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An extension and simple proof of a constrained lattice fixed point
theorem

CHARLES BLAIR AND ALVIN E. RoTH

Abstract. We extend a result of Roth dealing with fixed points of lattice mappings which satisfy certain
constraints.

In this note we generalize a theorem of Roth [2], which has been applied in
the study of both cooperative and combinatorial games [3, 4]. The original theorem
and the extensions presented here follow in a simple way from a famous theorem
due to Tarski.

Let L be a complete lattice. We will be concerned with functions f such that
f:L — L, and we will denote the set of fixed points of f by Ly={x e L |x =f(x)}.
A function f will be called ‘isotone if a,beL and a =<b implies f(a)=f(b), and
antitone if a <b implies f(b)=<f(a). A function f is a join antimorphism if for any
AcL, f(%A)=Af(A), where f(A)={f(a)|ac A}. Note that every join an-
timorphis’rh is antitone. One way in which join antimorphisms arise is the
following. Let X be an arbitrary set, on which is defined an arbitrary binary

- relation A. For any x in X, define D(x)={y € X |(x, y)€ A}, and for any subset S
of X, let D(S)=UJ,cs D(x). Then the function U(S)=X—-D(S) is a join an-

~timorphism on the lattice L of subsets of X, ordered by set inclusion. Note that if
the pair (X, A) is interpreted as an abstract graph with nodes X and arcs A, then
U(S) is defined to be the set such that no arc connects any node in the sct S with
any node in the set U(S). The following result is proved in [2].

THEOREM 1. If f is a join antimorphism, then there exists an element xe L
such that x = f(f(x)) and x < f(x).

This theorem and some extensions can be obtained using the following result
due to Tarski [6].

THEOREM 2. If f is isotone, then L; is a non-empty and complete lattice
relative to the same partial order.
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This permits the following observations.

THEOREM 3. Let h and g be functions such that h is isotone and g takes L,
into L,. Then there exists an element x € L such that x = h(x) and x = g(x).

Proof. Let x = A L,. Then Tarski’s theorem implies x € L, (i.e., x = h((x)), so
g(x)eL,, and x = g(x).

Theorem 1 follows from Theorem 3 by taking h=fof and g=/f A similar
argument gives the following result.

THEOREM 4. Let uy, u, be functions such that f=u, o u, and g=u, ° u, are
both isotone. Then there exist elements x,ye L such that x=f(x)=<u,(y) and
y = g(y) = uy(x).

Proof. Let x = L¢=f(x), and y = A L, = g(y). Then y = u,(u,(y)), so u,(y)=
f(ui(y)) Gee., us(y)eLy), so x =u,(y). Similarly; y = u,(x).

One way in which fixed points of the kind considered in Theorems 1 and 4
arise is in the consideration of two player non-cooperative games whose positions
and moves can be described as the nodes and arcs of a graph. In a symmetric
game (i.e., one in which a legal move for one player is also legal for the other) the
set of winning positions is a fixed point of the kind described in Theorem 1 (cf.
[4]). In an asymmetric game, (cf. Conway [1]), the sets of winning positions for
each player are fixed points of the kind described in Theorem 4 (cf. [5]).
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