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Stable Coalition Formation: Aspects of a Dynamic Theory

A.E. Roth, Pittsburgh

Abstract:  This paper considers how coalitions gain and lose members and ultimately stabilize, under certain

assumptions.

1. Introduction

Any comprehensive theory of coalition formation in economic environments
must simultaneously deal with several closely related questions which each pose serious
conceptual difficulties, since it must resolve both the question of which coalitions will
form, and how the benefits of each coalition will be distributed. To the extent that
economic agents are motivated to form coalitions precisely in order to enjoy these
benefits, they select coalitions based on the benefits offered, and so the two questions

are inseparable.

Nevertheless, it can be useful to consider certain limited aspects of coalition
formation which abstract away from the strategic elements of the process, in an effort to
identify phenomena common to a broad class of coalition formation processes. The
model proposed in this essay is directed at the question of how coalitions gain and lose

members and ultimately stabilize. Since the model abstracts away from particular
strategic considerations, it will be useful for studying phenomena which are potentially
common to a broad range of coalition forming processes, of the kind which occur not
only in economic environments, but also in political, social, and ecological contexts. To
emphasize this point of view, the discussion will be phrased in terms of the following

ecological metaphor.

2. An Ecological Metaphor

Imagine a stretch of seashore immediately following an exceptionally violent
storm. Along this stretch of coast are a number of tide-pools; isolated environments of
rock and sand and sea water, swept clean of life by the exceptional violence of the
recent storm. All of these tide pools are virtually identical as potential habitats for

various forms of coastal life..
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Now imagine the same stretch of shore after some suitably long time has elapsed
Each tide p_ool now contains a diverse population of living organisms, co-existin o h
each qther in the same environment. Furthermore, it is likely that somé if not all s ;vtl}tl
organismsina par_tlcular tide pool can be classified as permanent residénts’ that i’s0 :
a period of many tides, these organisms remain part of the population of tl;at tide’ ovelr
Lookmg_ at 'f_mother tide pool, there is no reason to expect that the populati poof'
organisms Wthl? 1t supports will be identical to that of the first. On the co}r)ltrar ol‘]t(?
likely that two different tide pools, while sharing the same physical characteristi o il
support pop!.llations of markedly different composition. wtes vl
‘ This dlﬂ“erence_ In population among physically identical tide pools is du
presumably, to the different sequences in which organisms are introduced to each t'de,
pool by the random action of the tides. The introduction of an organism to a tid : ?
changps the chargcteristics of that environment as a potential habitat for eoizl(')xo
organisms; and dxfferent organisms change the environment dii’fefently Thus t]:r
environment associated with each tide pool undergoes a process of evo]ut}on .
organisms are introduced by the tide. o new
ThlS'lS not tq imply that the first organisms to be introduced to a particular tid
pool will of necessity become permanent residents of that pool; they may be displ 1 g
by later arrivals. The dynamics of this process is one of the tl;ings which we hg aci
study b){ means of a formal model. We will also want to characterize the der, e g
manner in which this dynamic process becomes stable over time. sreean

3. The Model

Let X be the (finite) universe of organi
. ganisms, and let H be the set of i
hablta}fs. For most. of what fgllows, we will consider only a single habitat h iiv:; jable
StatemeeI:tR Il:;e a b}nf\ry;clatlon defined on X such that for all organisms x in X the
XKx 15 lalse (1.e.,, ~xRx). The relation R is called “ ” i
: ; prevents”, and if f
:)hrgamsms X, yin X, xRy the.:n we say that (the presence of) x prevents y (from occu;layi:l);
esame habitat). The relation R need not be symmetric. That s, it may be that for s
organisms x and y in X, xRy but ~yRx. ’ e
A collection of organisms x i
: »Y» ...,z such that xRyR ... RzRx is called
cycle s called even i r st i s oven
ycleis or odd, depending on whether the number of organisms in it is even
_ dTlme is divided int-o periods, and in each period at most one organism can be
intro luced to each habitat. (Allowing many organisms to be introduced simulta-
neo'usd y wquld not _change the results.) The population of a habitat & at the end of
gen_o n will be written P,(h), or, when no confusion will result, P,. We assume that
a;,s; P, ttl}xle tergjpt;; set, ﬁndffor all periods n, P, is of course a subset of X. We further
me that the length of each period is sh ife-s
rganieis o s p short compared to the life-span of the
. anl.? or eachhc?rganlsm xin X define D(x) = {ye X | xRy}. D(x) is thus the set of all
o ganisms y w 1c?1 are prevepted from occupying the same habitat as the organism x
or each population P (that is, for each subset of X) define D(P) = (JxerD(x). D(P) is.

:
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the set of organisms y which are prevented from occupying the same habitat as some
organism x in the population P. Finally, let U(P) = X — D(P). U(P) is the set of all
organisms which are not prevented from occupying the same habitat as any organism
in the population P.

The population P, of a habitat h at the end of period n evolves in the following
way. If no new organism is introduced into the habitat at the start of period n + 1, then
P,., = P,, that is, the population is'unchanged. '

If, at the start of period n + 1, an organism y is introduced into the habitat such
that y is in D(P,), then P, = P,. That is, if a new organism y is introduced into the
habitat, such that y is prevented from occupying the same habitat as one of the
organisms already in the population of that habitat, then the organism y is elimihated,
and the population remains unchanged.

If, at the start of period n + 1, an organism y is introduced such that y is in U(F,)
(i.e.,yis notin D(P,)), then P, , = P,u {y} — D(y). Thatis, if the new organism yis not
prevented from occupying the habitat by any member of the existing population of that
habitat, then y occupies a place in the habitat. Any organism x in P, which is prevented
from occupying the same habitat as y is then eliminated from the population.

4. Analysis of the Model

The first question which we must answer is which populations are feasible, that is,
for which subsets P of X is it possible that P = P,(h) for some habitat h at the end of

some period n?
Proposition I: A population P is feasible if and only if P < U(P).

Proof: Toseethat Pisnot feasibleif P ¢ U(P)note that, in this case, there must
be x and y in P such that xRy. If x is a member of the population when y enters the
habitat, then y is eliminated. If y is a member of the population when x enters, then y is
eliminated if there is no z in the population such that zRx, otherwise x is eliminated.

To see that P is feasible if P = U(P), suppose P had k elements which enter the
habitat in periods 1, ..., k. Then P = F(h).

We also want to consider which populations are permanent; ie., which
populations P have the property that, if P < P,, then for all m = n, P < F,,, no matter
what the sequence by which new organisms enter the habitat. It will be convenient to
denote the set U(U(P)) by U%(P).

Proposition 2: A feasible population P is permanent if and only if P < U%(P).

Proof: To see that P is permanent if P < U(U(P)) note that the only way in
which some x in P could be eliminated from the population would be if some y such
that yRx were to become a member of the population P, form > n. Butif yRx, theny is
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not in U(P), sin.ce P < U(U(P)). Therefore y is in D(P), so y cannot become a member
of any population P, such that Pc P,.Soif P< F,,then P< P,,,,and P < P, for
m = n by induction. "

To see that P is not permanent if P & U(U(P)), we need to show that some
sequence of events leads to a population P, such that P ¢ P, , and m > n. Let y be an
element of U(P)such that yRx for some x in P.If y isintroduced to the habitat at peridd
n+ 1, then yis an element of P,,, and xisnot,so P& P, , .

The set U*(P) s the set protected by the population P. This terminology is meant
tQ rgﬂect.the fact, used in the above proof, that any organism which prevents a member
of U?(P) is in turn prevented by some member of P. A population P such that
P < UX(P) will be called self protecting, and, as shown above, self protecting
populations are permanent.

Consider now a self protecting population P, an organism x in U%(P) — P, and
some other organism z such that zRx. Since x is protected by P, there is a member of P
which prevents z. Thus no organism z which prevents x can ever become part of some
population which contains the population P. Therefore, if at any period the organism x
is introduced to a habitat with a population P, which contains P, then the organism x
occupies a place in that habitat. Furthermore, it is not difficult to see that P U {x}
< U*({P u {x}}), so every population P,(m > n) contains P U {x}; that is, the
population P u {x} is a self-protecting permanent part of the population.

We say, therefore, that a feasible, self-protecting population is stable when it has
grown to the point where it includes all organisms which it protects. Thus a stable
population P is one such that P = U*(P) < U(P).

This definition of a stable population leaves open questions of existence and non-
emptiness. That is, for an arbitrary universe of organisms X and binary relation R
must it always be the case that some stable population P exists? And under what’
circumstances might the empty set be stable, so that over time the population of some
habitat could contain no permanent members, but only transients? The following two
propositions answer these questions.

. Proposition 3:  There exists a stable population for every universe X and binary
relation R. That is, there exists some P € X such that P = U%(P) < U(P).

This proposition does not in fact depend on the finiteness of X. The mathematical
result was first established, in a very different context, as a corollary of a general
theorem about functions defined on lattices, in Roth [1975]. [In Blair/Roth, a close
r;latil:)riship was established between this result and the famous fixed-point theorem of

arski].

Together with Proposition 3, the following result provides a sufficient (but not a
necessary) condition for the existence of non-empty stable populations.

Proposition4: The empty set (7 is a stable population if and onlyif @ = U(X).
(So a non-empty stable population always exists if U(X) # (F.)
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Proof: Since @ < X = U(), the empty set is stable if and only if & =
U*(@) = U(X).

The fact that circumstances exist under which even the empty set is a stable
population serves to emphasize that the kind of stability we are talking about here is
dynamic rather than static. Before¢ we go on to consider what manner of static
equilibrium can occur, let us describe the dynamics associated with a stable population.

Consider a habitat containing a stable population P = F,. We may think of the
set of all organisms as being partitioned into three sets: P, D(P), and U(P) — P. For
convenience we shall call the third set P". .

If a member of D(P) is introduced into the habitat, it is, of course, immediately
eliminated. If a member x of P’ is introduced into the habitat, however, it becomes part
of the population P, , ,, since it is contained in U(P,). However, x is unprotected by P,
which means that there is an organism y in U(P)such that yRx. Since this organism y is
notin P, it must bein P'. Thus, unless xRy, x will be eliminated from the population if y
is introduced into the habitat. Therefore the population of this habitat over subsequent
periods will consist of the permanent population P, augmented by some transient
organisms from P'.

Since stable populations are permanent, the population of any given habitat will
tend towards the largest stable population compatible with its present population.
Under suitable circumstances, this can lead to a stable population P such that the set P/
is empty. In this case P = U(P), and we say that P is completely stable. Any organism
introduced into a habitat containing a completely stable population is immediately
eliminated, since any organism outside of P is in D(P). (It is clear that a completely
stable population is stable, since if P = U(P), then P = U ?(P).) Note that a completely
stable population is never empty.

The following sufficient condition for at least one completely stable population to
exist is due to Richardson [1953].

Proposition 5:  1If there are no odd cycles (for a given X and R) then there exists a
completely stable population.

As the references associated with Propositions 3 and 5 make clear, the
mathematical structure associated with stable and completely stable populations has
been studied in other contexts. In cooperative game theory, when R represents the
domination relation and X is the set of imputations, the structure of stable populations
occurs in sets of imputations called subsolutions [cf. Roth, 1976], while solutions are sets
of outcomes which have the structure of completely stable populations [cf. von
Neumann/ Morgenstern]. Sets with the same structure as completely stable populations
are also called kernals in graph theory, where X is the set of nodes of a graph, and R
represents the arcs [cf. Behzad/Harary]. In certain kinds of games on graphs, in which
players take turns moving along arcs, and the first player to have no legal move loses,
the set of nodes P from which a win can be assured has the same structure as a stable
population. Furthermore, the set of nodes from which a draw can be assured is the set

T
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P' = U(P)— P, and the set of nodes from which a loss cannot be prevented is the set
D(P) [ct_'. Roth, 1978]. Finally, completely stable populations are studied by Wilson
[1972], in a context closely related to the ecological metaphor employed here.

Examples

‘ In the accompanying diagrams, organisms are indicated by letters and the
relation R by arrows. An arrow pointing from one organism to another indicates that
the first organism prevents the second from occupying the same habitat.

‘ Exémple 1: - (See Figure 1). In this example, the followin i
2 ‘ . s g populations are stable:
&, {a, c}; {a,c,e,g}; {a,c, f,h}; and {b,d, f,h}. Of these the last three are completely

oG
o
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Figure 1
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Example 2: (See Figure 2), In this exampl ion i
- X ple, the sole stable population is {a
which happens to be equal to U(X). No completely stable populations exist. ta)
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Figure 2
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Example 3: (See Figure 3). In this example, the sole stable set is {a, ¢}, which is
completely stable. This demonstrates that the sufficient condition of Proposition 5 is
not necessary to insure the existence of completely stable sets.

O—O—O

Figure 3

Example 4: (See Figure 4). In this example, the empty set is the sole stable
population. Naturally, it is not completely stable.

@
®

Figure 4
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Stable Coalition Structures?)

S. Hart, Tel Aviv, and M. Kurz, Stanford

Bya “.coahtion” one means a set of players who decide to act together, as one
group, relative to the rest of the players. By the term “coalition structure” we ’mcan a
partmon of' the set of players into a number of coalitions each aiming to enhance the
xnteres_ts qf its members. The typical coalition structure assumed in the literature is the
col{ectlon of singletons. However, in many real situations individuals act through
social organizations like political parties, unions, trade groups and others. Thus oie
notes that at any moment of time society organizes itself into a coalition str;lcture and
the outcome of any game calls for a division of gains among coalitions as well as amon
Fhe r{)embers of each coalition. This means that the existence of coalition structurei
implies that the interactions among the players are conducted on two levels: First
among the coalitions, and second, within each coalition. In most of game theo'r it is’
assumed that the coalition structure is given exogenously. In contrast, the theory v)&"hich
we presented in Hart/Kurz [1983] addresses the problem of \;fhy do coalition
structure_s form, and predicts, as an endogenous outcome, which one will indeed form

This theory is based on two concepts. First, a coalition structure value (CS-value‘
for short) is defined; it is an evaluation of the players’ prospects for any coa]ition’
s;ructure. Second, based on this value, one finds which coalition structure is stable, in
; di, :::eg 21at no player or group of players can change the coalition structure to their

4

One of the main properties which we postulate the CS-value to have is overall

efﬁpm_y:"l’his means that our analysis does not aim to characterize that organization
of society which is needed in order to achieve social efficiency. Rather, we consider the
formatxon_ qf coalitions as one among many strategic acts used by th; players, within
thc'bargz'umng process, in order to increase as much as possible their share of tile total
socxal. “pie”. More specifically, we do not assume that each one of the groups receives
what ]'t can assure itself (in technical terms — its worth) but rather, that all the coalitions
bargain for the division of the total, which is the worth of the g’rand coalition.?)
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