is a con-
tradiction.

“The case of the marriage model was shown by Knuth (1976), and an extended version of this
result was given by Gale and Sotomayor (1985a), who show its usefulness as a lemma in a number
of other proofs.
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The next result concerns the common preferences of agents on the same side
of the market. Stated here for the college admissions model, it also holds for
the assignment model. We write u >4 1’ to mean that every college likes u at
least as well as u’, and some college strictly prefers pu, i.e. w(C)=,un'(C) for
all C€ € and u(C) >, u'(C) for some C € 4. So the relation >, represents
the common preferences of the colleges, and we define the relation > s
analogously, to represent the common preferences of the students. The
relations >, and > are only partial orders on the set of stable matchings,
which is to say that there may be stable matchings u and w1’ such that neither
K >g p' nor p' > pu. An additional definition will help us summarize the state
of affairs. !

Definition 13. A lattice is a partially ordered set L any two of whose elements
x and y have a “sup”, denoted by x v y and an “inf’, denoted by xay. A
lattice L is complete when each of its subsets X has a “sup” and an “inf” in L.

Hence, any nonempty complete lattice P has a least element and a greatest
element. The next result therefore accounts for the existence of optimal stable
matchings for each side of the market.

Theorem 21. When all preferences over individuals are strict, the set of stable
matchings in the college admissions model is a lattice under the partial orders >,
and > . Furthermore, these two partial orders are duals: if w and ' are stable
matchings for (S, €, P), then u >4 ' if and only if u’' > .

This theorem provides a more complete description of those structural
- properties of the set of stable matchings that account for the existence of
optimal stable matchings for each side of the market. And the theorem shows
that the optimal stable matching for one side of the market is the worst stable
matching for the other side. Knuth (1976) attributes the lattice result for the
marriage model to J.H. Conway. Shapley and Shubik (1972) established the
same result for the assignment model.

4.1. Size of the core

Knuth (1976) examined the computational efficiency of the deferred accept-
ance procedure for the marriage model, and observed that the task of
computing a single stable matching is not computationally onerous (it can be
completed in polynomial time). However, even in the marriage model, the task
of computing all the stable matchings can quickly become intractable as the
size of the problem grows, for the simple reason that the number of stable
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matchings can grow exponentially. The next result, which follows a construc-
tion found in Knuth (1976), describes the case of a marriage problem in which
there are » men and n women, which we will speak of as a problem of size .

Theorem 22 [Irving and Leather (1986)]. For each i =0 there exists a stable
marriage problem (M, W, P) of size n=2' with at least 2"" stable matchings.

However, because of the special structure of the core in these games, we can
answer some questions about the core without computing all its elements. For
example, suppose we simply wish to know which pairs of agents may be
matched to one another at some stable matching, i.e. which pairs of agents are
achievable for one another. The following result says that these can be found
by following any path through the lattice from the man-optimal stable matching
i, to the woman optimal stable matching u,,.

Theorem 23 [Gusfield (1985)]. Let py, = o> 30 oy Zps boo = ps =" S s 1y = Moy
be a sequence of stable matchings encountered on any path through the lattice of
stable matchings of a marriage problem. Then every achievable pair appears in
at least one of the matchings in the sequence.

For the assignment model, since the core is a convex polyhedron we cannot
ask how many elements it contains, but we can ask how many extreme points it
might have. We can state the following result.

Theorem 24 [Balinski and Gale (1990)]. In the assignment game, the core has
at most (°7) extreme points, where m = min{|P|, |Q|}.

4.2. The linear structure of the set of stable matchings in the marriage model

That the marriage and assignment models share so many properties has been a
long-standing puzzle, since many of these results (e.g. the existence of optimal
stable outcomes for each side of the market, and the lattice structure through-
out the set of stable outcomes) require the assumption of strict preferences in
the marriage model, while in the assignment model all admissible preferences
must allow agents to -be indifferent between different matches if prices are
adjusted accordingly.'”” However, a structural similarity between the two
models is seen in the rather remarkable result of Vande Vate (1989) that

"*Roth and Sotomayor (1990b) show, however, that the two sets of results can be derived under
common assumptions if one requires merely that the core defined by weak domination coincides
with the core.

s
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finding the stable matchings in the marriage model can also be represented as a
linear programming problem.'® The argument proceeds by first showing that
the problem can be phrased as an integer program, and then observing that
when the integer constraints are relaxed, the problem nevertheless has integer
solutions.

For simplicity consider the special case in which |M|=|W| and every pair
(m, w) is mutually acceptable, and all preferences are strict. Thus, every man is
matched to some woman and vice versa, under any stable matching. Let the
configuration of a matching u be a matrix x of zeros and ones such that X, =1
if u(m)=w and x,,, =0 otherwise.

We will also consider matrices x of dimension [M| X |W/| the elements of
which may not be integers, i.e. matrices which may not be the configuration of
any matching. Let I, x,, denote the sum over all i in M, X i Xm; denote the sum
overalljin W, £ j>w Xm; denote the sum over all those j in W that man m
prefers to woman w, and X i,,>m Xiw denote the sum over all those i in M that
woman w prefers to man m.

We can characterize the set of stable matchings by their configurations:

Theorem 25 (Vande Vate). A matching is stable if and only if its configuration
X is an integer matrix of dimension |M|x |W| satisfying the following set of
constraints:

(1) Z,x,,=1forall min M,

(2) Z,x,,=1forall win W,

B) L swxy,+ L sm¥u T X, =1 forall min M and w in W,
and

(4) x,,,=0 for all m in M and w in W.

Constraints (1), (2) and (4) require that if x is integer it is the configuration
of a matching, i.e. its elements are 0’s and 1’s and every agent on one side is
matched to some agent on the opposite side. It is easy to check that constraint
(3) is equivalent to the nonexistence of blocking pairs. [To see this, note that if
x is a matching, i.e. a matrix of 0’s and 1’s satisfying (1), (2), and (4), then (3)
is not satisfied for some m and w only if L owXmi =L o X, =X, =0, in
which case m and w form a blocking pair.]

Thus, an integer |M| X [W| matrix x is the configuration of a stable matching
if and only if x satisfies (1)—(4). Of course there will in general be an infinite
set of noninteger solutions of (1)-(4) also, and these are not matchings.
However, we may think of them as corresponding to “fractional matchings”, in
which x,,,, denotes something like the fraction of the time man m and woman w
are matched, or the probability that they will be matched.

'°Subsequent, simpler proofs are found in Rothblum (1992) and Roth, Rothblum and Vande
Vate (1992).
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The surprising result is that the integer solutions of (1)—(4), i.e. the stable
matchings, are precisely the extreme points of the convex polyhedron defined
by the linear constraints (1)-(4). That is, we have the following result.

Theorem 26 (Vande Vate). Let C be the convex polyhedron of solutions to the
linear constaints (1)—(4). Then the integer points of C are precisely its extreme
poinis. That is, the extreme points of the linear constraints (1)—(4) correspond
precisely to the stable matchings.

4.3. Comparative statics: New entrants

The results of this subsection concern the effect of adding a new agent to the
market. Following Kelso and Crawford (1982), who established the following
result for a class of models including the assignment model, a number of
authors have examined the effect on the optimal stable matchings for each side
of the market of adding an agent on one side of the market. Briefly, the results
are that, measured in this way, agents on opposite sides of the market are
complements, and agents on the same side of the market are substitutes.!” This
result seems to be robust, with a recent paper by Crawford (1988) establishing
the result for a general class of models with substitutable preferences intro-
duced in Roth (1984c). As it applies to the simple model with substitutable
preferences described in Subsection 3.3, his result is the following.

Theorem 27 [Crawford (1991)]. Suppose ¥ is contained in F* and u,, and u
are the W-optimal and F-optimal stable matchings, respectively, for a market
with substitutable preferences (W, %, P) and let p;, and p% be the W- and
F-optimal stable matchings for (W, ¥*, P*), where P* agrees with P on %. Then

Kw=y iy and pi =y, we under P*; and py, =, pl, and pp =, uk .

Symmetrical results are obtained if S is contained in S*.

The next result, which we state for the assignment model, shows that when a
new agent enters the market there will be some P and Q agents for whom we
can unambiguously compare all stable outcomes of the two markets.'® Suppose
some P agent i* enters the market M= (P, Q, a). The new market is then

M'™*=(PU{i*}, Q, a'), where a;=a,foralli€P andjeQ

17Cf Shapley (1962) for a related linear programming result.
A similar result for the marriage market is given in Roth and Sotomayor (1990a).
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Theorem 28. Strong dominance [Mo (1988)]. If i* is matched under some
optimal assignment for M'*, then there is a nonempty set A of agents in PU Q
such that every Q agent in A is better off and every P agent in A is worse off at
any stable outcome of the new market than at any stable outcome of the old
market. That is, for all (u', v') and (u, v) stable for M'* and M, respectively, we
have

(a) if a P agent i is in A, then u, > u!;

(b) ifa Q agent j is in A, then v, <.

The final result of this subsection can be thought of as describing how much
the entry of an agent i* in the assignment model can move the core of the
game. There will be some agents whose worst core payoff in one of the two
games (with and without i*) is exactly equal to their best core payoff in the
other.

Corollary 29 [Mo (1988)]. Let (&', v") be the P-optimal stable payoff for M'*.
Let (u, v) be the Q-optimal stable payoff for M. If i* is matched under some
optimal assignment for M'*, there exists a nonempty set A of agents in P U (0]
such that

(@) ifa Pagentiisin A, then i, =u,;

(b) ifa Q agent jis in A, then v, =U;.

5. Strategic results

We now turn to a different class of questions, motivated by the claim made in
the literature distributed to participants in the hospital-intern market that the
NIMP algorithm makes it unprofitable for either students or hospitals to state
anything other than their true preferences. While we will defer consideration of
the NIMP algorithm itself until Section 6, we consider here the extent to which
it is possible to minimize the strategic complexity of matching, and what can be
said about the strategic properties of procedures which lead to stable
matchings. ,

To set the stage, consider the procedure by which graduating students at the
United States Naval Academy obtain their first posts as Naval officers. The
following description is taken from the New York Times (30 January 1986, p.
8).

Midshipmen who will graduate from the Naval Academy in June decided
this week whether they wanted to be aviators or nuclear submariners,
destroyermen or engineers, marines or oceanographers.... From late
Thursday afternoon through the wee hours of Friday morning, the first
classmen, or seniors, lined up according to their standing in the class, walked
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up to a long table lined with officers from each specialty, and made their
choices on a first-come, first-served basis. . . .

It is easy to see that each agent in this procedure has a dominant strategy,
since a student can do no better than to select his first choice of those
specialties remaining when his turn comes, and since the various Naval -
specialties have no choices of any sort to make. And if the preferences of each
specialty over the students correspond exactly to students’ class standings, then
the matching which results from this procedure is stable. Of course if any of the
specialties have different preferences, the matching may not be stable, but the
rules by which the Navy is run do not permit specialties to refuse positions to
some students and offer positions to students they prefer but who have lower
class standmgs

However, in markets that allow the agents on the two sides of the market to
freely negotiate with one another, the empirical evidence suggests that the
stability or instability of the final matching is important. So we will want to
consider whether any procedures exist which yield stable matchings for all
preferences, and which give each agent a dominant strategy. It will be sufficient
for this purpose to confine our attention to the special class of ‘“‘revelation
mechanisms” which are functions from the stated preferences of the agents to
the set of matchings We will call a revelation mechanism which always chooses
a matching that is stable with respect to the stated preferences a stable
matching mechanism.* If any procedures with the desired properties exist, then
there will exist a revelation mechanism which is a stable mechanism and which
makes it a dominant strategy for each agent to state his true preferences.”'

The next theorem states that no such mechanism exists for the marriage
model. Since the marriage model is a special case of the college admissions and
substitutable preferences models the theorem implies that no such mechanism
exists for those models either.?

Theorem 30. Impossibility Theorem [Roth (1982a)]. No stable matching
mechanism for the marriage model exists for which stating the true preferences is
a dominant strategy for every agent.

“That is, in the Navy’s game, the outcome of this procedure is in the core, even if it can be
improved upon by some student-specialty pair, since the rules do not permit the specialties to be
active players.

“Note that the Naval Academy procedure just ‘described can be thought of as a revelation
mechanism, albeit one in which the preferences of the specialties are ignored. However, it is not a
stable matching mechanism, since although it produces a stable matchmg for some preferences,
there are (many) preferences for which the matching it produces is unstable.

*'Various formalizations of this observation go under the name of the revelation principle, and
are widely used in game-theoretic proofs.

*Notice that 1mposs1b111ty theorems are strongest when stated on the narrowest domain, since if
no mechanism exists which works for all examples of the narrow domain, then certainly no
mechanism exists which works for all examples of wider domains.
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Proof*. Since a matching mechanism is a function that produces a matching
for any stated preferences, to prove the theorem it is sufficient to demonstrate
some particular marriage market such that, for any stable matching mecha-
nism, truthtelling will not be a dominant strategy for all agents. So consider a
market with two men and two women, with preferences P given by P(m,) =
Wi, Wy P(my) = w,, wi; P(w,) = m,, m; P(w,) = m,, m,. Then there are two
stable matchings, u and v, given by u(m,) = w, for i € (1,2}, and v(m,) = w;
for i, j€{1,2}, j#i. So any stable mechanism must choose one of u or v
when preferences P are stated: suppose the mechanism chooses u. Observe
that if w,, say, changes her stated preference from P(w,) to Q(w,) = m, while
everyone else states their true preferences, then » is the only stable matching
with respect to the stated preferences P’ = (P(m,), P(m,), P(w,), Q(w,)), and
so any stable mechanism must select v when the stated preferences are P’. So it
is not a dominant strategy for all agents to state their true preferences, since w,
does better to state Q(w,). Similarly, if the mechanism chooses » when the
preferences P are stated, then m, can profitably mis-state his preferences. [

The same result can be stated for the assignment model.

Since we have defined a matching mechanism as a procedure which can be
applied to any marriage market (i.e. as a function defined for all marriage
markets), the Impossibility Theorem says we cannot find a stable mechanism
that will not sometimes give some agent an incentive to mis-state his or her
preferences. But we might hope to find a stable matching mechanism that only
seldom gave agents such incentives, in which case the problem of incentives
might not be very important. The following result, which can be thought of as a
corollary of the proof of the Impossibility Theorem, and which strengthens it,
states that no such mechanism can be found. Instead, that at least one agent
will have incentive to behave strategically seems to be the usual case.

Corollary 31 [Roth and Sotomayor (1990a)]. When any stable mechanism is
applied to a marriage market in which preferences are strict and there is more
than one stable matching, then at least one agent can profitably misrepresent his
or her preferences, assuming the others tell the truth. (This agent can misrepres-
ent in such a way as to be matched to his or her most preferred achievable mate
under the true preferences at every stable matching under the mis-stated prefer-
ences.)

*Alcade and Barbera (1991) have strengthened the impossibility theorem by observing that
there exists no efficient and individually rational matching mechanism for the marriage model, for
which stating the true preferences is a dominant strategy for every agent.
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The proof of Corollary 31 depends on demonstrating the following. Suppose
a stable mechanism selects a point different from the W-optimal stable
matching uy, say. Then a woman w who prefers u,, can profitably misrepres-
ent her preferences by removing from her stated preference list of acceptable
men all men who rank below u,(w) (as in the proof of the Impossibility
Theorem). Similarly, if the mechanism selects a point different from the
M-optimal stable matching, some man can profitably misrepresent his prefer-
ences.

The Impossibility Theorem and the parallel result for the assignment model
tell us that in each of the models considered here there will be no way to
organize the market so as to achieve a stable matching without sometimes
presenting at least some of the agents with nontrivial strategic decisions. And
Corollary 31 shows that only in rare cases will it be an equilibrium for all
agents to state their true preferences. So we turn next to investigating which
agents may have incentives to misrepresent their preferences, and what
equilibrium behavior looks like, as a function of how the market is organized.

It was observed in Roth (1985a) that the answers to these questions differ in
important ways depending on whether we are considering one-to-one or
many-to-one matching, and so we shall deal with these two cases separately.
We begin with our models of one-to-one matching, namely the marriage and
assignment models.

5.1. Strategic behavior in models of one-to-one matching

The first result for the marriage model states that the incentive to state other
than true preferences can be confined to the agents on one or the other side of
the market.

Theorem 32 [Dubins and Freedman (1981), Roth (1982a)]. In the marriage
model, the mechanism that yields the M-optimal stable matching (in terms of the
stated preferences) makes it a dominant strategy for each man to state his true
preferences. (Similarly, the mechanism that yields the W-optimal stable matching
makes it a deminant strategy for every woman to state her true preferences.)

To place in context the parallel result for the assignment model, it will be
helpful to first consider the case in which there is only a single agent on one
side of the market. This can be thought of as a market consisting of a single
seller, who owns one unit of an indivisible object, and n buyers, each of whom
is interested in purchasing it. Each buyer b places a monetary value $7, on the
object, which is the maximum amount he is willing to pay, and the seller
similarly places a value $r, on the object, which is the price below which he will
not sell. We will call these monetary values the reservation prices of the agents.
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An example of this market is given by the vector of reservation prices
r=(ry,...,r,,r,.,). In order to characterize the core and the set of stable
payoff vectors, it will be convenient to define a reordering of the players,
1*,2%,...,n+1*sothatr.=r,.=---=r .. That is, under this alternative
ordering, player 1* is that player in N who has the highest reservation price (or
one of the highest, if there is a tie), and n + 1* is the player with the lowest
reservation price.

It is straightforward to verify that the core of this game (which by Theorem 9
equals the set of stable outcomes) corresponds to those transactions in which
the object is sold to the agent with the highest reservation price, at a price
between the highest and second highest reservation prices.”> So at the seller-
optimal stable outcome the price equals r,. and at the buyer-optimal stable
outcome it equals 7,.. It is easy to see why the Impossibility Theorem applies
to this model (and therefore to the general assignment model as well), since if
the seller does not have the highest reservation price, he can raise his payoff by
stating a reservation price equal to the highest stated reservation price when-
ever the seller optimal outcome is not chosen, and similarly, if the buyer
optimal outcome is not chosen, the buyer with the highest reservation price can
profit by lowering his stated price to just above the second highest stated price.

As in the marriage model, however, it is possible to make it a dominant
strategy for either side of the market to state true reservation prices, by using
the mechanism that always selects the optimal core outcome for that side. We
concentrate here on the mechanism that, for any stated reservation prices,
chooses the buyer optimal core outcome. This is a well-known mechanism,
variants of which are used in the auction of some U.S. government securities,
for example. It is called the sealed-bid, second-price auction mechanism, and
can be thought of as follows: each buyer writes down a number (his bid, or
stated reservation price) in an envelope, without knowing what number will be
written down by any other buyer. The seller also writes down a number. All
the envelopes are opened, and placed in order r,.=---=r, ., with the seller
being player 1* only if his number is strictly greater than all the others, in
which case there is no sale. Otherwise, buyer 1* receives the object, and pays
the seller the price p = r,.. This mechanism is sometimes also called a Vickrey
auction, after the economist who first observed the following result in a
celebrated paper.

Theorem 33 [Vickrey (1961)]. In a second-price, sealed bid auction (which
always yields the buyer optimal core outcome in terms of the stated reservation
prices), it is a dominant strategy for every buyer to state his true reservation
price.

BUnless the seller has the highest reservation price, in which case there is no sale. By Lemma 8
no monetary transfers other than the transfer of the selling price can take place in the core.
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Proof. Consider a buyer b who states his true reservation price r,, resulting in
a vector r of stated reservation prices. Given the stated reservation prices of
the others, b could not have helped himself, and could have hurt himself, if he
had instead stated some reservation price different from the true one. If b = 1*
with respect to these stated prices, i.e. if his true reservation price is the
highest stated price, then he gets the object at price p = r,., which gives him a
positive profit whenever r,. is strictly less than r, =r,.. If he had stated a
different reservation price, the outcome would not change at all so long as his
stated price remains above r,.. But if he states a reservation price rp<r,.
(where by 2* we still mean the player with the second highest of the original
reservation prices), buyer b will forgo his profit, and receive a payoff of 0.
(What happens when r, = r,. depends on what tie-breaking rule is used, but
does not change the argument.) Now suppose that b # 1*. Then b receives a
payoff of 0, and would continue to do so for any stated preference rp<r,.. The
only way b can change his payoff is by stating a reservation price r} > r,., but
in this case he buys the object at a price greater than his true reservation price,
which gives him a negative profit. So it is a dominant strategy for each buyer to
state his true reservation price.** O :

This brings us back to the case of the general assignment model. The
following lemma shows a critical way in which the Vickrey second price auction
is generalized by the mechanism which gives P agents their optimal stable
outcome (u, v). Just as the second price auction gives the winning buyer his
marginal contribution r,. —r,. (and gives each other buyer his marginal
contribution, which is 0), the P-optimal stable mechanism gives each P agent
his marginal contribution.

Lemma 34 [Demange (1982), Leonard (1983)]. For all i in P, i, = v(P, Q) —
v(P—{i}, Q).

This permits the following parallel to Theorem 32.

Theorem 35 [Demange (1982), Leonard (1983)]. The mechanism that yields
the P-optimal stable outcome (i, v) makes truthtelling a dominant strategy for
each P agent.

*“Note that an important feature of this mechanism is that the price stated by a bidder
determines if he is the winner, but does not determine the price he pays (as it would in a
conventional first-price sealed bid auction in which the high bidder 1* pays r,.). Of course, this is
not the whole argument: a useful exercise for the reader to check that he has understood is to
consider why a third-price sealed bid auction, i.e. one at which buyer 1* receives the object but
pays price r,., does not make it a dominant strategy for each buyer to state his true reservation
price.
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Returning to the marriage model, we state the following two theorems which
strengthen and amplify Theorem 32.

Theorem 36 [Dubins and Freedman (1981)]. Let P be the true preferences of
the agents, and let P differ from P in that some coalition M of the men mis-state
their preferences. Then there is no matching ., stable for P, which is preferred to
Wuy by all members of M.

The original proofs of Theorems 32 and 36 in Roth (1982a) and Dubins and
Freedman (1981) were rather lengthy. A short proof of the following result,
gives a much shorter proof of those two theorems.

Theorem 37. Limits on successful manipulation [Demange, Gale and
Sotomayor (1987)]. Let P be the true preferences (not necessarily strict) of the
agents, and let P differ from P in that some coalition C of men and women
mis-state their preferences. Then there is no matching w, stable for P, which is
preferred to every stable matching under the true preferences P by all members
of C.

To see that Theorem 37 will provide a proof of Theorems 32 and 36,
consider the special case where all the coalition members are men. Then
Theorem 37 implies that no matter which stable matching with respect to P is
chosen, at least one of the liars is no better off than he would be at the
M-optimal matching under P.”’

Note also that Theorem 36 implies Theorem 32. Initially Theorem 36 was
sometimes further interpreted as stating that no coalition of men could
profitably misrepresent their preferences in one-to-one matching situations of
the kind modelled by the marriage model, when an M-optimal stable mecha-
nism was employed. That this is not a robust interpretation can be seen by
re-examining Example 14, and observing that if man m, in that example were
to misrepresent his preferences by listing w, as his first choice, then the
M-optimal stable matching with respect to the stated preferences P’ in which
all agents but m, state their true preferences is equal to w. That is, if m,
misrepresents his preferences in this way under an M-optimal stable matching
mechanism, then the resulting matching is u,, = u instead of u,,. So m, is able
to help the other men at no cost to himself. Note, however, that if there were
any way at all in which the other men could pay m, for his services, then it

*When preferences are not strict, there may of course not be an M-optimal stable matching, and
so we have to rephrase Theorem 32 to avoid speaking of the M-optimal stable mechanism. Instead,
we can consider the deferred acceptance procedure with men proposing, and with a tie-breaking
procedure.
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would be possible for a coalition of men to form and collectively profit from
this misrepresentation. Since m, receives the same mate at both matchings,
presumably even a very small payment would make it worth his while to
become part of a coalition to change the final outome from My to w, and since
the gains to the other men in this coalition might be substantial, there would be
ample motivation for such a coalition to form. Thus the negative implications
of Theorem 36 (and also of Theorem 37) for strategic behavior by coalitions
depend on the fact that, in the model of the marriage market that we are
working with, we have assumed that no possibility whatsoever exists for such
“sidepayments” between agents.”® If this assumption is relaxed even a little, we
see that coalitions of men can profitably manipulate even the M-optimal stable
mechanism. We turn next to consider this in detail for the case of one seller
and many buyers considered in connection with Theorem 33.

It is clear in that model that a coalition of bidders may be able, by
suppressing some bids, to lower the price at which the object is sold in a
second-price, sealed bid auction, or an ascending bid auction?’ (or for that
matter in virtually any kind of auction). We will concentrate here on the
second-price, sealed bid auction. Consider a vector r of reservation prices for
which the seller’s reservation price is strictly less than the second highest, so
that the sale price, p = r,., is greater than the seller’s (auctioneer’s) reservation
price. Suppose the seller has the (k + 1)st highest reservation price, i.e. the
seller is player (k + 1)*. Then the coalition consisting of bidders 1* through k*
can, by suppressing k —1 bids (or submitting only one bid greater than the
seller’s reservation price), obtain the object at price p’ = Prgre <Tyu.

Of course, if this was the end of the matter, the buyer who took possession
of the object would benefit, but his co-conspirators would not. However, there
is money in this model, so the £ members of the coalition can share the wealth,
for example by having a subsequent auction among themselves, with the
proceeds distributed among the coalition members. Thus it is possible for a

**We have also assumed that each agent is concerned only with his own mate at any matching,
and not with the mates of any other agents, and that the game is played only once, so that there is
no possibility of a coalition forming to trade favors over time. In Subsection 5.3 we will also see
how this result breaks down if we relax the assumption of complete information.

“One reason the second-price, sealed bid auction is of great interest is because of the
relationship it has to the more commonly observed ascending bid (also called “English”) auctions,
in which the auctioneer keeps raising the price so long as two or more bidders indicate that they
are still interested, and stops as soon as the next-to-last bidder drops out of the bidding. At that
point the sale is made to the remaining bidder at the price at which the next to last bidder dropped
out. (If the price at which the next to last bidder drops out is lower than the auctlor}eer‘s
reservation price, the auctioneer acts as if there were a bidder who continued bidding until the
auctioneer’s reservation price is reached.) Suppose for simplicity that the bidders cannot see which
other bidders are still bidding: then the problem facing a bidder b in this auction is simply to d?ade
at what price to drop out of the auction. So in this case these two auctions are strategically
equivalent, and the incentives facing the players are the same.
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coalition of bidders acting together (a “bidder ring”) to profit from understat-
ing their bids and sharing the benefits among themselves, even though it is not
possible for a single bidder acting alone to do better than to state his true
reservation price. :

Note how this compares with the results for the marriage model. In both
models it is a dominant strategy for an individual agent to state his true
preferences when his choice consists of what preferences to state to the stable
mechanism that chooses the optimal stable outcome for his side. In both
models, no coalition of these agents may, by mis-stating their preferences,
arrange so that they all do better under such a mechanism than when they all
state their true preferences, unless they are able to make sidepayments within
the coalition. That is, the conclusion of Theorem 36 is true in this model as
well: if some coalition of bidders mis-states its reservation prices so that the
vector of reservation prices is F instead of r, then there is no outcome in the
core with respect to r that all members of the ring prefer to the result of truthful
revelation. This is because no money other than the purchase price is trans-
ferred at core outcomes. But, as we have just seen, a coalition can profit by
understating its preferences and then making sidepayments among its
members.

Having gotten some idea of what can be said about dominant strategies and
the limits on how much an individual agent can manipulate a stable mecha-
nism, and what possibilities are open to coalitions, we now turn to the
questions associated with equilibrium behavior.

5.1.1. Equilibrium behavior

The first result suggests that we may see matchings that are stable with respect
to the true preferences even when agents do not state their true preferences.

Theorem 38 [Roth (1984b)]. Suppose each man chooses his dominant strategy
and states his true preferences, and the women choose any set of strategies
(preference lists) P'(w) that form an equilibrium for the matching game induced
by the M-optimal stable mechanism. Then the corresponding M-optimal stable
matching for (M, W, P') is one of the stable matchings of (M, W, P).

Theorem 38 states that any equilibrium in which the men state their true
preferences produces a matching that is stable with respect to the true
preferences. Note that the conclusion would not hold if we did not restrict our
attention to equilibria in which the men play undominated strategies. For
example, when every agent states that no other agent is acceptable, the result
is an equilibrium at which all agents remain single.

When preferences are strict, the next result presents a sort of converse to
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Theorem 38, since it says that any matching u which is stable under the true
preferences can be obtained by an equilibrium set of strategies.

Theorem 39 [Gale and Sotomayor (1985b)]. When all preferences are strict, let
k be any stable matching for (M, W, P). Suppose each woman w in u(M)
chooses the strategy of listing only w(w) on her stated preference list of
acceptable men (and each man states his true preferences). This is an equilib-
rium in the game induced by the M-optimal matching mechanism (and u is the
matching that results).

The next theorem describes an equilibrium even for the case when prefer-
ences need not be strict. Furthermore, this equilibrium is a “strong equilibrium
for the women”, in that no coalition of women can achieve a better outcome
for all of its members by having its members change their strategies.

Theorem 40 [Gale and Sotomayor (1985b)]. Let P’ be a set of preferences in
which each man states his true preferences, and each woman states a preference
list which ranks the men in the same order as her true preferences, but ranks as
unacceptable all men who ranked below p,(w). These preferences P' are a
strong equilibrium for the women in the game induced by an M-optimal stable
matching mechanism (and .y, is the matching that results).

Note that these last two theorems describes strategies which put a great
burden on the amount of information the women must have in order to
implement them. In Subsection 5.3 we will relax the assumption that agents
know one another’s preferences. In the meantime, it should be clear that
advising a woman to play the strategy of Theorem 40, for example, will be
singularly unhelpful in most of the practical situations to which we might want
to apply a theory of matching, since the strategy requires each woman w to
know py,(w). This leads us to consider what advice we can give in environ-
ments in which information about other players’ preferences may not be
readily available to the players.

5.1.2. Good and bad strategies

The problems of coordination and information that may arise in implementing
equilibria do not arise in the same way for players who have a dominant
strategy. In particular, Theorem 32 implies that when an M-optimal stable
matching procedure is used, a man may confidently state his true preferences,
without regard to what the preferences of the other men and women may be.
So this is a good strategy for the men, and other strategies are, in comparison,
bad. Although we have seen that stating the true preferences is not a good



Ch. 16: Two-sided Matching 525

strategy in the same way for the women, we turn now to considering what
classes of strategies might be bad, in the sense of being dominated by other
available strategies.

The first result states that, although it may not be wise for a woman to state
her true preferences when the M-optimal stable matching mechanism is used, it
can never help her to state preferences in which her first choice mate according
to her stated preferences is different from her true first choice.

Theorem 41 [Roth (1982a)]. Any strategy P'(w) in which w does not list her
true first choice at the head of her list is strictly dominated, in the game induced
by the M-optimal stable mechanism.

Theorem 42 states that Theorem 41 describes essentially all the dominated
strategies.

Theorem 42 [Gale and Sotomayor (1985b)].  Let P'(w) be any strategy for w in
which w’s true first choice is listed first, and the acceptable men in P'(w) are also
acceptable men in w’s true preference list P(w). Then P'(w) is not a dominated
strategy when the M-optimal stable mechanism is used.

5.2. Many-to-one matching: The college admissions model

We return now to the case of many-to-one matching, and the kind of strategic
question that caused the initial 1950 algorithm in the hospital-intern labor
market to be abandoned in favor of the NIMP algorithm: Is it always in agents’
best interest to state their true preferences? From the Impossibility Theorem
for the special case of the marriage market (Theorem 30) we know that no
stable matching mechanism can have this property for all agents. But in the
marriage market we observed that a mechanism that produced the optimal
stable matching for one side of the market made it a dominant strategy for
agents on that side to state their true preferences (Theorem 32). We might
therefore hope that the parallel result holds for the college admissions model.
However, this is not the case: as the next theorem shows, Theorem 32 is one of
those results that does not generalize from the case of one-to-one matching to
the case of many-to-one matching.

Theorem 43 [Roth (1985a)]. No stable matching mechanism exists which
makes it a dominant strategy for all colleges to state their true preferences.

An immediate corollary of the proof of Theorem 43 is that Theorem 37 is
another of the results which does not generalize from the special case of the
marriage model. That is, we have
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Corollary 44 [Roth and Sotomayor (1990a)]. In the college admissions model,
the conclusions of Theorem 37 for the marriage model do not hold. A coalition
of agents (in fact even a single agent) may be able to misrepresent its preferences
so that it does better than at any stable matching.

Although Theorem 43 shows that no stable matching mechanism gives
colleges a dominant strategy, the situation of students is as in the marriage
problem. That is, we have the following result. »

Theorem 45 [Roth (1985a)]. A stable matching mechanism for the college
admissions model which yields the student-optimal stable matching makes it a
dominant strategy for all students to state their true preferences.

As in the case of the marriage model, these results do little to help us
identify “good” strategies for either the students or the colleges when the
college-optimal stable mechanism is used. No agents have dominant strategies
under that mechanism, so they all face potentially complex decision problems.
And we cannot even say as much about equilibria as we could for the marriage
market, since there are lots of Nash equilibria, and no easy way to distinguish
among them, since the lack of dominant strategies prevents us from eliminating
unreasonable equilibria as in Theorem 38. However, since Theorem 45 estab-
lishes that the student-optimal stable mechanism makes it a dominant strategy
for students to state their true preferences, we might hope to have at least a
one-sided generalization of Theorem 38, which would say that every equilib-
rium of the student-optimal stable mechanism at which students state their true
preferences is stable with respect to the true preferences. But this is another
result which fails to generalize, even in this partial way, from the special case
of the marriage model. Again, the result is a corollary of the proof of Theorem
43,

Corollary 46 [Roth and Sotomayor (1990a)]. In the college admissions model,
the conclusions of Theorem 38 for the marriage model do not hold, even for the
student-optimal stable mechanism. When all students state their true preferences,
there may be equilibria of the student-optimal stable mechanism which are not
stable with respect to the true preferences.

In general, although there are equilibrium misrepresentations that yield
stable matchings with respect to the true preferences, there are also equilib-
rium misrepresentations that yield any individually rational matching, stable or
not.
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Theorem 47 [Roth (1985a)]. There exist Nash equilibrium misrepresentations
under any stable matching mechanism that produce any individually rational
matching with respect to the true preferences.

But the equilibria referred to in this theorem may require a great deal of
both information and coordination, since, for example, an individually rational
matching s may be achieved at equilibrium if each agent x states that u(x) is
his or her only acceptable mate.

5.3. Incomplete information

As we have seen, the (implicit) assumption of complete information makes its
presence felt in a burdensome way in some of the equilibrium strategies which
arise (cf. Theorems 39, 40, and 47). In this subsection we consider which of the
results we have discussed so far are robust to a relaxation of the complete
information assumption, and which are not.

A one-to-one marriage game with incomplete information about others’
preferences will be given by a collection

r=(N=MuUW, {Di}ieNa 8> U=XieNUi’F) .

The set N of players consists of the men and women to be matched. The sets
D, describe the decisions facing each player in the course of any play of the
game (i.e. an element d, of D, specifies the action of player i at each point in
the game at which he has decisions to make). The function g describes how the
actions taken by all the agents correspond to matchings and lotteries over
matchings, i.e. g: X,;.yD,— L[#], where  is the set of all matchings between
the sets M and W, and L[] is the set of all probability distributions (lotteries)
over /. The set U, is the set of all expected utility functions defined over the
possibile mates for player i and the possibility of remaining single, and Fis a
probability distribution over n-tuples of utility functions u = {u;}ien, for u; in
U;. The interpretation is that a player’s “type” is given by his utility function,
and at the time players must choose their strategies each player knows his own
type, and the probability distribution F over vectors u is common knowledge.
The special case of a game of complete information occurs when the dis-
tribution F gives a probability of one to some vector u of utilities. We will
typically be concerned with games in which only a countable subset of U has
positive probability. In any event, since each player i knows his own utility
function u,, he can compute a conditional probability p.(u_,|u,) for each
vector of other players’ utilities u_, in U_, = X,.;U;, by applying Bayes’ rule
to F.
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This is not the most general kind of incomplete information model we might
consider. The only unknown information is the other players’ utilities. In
particular, players know their own utilities for being matched with one another
even though they do not know what “type” the other is. Each player’s utility
payoff depends on his own type, and on the actions of all the players (through
the matching that results), but not on the types of the other players, i.e.
players’ types do not effect their desirability, only their desires. This seems like
a natural assumption for elite professional markets for entry level positions.
For example, in the hospital-intern market, after the usual interviewing has
been completed, top students are able to rank prestigious programs, and vice
versa. But agents do not know how their top choices rank them. (Note the
difference between this kind of model and one in which the interviewing
process itself is modelled, in which agents would in effect be uncertain about
their own preferences.)

A strategy for player i is a function o; from his type (which in this case is his
utility function) to his decisions, i.e. o;: U;— D,. If o = {g,},cy denotes the
strategy chosen by each player, then for each vector u of players’ utility
functions, o(u) = {d; € D}, describes the decisions made by the players,
which result in the matching (or lottery over matchings) g(o(u)). Conse-
quently, a set of strategy choices o results in a lottery over matchings, the
probabilities of which are determined by the probability distribution F over
vectors u, and by the function g. The expected utility to player i who is of type
u, is given by

u(o)= 2%

_Pi(u—i | uu[glo(u_;, u)].

A Bayesian equilibrium® is a o* such that, for all players i in N and all
utility functions u; in U, u,(c*)=u,(c*,, 0;) for all other strategies o, for
player i. That is, when player i’s utility is u, the strategy o* determines player
i’s decision d} = o7(u;), and the equilibrium condition requires that for all
players i and all types u; which occur with positive probability, player i cannot
profitably substitute another decision d; = o,(u,).

Recall that a general matching game with incomplete information about
others’ preferences is given by I's(N=MUW, {D}icy, & U=
XienU;, F). We may call [{D,};cn, g] the mechanism, and [U, F] the state of
information of the game. Then a game I is specified by a set of players, a
mechanism, and a state of information. Note that we are here considering
much more general kinds of mechanisms than the simple “revelation mecha-
nisms” of the kind observed in the NIMP algorithm, for example, in which

*See Chapter 5 in this Handbook on incomplete information.
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agents are just asked to state their preferences. Since we will be stating an
impossibility theorem, we want to consider very general mechanisms.

The first result is an impossibility theorem that provides a strong negation to
the conclusions of Theorem 38 about equilibria in the complete information
case when the M-optimal stable mechanism is employed. It says that, in the
incomplete information case, no equilibrium of any mechanism can have the
stability properties that every equilibrium®® of the M-optimal stable mechanism
has in the complete information case. (The strategy of the proof is to observe
that, by the revelation principle, if any such mechanism existed then there
would be a stable revelation mechanism with truthtelling as an equilibrium,
and then to show that no such revelation mechanism exists.)

Theorem 48 [Roth (1989)].  If there are at least two agents on each side of the
market, then for any general matching mechanism [{D;},cn- &) there exist states
of information [U, F] for which every equilibrium o of the resulting game I has
the property that g(a(u)) & L[S(u)] for some u € U. (And the set of such u with
8(a(u)) Z L[S(u)] has positive probability under F.) That is, there exists no
mechanism with the property that at least one of its equilibria is always stable
with respect to the true preferences at every realization of a game.

The next theorem states that the conclusion of Theorem 36 also does not
generalize to the case of incomplete information. It is possible for coalitions of
men, by mis-stating their preferences, to obtain a preferable matching (even)
from the M-optimal stable mechanism. This is so even though, as we will
briefly discuss, it remains a dominant strategy for each man to state his true
preferences.

Theorem 49 [Roth (1989)]. In games of incomplete information about pref-
erences, the M-optimal stable mechanism may be group manipulable by the
men.

As discussed earlier, the fact that, even in the case of complete information
it is possible for a coalition of men to mis-state their preferences in a way that
does not hurt any of them and helps some of them, means that the conclusion
from Theorem 36 that coalitions of men cannot collectively manipulate the
M-optimal mechanism to their advantage cannot be expected to be very
robust. Once there is any possibility that the men can make any sort of
sidepayments among themselves, this conclusion is no longer justified. The
proof of Theorem 49 depends on observing that uncertainty about the prefer-
ences of other agents allows some transfers in an expected utility sense, with

*In undominated strategies.
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men able to trade a gain in one realization for a gain in another. Building on
Example 14, it is not hard to show that this can occur even when there is
arbitrarily little uncertainty about the preferences.

In contrast to the results for equilibria, the results concerning dominant
strategies in the complete information case do generalize to the case of
incomplete information. This can be seen by a pointwise argument on realiza-
tions of the types of the players. In this way Roth (1989) observed that the
conclusions of Theorem 32 and Theorem 41 generalize to the present case:
when an M-optimal stable mechanism is used, it is a dominant strategy for each
man to state his true preferences, and any strategy for a woman is dominated if
her stated first choice is not her true first choice for each of her possible types.

6. Empirical overview

We return now to see what the theory described here can tell us about the
principal example which we used to motivate our consideration of stability in
two-sided matching markets, namely the hospital-intern labor market. We
begin with the formal statement of the result promlsed in the preview given in
Subsection 2.1.1.

Theorem 50 [Roth (1984a)]. The NIMP algorithm is a stable matching mecha-
nism, i.e. it produces a stable matching with respect to any stated preferences.
(In fact, it produces the hospital-optimal stable matching.)

This result lends support to the conjecture offered in the first part of
Subsection 2.1.1 that the difference between the chaotic markets of the late
1940s and the orderly operation of the market with such high rates of voluntary
participation starting in the early 1950s can be attrlbuted to the stability of the
matchings produced by the centralized procedure.*

However in Subsection 2.1 we also referred to the fact that, at least as early
as 1973, significant numbers of married couples declined to take part in the
NIMP procedure, or to accept the jobs assigned to them by that procedure. If
it is the stability of the matching which contributes to voluntary participation in
a centralized matching procedure, this should make us suspect that something
about the presence of couples introduced instabilities into the market. In fact,
the NIMP program included a specific procedure for handling couples that will

*The theorem also explains the way in which the NIMP algorithm is equivalent to the deferred
acceptance procedure with hospitals proposing, since it also produces the hospital-optimal stable
matching. However the internal working of the two algorithms differ in ways that are important for
their implementation — see Roth (1984a) and Roth and Sotomayor (1990a).
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make it fairly clear how these instabilities arose (and why they were so
prevalent), at least until 1983, when the procedure for married couples was
modified.

Briefly, the situation prior to 1983 was this. Couples graduating from medical
school at the same time, and wishing to obtain two positions in the same
community, had two options. One option was to stay outside of the NIMP
program and negotiate directly with hospital programs. Alternatively, they
could (after being certified by the Dean of their medical school as a legitimate
couple) enter the NIMP program together to be matched by a special “couples
algorithm”.

This couples algorithm can be described roughly as follows. The couple was
required to specify one of its members as the “leading member”, and to submit
a rank ordering of positions for each member of the couple, i.e. a couple
submitted two preference lists, one for each member. The leading member of
the couple was then matched to a position in the usual way, the preference list
of the other member of the couple was edited to remove distant positions, and
the second member was then matched if possible to a position in the same
vicinity as the leading member.

It is easy to see why instabilities often result. Consider a couple {s,, s,}
whose first choice is to have two particular jobs in Boston, and whose second
choice is to have two particular jobs in New York. Under the couples
algorithm, the designated “leading member” might be matched to his or her
first choice job in Boston, while the other member might be matched to some
relatively undesirable job in Boston. If s, and s, were ranked by their preferred
New York jobs higher than students matched to those jobs, an instability
would now exist, since the couple would prefer to take the two New York jobs,
and the New York hospitals would prefer to have s, and s,.

Notice that, to describe this kind of instability, we are implicitly proposing a
modification of the basic model of agents in the market. A couple consists of a
pair of students who have a single preference ordering over pairs of positions.
Part of the problem with the couples algorithm just described is that it did not
permit couples to state their preferences over pairs of positions. Starting with
the 1983 match, modifications were made so that couples could for the first
time express such preferences within the framework of the centralized match-
ing scheme. However, the following theorem shows that the problem goes
deeper than that.

Theorem 51 [Roth (1984a)]>"  In the hospital-intern problem with couples, the
set of stable matchings may be empty.

*'This result was independently proved by Sotomayor in an unpublished note.
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In view of the evidence in favor of the proposition that high voluntary rates
of participation are associated with the stability of the matching mechanism,
this suggests that the problem with married couples may be a persistent one. In
a similar way, the next theorem suggests that the distribution of interns to rural
hospitals discussed in Subsection 2.1 also is not likely to respond to any
changes in procedures which achieve high degrees of voluntary compliance.

Theorem 52 [Roth (1986)]. When all preferences over individuals are strict, the
set of interns employed and positions filled is the same at every stable matching.
Furthermore, any hospital that does not fill its full quota at some stable matching
is matched with exactly the same set of interns at every stable matching.

6.1. Some further remarks on empirical matters

There are several reasons why we have devoted some attention, in a survey
largely concerned with mathematical theory, to the way that American physi-
cians get their first jobs. One reason is to suggest why we think that the body of
theory developed here has empirical content. Another reason is simply to give
readers an idea of what empirical work connected with theory of this kind
might look like. And a third reason is because it seems likely that the lessons
learned from the rather special market for American medical interns may
generalize to a much wider variety of entry level labor markets and other
matching processes.

Regarding the empirical content of the theory, we have laid great weight in
our explanation of the history of the medical market on the fact that the
centralized market mechanism introduced in 1951 is a stable matching mecha-
nism, and on the fact that the growing numbers of married couples in the
market introduce instabilities. It might be objected that these are coincidental
features of the market, and that the true explanations of, for example, the
rates of participation lie elsewhere. For example, it might be postulated that
any centralized market organization would have solved the problems ex-
perienced prior to 1951, and that the difficulties with having married couples in
the market have less to do with instabilities of the kind dealt with here than
with the difficulties that young couples have in making decisions.

Ideally, we would like to be able to conduct carefully controlled experiments
designed to distinguish between any such alternative hypotheses.’* But for
theories involving the histories of complex natural organizations, we often have
to settle for finding “‘natural experiments” which let us distinguish as well as we

*And labgratory experimentation is indeed becoming more common: see the chapter by Shubik
on that subject in a forthcoming volume of this Handbook, or see Handbook of experimental
economics [Kagel and Roth (1992)].
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can between competing hypotheses. A very nice natural experiment involving
these matters can be found when we look across the Atlantic ocean and
examine how new physicians in the United Kingdom obtain their first jobs. The
following very brief description is taken from Roth (1991).

Around the middle of the 1960s, the entry level market for physicians in
England, Scotland, and Wales began to suffer from some of the same acute
problems that had arisen in the American market in the 1940s and 1950s. Chief
among these was that the date of appointment for “preregistration” positions
(comparable to American internships, and required of new medical school
graduates) had crept back in many cases to years before the date a student
would graduate from medical school. The market for these positions is regional
rather than national, and this problem occurred more or less in the same way
in many of the regional markets. (These regional markets have roughly 200
positions each, so they are two full orders of magnitude smaller than the
American market.)

The British medical authorities were aware of the experience of the
American market, and in many of the regional markets it was decided to
introduce a centralized market mechanism using a computerized algorithm to
process preference lists obtained from students and hospitals, modelled loosely
after the American system, but adapted to local conditions. Most of these
algorithms were not stable matching mechanisms, and it appears that a
substantial majority of those that were not failed to solve the problems they
were designed to address, and were eventually abandoned. [Before being
abandoned at least some experienced serious incentive problems, the evidence
being a lack of volunatary participation, or a variety of unstraightforward
strategic behavior. Some of the ways in which mechanisms failed, and the kind
of strategic behavior they elicited, are extremely instructive; see Roth (1991)
or Roth and Sotomayor (1990a) for details.] As far as can so far be de-
termined, only two stable matching mechanisms were introduced. Both were
largely successful and remain in use to this day. The similarity of the British
experience in markets with unstable mechanisms to the American situation
prior to 1951, and the similarity of the British experience in the markets with
stable mechanisms to the American experience after 1951, support the argu-
ment that stability plays at least something like the role we have attributed to
it.

The nature of this kind of empirical investigation is of course very different
from the purely mathematical investigation of abstract cases. Particular models
adapted to the institutional details of the markets in question must be
considered (just as considering instabilities involving married couples required
us to extend the basic hospital intern model). To give a bit of the flavor of this,
one example comes to mind.

One of the stable matching procedures was introduced in a region of
Scotland where, in keeping with previous custom, certain kinds of hospital
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programs were permitted to specify that they did not wish to employ more than
one female physician at any time. A program taking advantage of this option
might submit a preference list on which several women graduates were highly
ranked, but nevertheless stipulate that no more than one of these should be
assigned to it. In analyzing such a model, it is of course necessary to consider
whether the introduction of such ‘“‘discriminatory quotas” influences the exist-
ence of stable matchings. We leave as an exercise for the reader to show that
the model of many-to-one matching with substitutable preferences can be used
to address this question, and to prove the following proposition.

Proposition 53 [Roth (1991)].  In the hospital-intern model with discriminatory
quotas, the set of stable matchings is always nonempty.

Regarding directions for future empirical work, we remark that the two
studies discussed here [Roth (1984a, 1991)] are both part of a line of work that
seeks to identify markets in which it is possible to establish a particularly close
connection between the observed market outcome and the set of stable
outcomes. This connection can be made so closely because the markets in
question used computerized matching procedures which can be examined to
determine the precise relationship between the submitted preferences and the
market outcome. But the kind of theory developed here is by no means limited
to such markets, and as more becomes known about the behavior of other
entry level labor markets, for example, we should be better able to associate
certain phenomena with markets that achieve stable outcomes, and other
phenomena with markets that achieve unstable outcomes. In this way it should
be possible to extend the empirical investigation of the predictions of this kind
of theory to two-sided matching markets which are operated in a completely
decentralized manner.

An interesting intermediate case, which has been described in Mongell
(1987) and Mongell and Roth (1991), concerns the procedures by which the
social organizations known as sororities, which operate on many American
college campuses, are matched each year with new members. A centralized
procedure is employed which in general would not lead to a stable matching,
but because the agents in that market respond to the incentives which the
procedure gives them not to state their full true preferences, much of the actual
matching in that market is done in a decentralized after-market. In the data
examined by Mongell and Roth, the strategic behavior of the agents led to
stable matches. (This study reaffirms the importance of examining systems of
rules from the point of view of how they will behave when participants respond
strategically to the incentives which the rules create.)

Finally, what more general conclusions can be draw from the empirical
observations we have so far been able to make of two-sided matching markets?
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While some of these have been widely interpreted as evidence that “game
theory works”, our own view is that a somewhat more cautious interpretation
is called for. First, while there is a wide variety of game-theoretic work
concerning a diversity of environments, there has so far been very much less
empirical work that provides tests of game-theoretic predictions. This is no
doubt due to the difficulty of gathering the kind of detailed information about
institutions and agents that game-theoretic theories employ, and for this reason
much of the most interesting eémpirical work has involved controlled experi-
ments under laboratory conditions.”> What has made the empirical work on
two-sided matching markets different is that it has proved possible to identify
naturally occurring markets for which the necessary information can be found.
Which brings us to the question: How does the theory fare when tested on the
markets observed to date? i

Even here, the answer is a little complex. We certainly cannot claim that the
evidence supports the simple hypothesis that the outcome of two-sided match-
ing markets will always be stable, since we have observed markets that employ
unstable procedures and produce unstable matchings at least some of the time.
And even those markets that eventually developed procedures to produce
stable matchings operated for many years without such procedures before the
problems they encountered in doing so led them to develop the rules they
successfully use today.

However the evidence is much clearer when we turn from simple predictions
to conditional predictions. The available evidence strongly supports the hy-
pothesis that if matching markets are organized in ways that produce unstable
matchings, then they are prone to a variety of related problems and market
failures that can largely be avoided if the markets are organized in ways that
produce stable matchings. So the kinds of empirical work described here go a
long way towards supporting the contention that (at least parts of) game theory
may reasonably be thought of as a source of useful theories about complex
natural phenomena, and not merely of idealized or metaphorical descriptions
of the behavior of perfectly rational agents.
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