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An Impossibility Result Concerning #-Person Bargaining Games!)

By A.E. Roth, Urbana?)

Abstract: In this note we show that a solution proposed by Raiffa for two-person bargaining
games, which has recently been axiomatized by Kalai/Smorodinsky, does not generalize in a
straightforward manner to general n-person bargaining games. Specifically, the solution is not
Pareto optimal on the class of all n-person bargaining games, and no solution which is can possess
the other properties which characterize Raiffa’s solution in the two-person case.

An n-person bargaining game consists of a set of players NV ={1, ..., n}, a vector of

utilitiesd = (d,, .. ., d,),and a compact convex subset S C R" of utility vectors
which contains the vector d and at least one element x such that x > d. The interpreta-
tion is that the set S is the set of feasible expected utility payoffs to the players, any
one of which can be achieved by unanimous agreement. In the event that no unani-
mous agreement is reached, the disagreement vector d is the result.?)

A solution is a function defined on the class B of such bargaining games, which se-
lects a feasible outcome for every game:ie.,f: B~ R™ such that for any game (S, d)
in B, (S, d)=x is an element of S. Nash [1950] was the first to study solutions to
the bargaining game, which he interpreted as modelling the anticipated outcome of the
game when it is played by rational players. Raiffa [1 953] also studied solutions, which
he interpreted as indicating the manner in which games might be arbitrated by an im-
partial arbiter.

Nash approached the problem axiomatically, and specified a list of properties which
collectively characterize a unique solution. Although Nash explicitly studied only the
case of two-person bargaining his treatment generalizes without any difficulty to the
general n-person case.*) Nash required that a solution possess the following proper-

ties.%)
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3) That is, if the players unanimously agree on some x in S, then each player i receives the
utility x;. If no agreement is reached, player i receives the utility d.

4) The two-person case is the one which has been studied the most, both because of its simpli-
city, as well as because most two-person cooperative games can be thought of as bargaining games,
whereas bargaining games are only a subclass of games with more than two players.

5) These properties are stated here in a slightly different form than in Nash’s original paper.
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130 A.E. Roth

Property 1. Pareto optimality: If (S, d) = x, then there exists no y in S, distinct from
x,such that y >x.

Property 2. Symmetry: If (S, d) is a symmetric game,®) then f; (S, d) = 5, d) for all
i,jinN.

Property 3. Independence of equivalent utility representations: Let T : R™—>R" bean
order-preserving linear transformation of the players’ utility functions (i.e., if
y=T(x),theny, =a;x,+ b, where a,>0). Then f (T (S), T (d)) = T (f (5.d)).

Property 4. Independence of irrelevant alternatives: If T contains S, and f (7, d)ES,
thenf(S: d) =f(T¥ d)'

These properties have been extensively discussed in the literature [cf. Luce/Raiffa; Har-
sanyi; Kalai, 1977a; Roth, 1977b,1978,1979b], and so we will not review that discus-
sion here.

Nash proved that there is a unique solution which possesses properties 1--4. It is the
solution f'= F defined by F (S, d) = x such thatx >d and I (x; —d;) =11 (y; —
for all y in S such that y >d.
That is, Nash’s solution selects the strongly individually rational outcome which maxi-
mizes the geometric average of the gains available to the players. Formally, this result
can be stated as follows.

Theorem 1: F is the unique solution which is Pareto optimal, symmetric, independent
of equivalent utility representations, and independent of irrelevant alternatives.

It has recently been shown [Roth, 1977a] that the property of strong individual ra-
tionality (i.e., f (S, d) > d) can replace Pareto optimality in the characterization of
Nash’s solution.

Since Nash’s solution is independent of irrelevant alternatives, it is not sensitive to
the range of outcomes contained in the feasible set, as reflected, for instance, by the
ideal point x defined by x; = max {x; | x €S and x >d} for i €N. The point x can be
thought of as reflecting the potential aspirations of the players, and Raiffa [1953] pro-
posed a solution for two-player games which is sensitive to changes in x.”) Specifically,
Raiffa proposed the solution G for two-player games such that G (S, d) = x is the
Pareto optimal point at which (x; —d;)/(x, —d,) = (x; —d, )/(x2 —d,). That is,
the solution G selects the maximal point on the line joining d to x, yielding each player
the largest reward consistent with the constraint that the players’ actual gains should
be in proportion to their potential gains, as measured by the ideal point x.

Kalai/Smorodinsky [1975] give an elegant axiomatization of the solution G, and
show that it is the unique solution defined on the class of two-person games which

6) A game (S, d) is symmetric ifd;=d;foralli,jin N, and if for every element x in S, every
permutation y = mx is also contained in S.
7) The same solution has been proposed by Crott [1971], on the basis of some experimental

results, and it has also been studied by Butrim [1976), who attributes it to the Russian game-theo-
rist Germeier.
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possesses properties 1—3 as well as the following property %)

Property 5: Restricted monotonicity: Let (7, d) and (S, d) be games which share a
common ideal point, and such that T contains S. Then f (7, d) = £ (S, d).

That is, Kalai/Smorodinsky proved the following.

Theorem 2: The solution G is the unique solution defined on the class of two-person
games which possesses properties 1,2,3,and 5.

In view of the fact that Nash’s solution is so easily generalized to bargaining games
with more than two players, we might expect that this would also be the case for the
solution G. Instead, it turns out that for games with more than two players, the solu-
tion G no longer possesses all the properties named in the theorem, and there exists no
solution which does. We will see that the solution G fails to select a Pareto optimal
outcome for all n person games with n > 3, although it continues to obey the other
properties named in Theorem 2. In fact, for games with more than two players, there
exists no solution defined on the class B which possesses properties 1, 2, and 5. For-
mally, we will prove the following.

Theorem 3: For bargaining games with three or more players, no solution exists
which possesses the properties of Pareto optimality, symmetry, and restricted
monotonicity.

Proof: We will assume that f is a solution which possesses the properties named in the
theorem, and show that this leads to a contradiction. Consider the n-person game
(n > 3) whose disagreement point is equal to the origin (which we will denote by 0),
and whose feasible set S is equal to the convex hull of O and the points p and g such
that p; =0andp; =1 fori# 1,and q, =0and g; = 1 forj # 2. Then the set of
Pareto optimal points in § is the line segment joining p to g, so (S, 0) = x is a convex
combination of p and q. In particular,x; = 1.

Now consider the game (7, 0), where T ={x >0 | Zx; < (n — 1) and x, <1 for
i=1,...,n}.Then (T, O) is a symmetric game, so f; (T, 0) LT, O)=...=
=f, (T 0) and the Pareto optimality of f implies that

f(r5)=z=(i"n‘—1l,(”7‘1?,...,i’1n:l)).

But the point (1,1, . .., 1) is the ideal point both of the game (S, O) and of the
game (T, 0), so the fact that T contains S and the restricted monotonicity of fimply
that z > x. Since we have shown that z; = (n — 1)/n and x5 = 1, this gives the contra-
diction needed to complete the proof.

8) Actually, Kalai/Smorodinsky consider a stronger property which they call individual
monotonicity, and which implies the property of restricted monotonicity stated here. However
their treatment makes it clear that only this weaker condition is necessary to characterize the solu-
tion G for two-person games.

9) Note that the solution G is not even weakly Pareto optimal, as it would be if we confined
our attention to games with disposable utility. (For a discussion of some matters related to this
point, see Kalai [1977b], Myerson [1977], and Roth [1979a)).
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Note that the solution G does not fail to be well-defined for n = 3, since for any
game (S, d) there is still a unique maximal point on the line joining d to the ideal point
. Furthermore, it is straightforward to confirm that the solution G possesses proper-
ties 2,3,and 5 for any n. Theorem 3 therefore implies that G must not possess proper-
ty 1, and in fact, in the game (S, 0) considered in the proof of the theorem,

G (S, 0) = O, which is not Pareto optimal.’)

These results suggest that there may be some fundamental differences between the
general case and the two-person case, and that other solution concepts will need to be
explored in any attempt to incorporate players’ aspirations in a consistent way into
multi-player games.
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