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CHAPTER 4

The expected utility of playing a game

Abin E. Roth

1 Introduction

This chapter is concerned with how the Shapley value can be interpreted
as an expected utility function, the consequences of interpreting it in this
way, and with what other value functions arise as utility functions repre-
senting different preferences.

These questions brought themselves rather forcefully to my attention
when I first taught a graduate course in game theory. After introducing
utility theory as a way of numerically representing sufficiently regular
individual preferences, and explaining which comparisons involving util-
ity functions are meaningful and which are not, I found myselfat a loss to
explain precisely what comparisons could meaningfully be made using
the Shapley value, if it was to be interpreted as a utility as suggested in the
first paragraph of Shapley’s 1953 paper. In order to state the problem
clearly, it will be useful to remark briefly on some of the familiar proper-
ties of utility functions.

First, utility functions represent preferences, so individuals with differ-
ent preferences will have different utility functions. When preferences are
measured over risky as well as riskless prospects, individuals who have the
same preferences over riskless prospects may nevertheless have different
preferences over lotteries, and so may have different expected utility
functions.

Second, there are some arbitrary choicesinvolved in specifying a utility
function, so the information contained in an individual’s utility function
is really represented by an equivalence class of functions, When prefer-
ences are defined over riskless prospects without any information about
relative intensities of preference, then the class of utility functions equiva-
lent to a given utility function  consists of all monotone transformations
of u. When preferences are defined over risky prospects as well, then the
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class of expected utility functions equivalent to a given expected utility
function u consists of all positive linear transformations of . That is, the
(only) arbitrary elements in an expected utility function are the choice of
the zero point and unit.

A meaningful statement about preferences, in terms of a utility func-
tion, must be true for every equivalent utility function. (In just this sense it
is not a meaningful statement about temperature to say that water boils at
between six and seven times the temperature at which it freezes: Thisis a
statement about the Fahrenheit temperature scale that does not hold in
the equivalent Celsius scale.) Similarly, because different individuals’
expected utility functions have arbitrary origins and units, they are not
comparable. For example, they cannot meaningfully be added. That s, no
information about preferences is conveyed by saying that a particular
outcome maximizes the sum of the utilities of the players in a game,
because this is not independent of the scale of each utility function: If an
individual’s utility is multiplied by 100 (which yields an equivalent repre-
sentation of the individual’s preferences), the outcome that maximizes
the sum of the utilities would not stay the same in general.!

The original derivation of the Shapley value does not resemble the
derivation of utility functions, in that all conditions are stated directly on
the value function, so there is no clear connection to underlying prefer-
ences. Hence, the following questions present themselves.

1. Ifthe Shapley value is to be interpreted as a utility, why is it unique?
Won’t different individuals with different preferences and risk postures
have different utility functions? If so, what can be said about those prefer-
ences for which the Shapley value is a utility function? What will other
utility functions for games look like?

2. What are the meaningful statements about preferences that can be
conveyed by the Shapley value? What are the arbitrary elements in the
Shapley value as a utility -what normalization has been chosen? Under
what circumstances can the Shapley value of a game be compared to the
utility of other kinds of alternatives?

3. What does the additivity axiom mean? What statement about pref-
erences is made by a utility function that relates the sum of the utilities of
games v and w to the utility of another game, v + w?

4. How canthe efficiency axiom be interpreted in the context of a utility
JSunction?1t specifies that the values for each position in a game v must sum
to v(N):Is there some assumption hidden here that interpersonal compar-
isons can be made, and that sums of utilities are meaningful? If not, what
is the significance of specifying the sum??
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To answer these questions, we need to consider preferences over
games. The viewpoint I take is that the preferences in question are those of
a single individual, faced with choices over positions in a game, and in
different games. The resulting utility function can be thought of, like the
Shapley value, as a function defined on games that assigns a real number
to each position in a game. It turns out that whether such a utility function
conforms to the efficiency axiom depends on the attitude of the individual
in question to a certain kind of risk, and whether it conforms to the
additivity axiom depends on the individual’s attitude toward another
kind of risk. When the individual is what I call “risk neutral” to both kinds
of risk, then his or her expected utility for playing a game is equal to the
Shapley value. Other attitudes toward risk yield other utility functions.

This chapter attempts to integrate the material originally presented in
Roth (1977a,b,c). Section 2 briefly reviews how an expected utility for an
abstract set of alternatives is derived. Sections 3 and 4 then consider how
to apply and extend this treatment to include positions in games as alter-
natives. Section 5 considers the special case of simple games, and may be
skipped by those interested only in the main ideas. Section 6 concludes by
considering the answers to the questions posed earlier.

2 Utility theory

We summarize here an elegant axiomatization of expected utility devel-
oped by Herstein and Milnor (1953). A set M of alternatives is a mixture
set if for any elements a, b € M and for any probability p € [0,1] we can
associate another element of M, denoted by [pa;(1 — p)b] and called a
lotterybetween a and b. (Henceforth the letters pand gwill be reserved for
elements of [0,1].) We assume that lotteries have the following properties
forall a, b € M:

[1a;0b] = a,
[pa(1 — p)b] = [(1 — p)b; pa],
[glpay(1 — p)bI(1 — q)b] = [ pgay(1 — pqg)b).

A preference relation on M is defined to be a binary relation =* such that
for any a, b € M either a =* b or b =* g must hold, and if a =* b and
b =* c then a =* c. We write a >* b if @ =* b and b#*a, and a ~ b if
a=* b and b =* a. (So a >+ b means that the individual whose prefer-
ences we are considering prefers a to b; a =* b means he likes a at least as
well as b; and a ~ b means he is indifferent between the two alternatives.)
A real-valued function u defined on a mixture set M/ is an expected utility
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Junction for the preference =* if it is order preserving (i.e., if for all  and b
in M, u(a) > u(b) if and only if a >* b), and if it evaluates the utility of
lotteries by their expected utility; that is, if for any lottery [ pa;(1 — p)b],

u([pa;(1 — p)b]) = pu(a) + (1 — p)u(b).

If =* is a preference ordering on a mixture set M, then the following
conditions ensure that an expected utility function exists:

Continuity: For any a, b, c € M, the sets {p|[pa;(1 — p)b] =* ¢} and
{plc =* [pa;(1 — p)b]} are closed.

Substitutability: If a, a’ € M and a ~ a’, then for any b € M, [La;4b] ~
[3a’:3b].

The utility function is unique up to an affine transformation; that is, if
uisan expected utility function representing the preferences =*, then so is
vifand only ifv = ¢,u + c,, where ¢, and c, are real numbers and ¢, > 0.
Another way to say this is that in specifying a utility function u represent-
ing the preferences =*, we are free to choose arbitrarily any alternatives a,
and a, in M, such that a, >* a,, and set u(a;) = 1 and u(a,) = 0. When
these arbitrary elements are specified, the value of u(a) for any other
alternative a is then completely determined by the preferences.? For ex-
ample, if the alternative ais such thata; =* g =* a,, then u(a) = p, where
pis the probability such that a ~ [ pa,;(1 — p)ag]. (This follows since the
utility of the lottery is p, its expected utility.)

3 Comparing positions in games

In what follows, we will consider for simplicity the class G of superadditive
characteristic function games* v defined on a universe of positions N,
where N is taken to be finite. To make comparison between positions in a
game and in different games, we shall consider a preference relation
defined on the set N X G of positions in a game. So (i,v) >* (j,w) means
“itis preferable to play position i in game v than to play position jin game
w.” As before, ~ will denote indifference, and =* will denote weak prefer-
ence. ‘

We consider preference relations that are also defined on the mixture
set M generated by NX G (i.e., the smallest mixture set containing
N X G). That is, preferences are also defined over lotteries whose out-
comes are positions in a game. Denote by [g(i,0);(1 — g)(j,w)] the lottery
that, with probability ¢, has a player take position i in game v and, with
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probability 1 — g, take position j in game w. We henceforth consider only
preference relations that have the standard properties of continuity and
substitutability on M and that ensure the existence of an expected utility
function unique up to the choice of origin and unit. Denote this function
by 6, and write 6;(v) = 6((i,v)) and 6(v) = (6,(v), . . . ,8,(v)). Because fis
an expected utility function, 6;(v) > 6(w) if and only if the individual
whose preferences are being modeled prefers to play position i in game v
rather than position jin game w, and the utility of a lottery is its expected
utility: that is,

O(Lp()(1 = p)(J,w)]) = p8,(v) + (1 — p)6;(w).

Recall that the games v we are considering are themselves defined in
terms of some transferable commodity that reflects the expected utility of
the players for some underlying outcomes (e.g., as in note 2). Some addi-
tional regularity conditions on preferences for positions in games will be
needed in order that the preferences, and the resulting utility function for
positions in games, be consistent with the underlying utility function in
terms of which the games are defined.

It will be convenient to define, for each position i, the game v; by

v(S)=1 ifies,
=0 otherwise.

All positions other than i are null players in games of the form cv;, so the
player in position i may be sure of getting a utility of c. (This observation
will provide the appropriate normalization for the utility .) Denote by v,
the game in which all players are null players (i.e., the game v,(S) = 0 for
all §), and let G_; be the class of games in which position i is null.

The first regularity condition we impose on the preferences is

R1. Ifv e G, then (i,0) ~ (i,v). Also, (i,v) >* (i,vp).

This condition says that being a null player in a game is not preferable
to being a null player in any other game (in particular in the game 1), and
that the position (i,v;) is preferable to playing a null position.

The second regularity condition is

R2. Forall i € N, v € G, and for any permutation 7, (i,0) ~ (ni,nv).
This condition says simply that the names of the positions do not affect

their desirability. An immediate consequence is that the utility function
for games will obey the symmetry axiom.
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Lemma 1. 0,(nv) = 6,(v).

By R1 we can choose (i,v;) and (i,0,) to be the unit and origin of the
utility scale, so 6,(v;) = 1 and 6,(v,) = 0. These are the natural normaliza-
tions, reflecting the fact that a player in position i of game v, is assured of
receiving a payoff of O (in terms of her underlying utility function for the
outcomes of the games), and a player in position i of v; is assured of
receiving 1.

The last regularity condition reflects that the games v are defined in
terms of an expected utility function.

R3. For any number ¢> 1 and for every (i,v) in N X G,
(1,0) ~ [(1/e)cv)(1 — 1/c)(i,vo)].

Condition R3 reflects the fact that games v and cv are identical except
for the scale of the rewards. These rewards are expressed in terms of a
player’s expected utility for the underlying consequences, so a player is
indifferent between receiving a utility of 1 or of having the lottery that
gives him or her a utility of ¢ with probability 1/c, and 0 with probability
1 —1/c. Condition R3 says that, whatever a player’s expectation from
playing position / in game v, it is related by the same sort of lottery to his or
her expectation for playing position i in game cv.

Lemma 2. For any ¢ = 0 and any (i,v) € N X G, 0(cv) = c0,(v).

Proof : Without loss of generality we can take ¢ = 1 (because if ¢ = 0, the
result follows from condition R1 and the normalization that ,(v,) =0,
and if 0 <c<1 we can simply consider ¢’ = 1/c). By R3

(&) ~ [(1/e),ev); (1 — 1/e)(isvo)l,
50

6:(v) = 6([(1/c)(icv); (1 — 1/c)i,v,)])
(1/c)8i(cv) + (1 — 1/c)0,(vo)
= (1/¢)6;(cv).

These regularity conditions, together with the normalization that
0;(v;) = 1 and 6,(v,) = 0, place some constraints on the utility function 6
that allow us to interpret it as an extension of the underlying utility
function defining the games. (We can regard the alternative (i,cv;) as
“embedding” in the mixture space M of positions in games the underlying
payoffs of the games themselves, because the opportunity to play position
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i in the game cv; is essentially the same as being given a prize with utility c,
and 6,(cv;) = c.) We will call a utility function on M normalized in this
way and satisfying R1-R3 an extended utility function, because it ex-
tends to the space of positions in games the utility function used to define
the games. However, infinitely many extended utility functions still could
arise, because the preferences that an agent could have over games still
have many degrees of freedom. In particular, we turn now to consider an
individual’s attitude toward different kinds of risk.

4 Risk posture

We distinguish between two kinds of risk. Ordinary risk involves the
uncertainty that arises from lotteries, whereas Strategic risk involves the
uncertainty that arises from the strategic interaction of the players in a
game.

4.1 Ordinary risk

Recall that when we consider preferences defined over money, we say that
an individual is “risk neutral” if his utility for any lottery is equal to its
expected monetary value. Analogously, we say that an individual is “risk
neutral to ordinary risk over games” if her preferences obey the following
condition.

Neutrality to ordinary risk over games:
(3 (qw + (1 — g))) ~ [q(i,w)(1 — g)(i,v)].

The condition says that the individual is indifferent between the alterna-
tive on the right, which is a lottery that will result in playing position i in
either game w or game v, and the alternative on the left, which is to play
position i in the game whose characteristic function is equal to the ex-
pected value of the characteristic function of the lottery. That is, consider
some coalition SCN. Its expected worth in the lottery on the right is
gw(S) + (1 — g)v(S), which is precisely its worth in the game on the left.
So a player is risk neutral with respect to ordinary risk over games if he or
she is indifferent between playing position i in the “expected game”
gw + (1 — g)v or to having the appropriate lottery between the games w
and v.

Note that v = (1/c)cv + (1 — (1 /€)vo), so neutrality to ordinary risk
over games implies regularity condition R3. In fact, it is a much stronger
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condition, and in Section 6 we briefly consider why an individual might
not be neutral to ordinary risk over games, even if he or she was risk
neutral in terms of the transferable commodity used to define them.
However, the next result shows that this kind of risk neutrality is just what
is involved in assuming that the utility function 6 is additive.

Theorem 1 (Additivity). 6(v + w) = 6(v) + (w) for all v, w € G if and
only if preferences are neutral to ordinary risk over games.

Proof: For each i € N,
6,(v + w) = 6,2(3v + 4w)) = 26,(3v + 4w)

by Lemma 2. But by ordinary risk neutrality over games,
0:(3v + 3w) = 6,(BG,0)3G,W)]) = 46,(v) + 36,(w),

because 6 is an expected utility function. So 6,(v + w) = 6,(v) + G(w).
The other direction is equally straightforward, after the initial task of
proving that additivity of an extended utility function (together with
continuity) implies the conclusions of Lemma 2.

There is uncertainty in playing a game even if no lotteries are involved.
In Roth (1977a,b) this was called strategic risk. Given that an individual is
neutral to ordinary risk over games, we will now show that the individual’s
posture toward strategic risk uniquely determines his or her utility for a
position in a game.

4.2 Strategic risk

Any game with more than one strategic (i.e., nondummy) position in-
volves some potential uncertainty as to the outcome, arising from the
interaction of the strategic players. To describe a given player’s prefer-
ences for situations involving strategic risk, it will be convenient for us to
consider it on the games vy defined for each subset R of N by

vr(S)=1 ifRCS,
=0 otherwise.

A “pure bargaining game” of the form vy, is essentially the simplest game
that can be played among r strategic players. (The cardinality of sets R, S,
T,...isdenotedbyr,s, ¢, ....)
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Define the certain equivalent of a strategic position in a game vg to be
the number f(r) such that the prospect of receiving f(r) for certain is
exactly as desirable as the prospect of playing the strategic position.’ That
is, f(r) is the number such that, for i € R, (Z,vr) ~ (i, f(r)v;). Note that
f(1) =1, and that f(r) is a measure of a player’s opinion of his or her own
bargaining ability in pure bargaining games of size r.

Using the terminology of Roth (1977a), we say that the preference is
neutral to strategic risk if f(r) = 1/rforr=1, . . . , h. The preference is
strategic risk averseif f(r) < 1/r, and strategic risk preferringif f(r) = 1/r.
(Note that preferences may be none of these; e.g., iff(2) > 1/2 but f(3) <

1/3.) The utility of playing a position in a game vris given by the following
lemma.

Lemma 3.

O:(vg) = f(r) ifiE R,
=( otherwise.

Proof :1fi ¢ R, then vg € G_;and O;(vg) = 0,(vy) = 0,byR1.Ifi € R, then
0,(vr) = 6f(r)v)) = f(r )0v;) = f(r), by Lemma 2.

If preferences are neutral to ordinary risk over games, then Theorem 1
implies that the utility function is completely determined by the numbers
S(r), because the games vy, are an additive basis. We have the following
result.

Shapley value theorem. The Shapley value is the utility function of an
individual who is both neutral to ordinary risk over games and neutral to
strategic risk. That is, when preferences are neutral to both kinds of risk,
Dli(n — s)!

n!

60 =) =3 EZ

SCN

[0(S) — (S —1)].

Proof: Neutrality to ordinary risk over games implies that 6 is additive,
and strategic risk neutrality implies that 0 agrees with the Shapley value ¢
on all games of the form vg. Because the games v, constitute a basis of the
space of games, it follows that 6 agrees with ¢ on all games.

As the Shapley value theorem and its proof make clear, neutrality to
ordinary risk together with different strategic risk preferences (as ex-
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pressed by the numbers f(r), =2, . . . , n) will determine utility func-
tions that differ from the Shapley value. These other utility functions for
games are given by the next result.

Representation theorem. When preferences are neutral to ordinary risk
over games, the utility function 6 has the form

6:(0) = 3, kO(T)—o(T—i)], (1)

TCN

where

=3 (72 f)f(r>.

r=t

Proof: Every game vis a sum of games of the form v . In fact (see Shapley
1953 and Chapter 2 of this volume), v = Sz yCrlgr, Where cg=
Srcr(—1Y"(T). By Lemma 2 and Theorem 1,

6 =Y cxbir) =Y, cxf(D=3 I (—=1y"o(T)f(r).

RCN RCN RCN TCR
iER i€R

Reversing the order of summation, we obtain

6i(v)= { > (—l)"’f(r)}v(T).

TCN L RCN
RO{TUi)

If we denote the term in braces by g;(T), then we note that g,(T) =
—g(T—i)whenie T. So

6:0)= 3, &(Do(T) = o(T - i)].
=

But there are ('=/) coalitions of size r that contain 7, so
n
&(T) =3 (= 1y™C=Hf(n = k().
r=¢ )
Because [v(T) — v(T — i)] = 0 unless i € T, we are done.
An immediate consequence of this representation theorem is that
when preferences are neutral to ordinary risk (i.e., when the utility func-

tion is additive), then the utility of playing a null position is 0, because the
utility is the weighted sum of marginal contributions. The effect of strate-
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gic risk neutrality, and the special feature of the Shapley value, is that the
sum over positions equals »(N). In a purely axiomatic framework (Roth
1977d), the theorem can be restated to say that any symmetric and addi-
tive value 6 that gives null players 0 (or, equivalently, with the property
that 2,c76,(v) = Z,e56,(v) for any carriers 7, .S of a game v) is a weighted
sum of marginal contributions as given in the theorem. Such values,
which need not sum to v(N), have subsequently been called semivalues
(Dubey, Neyman, and Weber 1981; Einy 1987; Weber Chapter 7 this
volume).

The semivalue that has received perhaps the most attention in the
literature (cf. Banzhaf 1965; Coleman 1971; Owen 1975; Dubey 1975a;
Roth 1977b,¢; Dubey and Shapley 1979; Straffin Chapter 5 this volume)

is the Banzhaf index ' = (8], . . . ,B,) given by
1 .
Biwy=73, 71 [2(8) = o(S — )],
SCN

Banzhaf (1965) originally proposed a version of this index in the context
of simple games (see Chapters 1 and 5), but the extension to general games
is straightforward, the major difference being that the marginal contribu-
tions v(S) — (S — i) may take on values other than 0 and 1. The factor
1727 lis a convenient normalization, but others could be chosen. The
important point for the following result is that the normalization does not
depend on the game v. (In some treatments of the Banzhaf index for
simple games, the index is normalized so that Bi=Bi/ZenpBi for B as
defined here, so 2, = 1. But this involves a different divisor for each
game, so the resulting index is not additive—i.e., not neutral to ordinary
risk.)

The Banzhaf index # as normalized here is an extended utility func-
tion reflecting preferences averse to strategic risk and neutral to ordinary
risk. We state without proof the following corollary of the representation
theorem, from Roth (1977d).

Corollary. If f(r) = 1/2"~!, then the extended utility function equals the
Banzhaf index; that is, 6(v) = §/().

Thus the Banzhaf index is a utility function in which a player’s utility
for a strategic position in a game vy is inversely proportional to the num-
ber of ways the r — 1 other strategic players can form coalitions.
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5 Simple games

As discussed in Chapter 1, the Banzhaf index, like the Shapley - Shubik
(1954) index, was proposed in connection with voting processes modeled
by simple games. However, the characterization of the Shapley value and
Banzhaf index for general games given here, like Shapley’s axiomatic
characterization of the Shapley value, makes crucial use of nonsimple
games. If the universe of games we are interested in consists only of simple
games, then symmetry, efficiency, and additivity do not uniquely charac-
terize the Shapley value. In particular, the Banzhafindex 8, normalized so
astosum to 1, also obeys these three axioms when they are applied only to
simple games. The reason is that additivity (equivalently, neutrality to
ordinary risk) loses all its force when applied only to simple games, be-
cause the class of simple games is not closed under addition. So if vand w
are nontrivial simple games, v(N) = w(N) = 1 and the game v + wis not
simple, because v(N) + w(N) = 2. In this section we follow Roth (1977¢)
in considering how the Shapley—Shubik index can be (uniquely) charac-
terized as a risk-neutral utility function defined on the class of simple
games,

Dubey (1975a,b) axiomatically characterized the Shapley-Shubik
index on the class of simple games by replacing additivity with the follow-
ing axiom (which Weber, in Chapter 5, has called the transfer axiom).

Transfer axiom. For any simple games v, w,
SV w)+ (v A w) = ¢v) + (w),
where the games v V w and v /\ w are defined by

@V wS)=1 ifo(S)=1orw(S)=1,
=0 otherwise,

and

W AWS)=1 ifo(S)=1and w(S)=1,
=0 otherwise.

Perhaps the easiest way to understand the transfer axiom is to recast it
in terms of preferences over games and lotteries over games, as a form of
neutrality to ordinary risk over simple games. Viewed in that way, it takes
the following form.
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Ordinary risk neutrality for simple games: For all simple games v, w
@03, ~ [0 V w), )M A w),i)].

This condition specifies indifference between two lotteries. One lottery
results in either the game v or the game w, and the other results in either
the game v \V w or the game v /A w. What makes this a condition of risk
neutrality is that any given coalition S has the same probability of being a
winning coalition in either lottery. It follows immediately from the fact
that 6 is an expected utility function that if it is neutral to ordinary risk it
obeys the transfer axiom.

In order to state all conditions on preferences in terms of simple games
only, we also need to rewrite neutrality to strategic risk, because the game
J(r)v;is not a simple game. The following condition involves only simple
games.

Strategic risk neutrality for simple games: For all R C Nand j € R,
(r,) ~ [, 0)5(1 = )(wo,)].

It is easy to see that, when the utility function is normalized as in the
previous sections so that 6,(v;) = 1 and 6(vo) = 0, strategic risk neutrality
for simple games continues to imply that 8 coincides with ¢ on the class of
pure bargaining games.

Dubey proved the following result.

Proposition. The Shapley - Shubik index is the unique function ¢ defined
on simple games that obeys Shapley’s symmetry and carrier axioms as
well as the transfer axiom.

In terms of utilities, we can now recast this result as follows.

Shapley-Shubik index theorem. The Shapley-Shubik index is the
unique utility 6, normalized so that ,(v;) = 1 and 0:(vo) = 0, correspond-
ing to preferences that obey conditions R1 and R2 and that are neutral to
both strategic and ordinary risk defined over simple games.

Proof: We have already observed that 6 is symmetric (Lemma 1) and
obeys the transfer axiom, and that for every R C N, 0(vg) = (vy); that s,
6 coincides with the Shapley - Shubik index on the pure bargaining games
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vg- To complete the proof of the theorem, we show that 6 coincides with ¢
on every simple game v.

Let R, R;, ..., R,CN be all the distinct minimal winning
coalitions® of v. Then we say the game v is in class k, and note that v =
Vri VUga V- * -V og. If vis in class k=0, then v=1v, and 6(v) =
@(v) = 0.Ifvisin class k = 1, then v = vg, is a pure bargaining game, and
6(v) = b(v).

Suppose that for gamesvinclassesk= 1,2, . . . ,mithasbeenshown
that 6 is well defined and coincides with the Shapley-Shubik index.
Consider a game v in class m + 1. Then

V=V VU2 V* " *Vgm VIgR=wWV 15,

where w is a game in class m. Hence, by neutrality to ordinary risk over
simple games (which implies that the utility 8 obeys the transfer axiom),

0;(v) = 6,(w V vg) = 0;(w) + 0,(vg) — O:(w N\ vp).

But we show that the game w /\ vi cannot be in a class higher than w, so by
the inductive hypothesis the terms on the right side of the preceding
expression are uniquely determined and equal to the Shapley - Shubik
index. Consequently, we will have shown that 8(v) = ¢(v) for all simple
games .

To see that the game w’ = (w /\ vg) cannot be in a class higher than the
game w, consider a minimal winning coalition S’ of the game w’. By the
definition of w’ we know that S’ O R and w(S’)= 1. If S" = R, then
w’ = vp and we are done (because except for the game v,, every game has
at least one minimal winning coalition). Otherwise, S” =S U R, where S
is a minimal winning coalition in the game w. (Of course, S and R need
not be disjoint.)

Consider now a coalition 7" that is minimal winning in w’. Then
T" = TUR, where T is minimal winning in w. If 77 # S’, then T+ S.
Consequently, every minimal winning coalition in w’ can be identified
with a distinct minimal winning coalition in w, so w’ cannot be in a class
higher than w. This completes the proof.

6 Discussion

To see what has been accomplished by considering the Shapley value as a
utility function, let us consider what kind of answers have been obtained
to the questions raised in the introduction to this chapter.

1. The “uniqueness” of the Shapley value as a utility function for
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games is associated with its risk neutrality. Perhapsa good way to think of
this is by analogy with utility functions for money: The risk-neutral utility
function is the one that evaluates lotteries at their expected value. Al-
though few of us consider only the expected value when choosing among
risky investments, for example, the expected value is nevertheless enor-
mously important to know and can give us at least a rough indication of
what our preferences are likely to be upon closer investigation. In the
same way, the Shapley value gives an indication of what our preferences
over positions in games are likely to be, even if we are not neutral to both
strategic and ordinary risk over games. And for preferences that are neu-
tral to ordinary risk over games, we have been able to characterize the
utility functions that reflect different attitudes toward strategic risk. How-
ever, the systematic behavior of utility functions that reflect different
attitudes toward ordinary risk over games remains an open question.

2. Wehave seen that the Shapley value “inherits” the normalization of
the utility function used to define the games being considered. That is,
underlying any game is a concrete set of outcomes that are represented by
utility payoffs in terms of utility functions with arbitrary origin and unit.
An individual’s Shapley value is an extension of this utility function, with
the same normalization. Thus the meaningful utility comparisons that
can be made with the Shapley value are precisely those that can be made
with expected utility functions. For example, in Chapter 1 the Shapley
value was calculated for a simple model of the U.N. Security Council,
yielding a Shapley value of .00186 for a rotating member and a Shapley
value of .196 for a permanent member. Viewing the Shapley value as an
expected utility function, we can now determine which statements about
these numbers are meaningful comparisons reflecting the underlying
preferences, and which are not. For example, an individual who is neutral
to both ordinary and strategic risk would be indifferent between playing
the game in the position of a permanent member or to having a lottery
that gave a .196 probability of being a dictator in the game, and otherwise
made him a null player (or for that matter having a lottery that gave a .196
probability of receiving any prospect with a utility of 1, and otherwise
receiving a utility of 0). Similarly, such an individual would be indifferent
between playing the position of a rotating member or having a lottery that
gave her a probability of p = .00186/.196 = .0095 of playing the position
of a permanent member and otherwise being a null player. To put it
another way, this individual would prefer a 1 in 100 chance of being a
permanent member (and a 99 in 100 chance of being a null player) to the
prospect of being a rotating member. But it would not be a meaningful



66 Alvin E. Roth

comparison to say that the prospect of playing a position in a game is over
100 times as desirable as another prospect (which could be either a posi-
tion in a game or a lottery over prizes), because this depends on the
(arbitrary) normalization chosen for the underlying utility function.

3. We have seen that the additivity axiom on the value function is
equivalent to assuming that the preferences that the value represents as a
utility function are neutral with respect to ordinary risk over games.
Perhaps the best way to understand what this entails at this point is to
consider why an individual might ot be neutral to this kind of risk. For
example, let v be the three-person majority game given by v(1) = »(2) =
v(3) =0and v(12) = v(13) = v(23) = v(123) = 1,and let w = U2y be the
two-person pure bargaining game (with player 3 a null player). Then the
game z = v+ wis given by z(1) = z(2) = z(3) =0, z(13) =z(23) =1,
z(12) = z(123) = 2. Although v and w are both symmetric among the
nonnull players, z is not. In particular, the symmetry of v makes it not
unreasonable to suppose that each of the two-person coalitions is as likely
to form as any other, and that if the three-person coalition forms it will
divide equally. So the fact that p(v) = (3,1,1) seems reasonable, as does the
fact that ¢p(w) = (3,4,0). So our evaluation of the two games separately is
that each two-person coalition is equally likely to form in v, but in w the
coalition {12} will form. ,

Therefore the coalition {12} should be especially easy to form in the
game z because players 1 and 2 are essential for the game to be worth 2,
and player 3 can make no further marginal contribution. (This is clearly
reflected in the core of z, which is the single payoff vector (1,1,0).) But the
Shapley value is ¢(z) = (},4,4). That is, an individual whose utility is the
Shapley value is indifferent between playing position 3 in the game z or in
the game v. Although this preference may be consistent with plausible
models of how the game might be played (because game z gives 3 a less
advantageous position but has higher stakes than game v), I think that for
most purposes I would personally prefer to play position 3 of game v
rather than of game z. So, although neutrality to ordinary risk is an easy to
understand and plausible condition on preferences that gives rise to trac-
table (i.e., additive) utility functions, it is by no means an inescapable .
requirement for plausible preferences, either for all individuals or for a
given individual over all games.

4. Finally, we have seen that, when preferences are neutral to ordinary
risk so that the utility function is additive, the vector 8 of utility for each
position in a game is “efficient” if and only if the preferences are neutral to
strategic risk. The quotation marks reflect the fact that under the inter-
pretation presented here the vector 8 is not a distribution of utility among
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different players but simply a vector of utilities for the different positions.
Indeed, whether the vector (8,(v), . . . ,0,(v))is even a feasible outcome
of the game, let alone an efficient one, appears to arise in this context
essentially by accident.” The risk-neutral utility-the Shapley value-—
always happens to coincide with an outcome of the game, but utility
vectors that do not reflect neutrality to strategic risk do not share this
property.® In any event no interpersonal comparisons are implied, be-
cause all comparisons are those of a single agent evaluating alternative
positions.

As to whether we should expect individuals to be neutral to strategic
risk, just as many individuals do not judge monetary lotteries only by their
expected value, I imagine that many are not indifferent between bargain-
ing among r individuals or receiving 1/ of the proceeds for sure. Certainly
some aversion to strategic risk would appear to be justified by the experi-
mental evidence, which reveals a nonnegligible frequency of disagree-
ment (see Roth 1987), and by the growing theoretical understanding
about how differences in information, ability to make commitments, or
long-term concerns may lead to disagreements (see, e.g., the papers in
Roth 1985 or Binmore and Dasgupta 1987). So, like additivity, efficiency
arises from assumptions about preferences that are plausible but by no
means inescapable.

In conclusion, the analogy between the Shapley value, which is the
risk-neutral utility for playing a game, and the expected value, which is the
risk-neutral utility for monetary gambles, seems to be a strong one. (Note
that this is nof because of the interpretation of the Shapley value as an
expected marginal contribution. The Banzhaf index and other non-risk-
neutral utilities can also be interpreted as expected marginal contribu-
tions; see, e.g., Weber Chapter 7 this volume.) When we consider a spe-
cific individual or a specific choice among games, we may be able to find a
more precise indicator. But when we are considering a first approxima-
tion, both the expected value of monetary gambles and the Shapley value
of transferable utility games seem to work in similar ways. And even if we
conclude that most individuals are not risk neutral, the assumptions of
risk neutrality implicit in the Shapley value, like the expected value, may
be a more natural proxy for the utility of some unspecified individual than
would any assumption of a particular risk posture.

NOTES

1 In the same way, the arithmetic mean of players’ utilities is not meaningful.
But the geometric mean of expected utilities is: This forms the basis for Nash’s
celebrated model of bargaining (see Nash 1950; Roth 1979).
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Of course, a similar question arises concerning transferable utility games, in
which the “transferable utility” payoffs to the players are assumed to sum to
(at most) v(N). No assumption that utilities are interpersonally comparable
needs to be made to consider such a game. For example, if the payoffs are all in
money and the players are all risk neutral, then the characteristic function
form representation of the game simply involves a common (but still arbi-
trary) normalization of the players’ utility functions. To see that no funda-
mental comparisons are involved, observe that we could construct a charac-
teristic function form game among players, all of whom receive quite different
commodities and among whom no actual physical transfers can take place.
Consider three players, one of whom will ultimately be paid in French francs,
one in baskets of fruit, and one in wine. For each player, a utility function is
constructed for possible payoffs. The arbitrary elements in each utility repre-
sentation are chosen without reference to the others. A given characteristic
function game v defined on N = {1,2,3} can now be created by allowing the
members of each coalition § C N (who can communicate by telephone and
sign contracts as needed) to divide an amount v(S) of a fictitious commodity -
“utility money”~in any way they choose. At the conclusion of the game, each
player may exchange whatever utility money he has earned for the amount of
the commodity in which he is to be paid that gives him that amount of utility,
according to the arbitrarily scaled utility function established for him before
the game.

In general, for any element x € M, the utility of x is

u(x) = (Pap(X) = Par(@0))/(Pas(@1) — Pas(@o))

where a, b, a,, and a, are elements of M such that g=* x=* p and
a=* q, =* a, =* b, and forany y € Msuchthatqa =* y =* b, p_(y)is defined
by y ~ [pa(V)ai(1 — py(y))b].

It can be shown that the numbers p,( - ) are well defined, and the function
u(+) is independent of the choice of @ and b. Note that #(a,)=1 and
u(a,) =0. B
The class of superadditive games is sufficiently large, but we could consider a
larger class of games without changing the results presented here.

We take the point of view that a player does not know who will occupy the
other positions in a game. Consequently, her certain equivalent for a game v,
depends only on r.

A coalition R C N is minimal winning in v if o(R) = 1 and if SC R, S +# R,
implies v(S) = 0.

Note that, by analogy, expected values of money gambles aren’t necessarily
feasible outcomes: for example, the 50-50 gamble for plus or minus one dollar
has an expected value of 0, although that isn’t a feasible outcome. For transfer-
able utility games feasibility comes along with risk neutrality, but this does not
appear to be the case for NTU games. It seems to me that this may be part of
the trouble in interpreting the value for NTU games along the lines of the
Shapley value for TU games (see the references in this connection in Chap-
ter 1).

This is so for utilities that are strategic risk averse as well as strategic risk
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preferring. It is clear that a vector of utilities that are strategically risk prefer-
ring will not always coincide with a feasible outcome: Because f(r) > 1/r, such
a utility vector isn’t a feasible outcome in a pure bargaining game v,, because
1f(r) > vg(N) = 1. For arisk-averse utility, consider the Banzhaf index f’, with
S(r) = 1/2""1. For the three-person majority game, f'(v) = (54.,4), so />
v(N)=1. To see what is going on here, note that p = Vuzy + Vg + vy —
2023, and so Bj(v) = Bi(vyz) + Bi(vys) + Bi(vas) — 2Bi(v23). But when
r=2,1/27! =4, so the Banzhaf index agrees with the Shapley value on the
two-person pure bargaining games. But when r = 3, the strategic risk aversion
of the Banzhaf agent comes into play, with Bi(vuzs) = 4foreachi=1,2,3 (in
contrast to the Shapley value ¢;(v, 23) = }). Because v;y,, enters the expres-
sion for the three-person majority game v with a negative coefficient, this
means that the relatively greater strategic risk aversion of the Banzhaf agent,
which causes him to evaluate the three-person pure bargaining game less
favorably than does the Shapley agent, nevertheless causes him to evaluate the
three-person majority game more favorably. Thus, in the presence of neutral-
ity to ordinary risk (i.e., additivity) differences in strategic risk aversion can
have effects that are difficult to anticipate.

There are (at least) two ways to think about these effects of strategic risk
aversion, On the one hand, they appear to parallel similar effects of ordinary
risk aversion found in game-theoretic models of bargaining (Roth and Roth-
blum 1982; Harrington 1987). On the other hand, they are also intimately
related to the assumption of neutrality to ordinary risk and the resulting
additivity of the utility function, and so these effects may also provide some
further cause to be cautious about the assumption of additivity.
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