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A NOTE CONCERNING ASYMMETRIC GAMES ON GRAPHS
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ABSTRACT

We consider a class of asymmetric two-person games played on graphs, and
characterize all the positions in the game.

In this note we consider a class of asymmetric two-person games in which the players
alternately choose from a set of permissible moves, and the object of the game is to make the
last move. We will characterize the positions in the game as winning, losing, or drawing from
the point of view of each of the players.

Formally, let (¥, 4) be a directed graph, where V is the (finite) set of vertices, and
A C VxVis a set of directed arcs such that 4 = A, U A4, The players take turns choosing
vertices of the graph according to the rule* that if vertex v has just been chosen by player j,
then player / (i # j) may choose any vertex x such that (v, x) € A, That is, player /i may
move along arcs in 4, Player /loses the game (and his opponent wins) if it becomes his turn
to move from a vertex vsuch that no arc (v, x) is in A,

If 4; = A,, the game is called "impartial" or "symmetric;" otherwise it is called "partial" or
"asymmetric."} Most of the literature on games of this sort has concentrated on symmetric
games,t but we will show that the vertices of an asymmetric game can be characterized in a
natural way, which generalizes the results obtained for symmetric games [2].

In particular, we will characterize the set W, of vertices that are winning for player /i in the
sense that if he chooses a vertex win W, then he can assure himself of eventually winning the
game. Similarly, we will find the set L; of vertices which are losing for player i, such that if he
chooses a vertex v in L; then he cannot prevent an eventual loss, and the set of drawing ver-
tices D; which are neither winning nor losing. Since the game is asymmetric, the resulting par-
tition of the vertices is in general dependent on which of the two players is under consideration.
Following Steinhaus [3] and Smith [4], we will also be interested in characterizing the
(minimax) number of moves which remain from each vertex. (Steinhaus’ interest in this ques-
tion arose from the consideration of problems of naval pursuit.) '

It will be convenient to consider, for every vertex x, the set of vertices from which player
i can reach x, defined by R; (x) = {ve V|(v,x)eA,-}. For every set of vertices S, denote the set

*The game starts when player 1 selects a vertex from some initial set / of vertices.
tAn equivalent model (cf. Smith [4]) treats asymmetric games as having one set of arcs, but two sets of vertices.
#With the notable exception of a recent book by J. H. Conway [1].
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of vertices from which player / can reach some vertex in S by R, (S) = USR,- (x), and let
U, (S) = V — R, (S) be the set of vertices from which the set S is unreachable by player i.

Note that U, (V) is the set of vertices from which player i can reach no other vertex: i.e.
the set of vertices from which player / has no permissible moves. So player j (j # i) wins the
game if he chooses a vertex vin U, (V).

For each positive integer #, define the sets of vertices B, and C, by By = Co = ¢, B, =
UZ (U1 (Bn—l))’ and Cn = Ul (U2 (C,,_l)). Observe that Cl = Ul (U2 (d))) = Ul (V), and
B, = U, (V). So player 2 wins if he chooses a vertex in C;, and player 1 wins by choosing a
vertex in B;.

The relationship between the sets B, and C, is given, for every n, by the following propo-
sition:

PROPOSITION: () B, , € B,, and C,_, C C,. (i) B, C U,(C,), and C, C
U, (B,).

PROOF: Observe that for S, T, C V,if § C Tthen U, (S) D U, (T), and U, (U; (S))
C U, (U, (1), for {i, j} = {1,2}. Also note that, when n = 1, both propositions (i) and (ii)
hold (since forany S C ¥, ¢ C Sand U, (V) C U, (S)).

Suppose that for some fixed n, it has been shown that B,_; C B, and C,_; C C,. Then
Bn = U2 (Ul (Bn—l)) C U2 (U] (B,,)) = Bn+1, and C,, = U] (U2 (C,,_I)) C Ul (U2 (Cn)) =
C, 11, and so proposition (i) is true for all n.

Suppose it has been shown for some » that B, € U, (C,) and C, C U, (B,). Then
u,B,)>U (U,))=C,y, and so B,,; = U, (U, (B,)) € U, (C,,;). The same argu-
ment shows that C,,; C U, (B,,}), and so proposition (ii) is true for all n.

Note that proposition (i) together with the facts that ¥ is finite implies that there is some
integer k such that B, = B, = U, (U, (B))), and C, = C,,, = U, (U, (C})). Of course
proposition (i) also implies that B, = U B, = Band C, = U C, = C.

We can now characterize the sets of vertices which are winning, losing, and drawing for
each player, as follows:

THEOREM: () W,=B, and W,=C (i) L, =R, (C), and L,= R, (B). (iii
D1= U2 (C) —B, and D2= U] (B) - C.

PROOF: First we show that W, contains B i.e. if player 1 picks a vertex in B, then he
can make his subsequent choices so as to eventually win the game. Recall that B = U B, and

suppose that player 1 picks a vertex b, in B,. If b, is in B, then player 1 has won, otherwise
player 2 picks a vertex x such that b, eR, (x). Since B, = U, (U, (B,_))), it follows that
b, €R, (U, (B,_)), and hence xeU, (B,_y): i.e. xeR; (B,_). So no matter what vertex x is
picked by player.2, player 1 will always be able to respond by choosing a vertex b,_; in B,_;.
After at most n choices of this sort, player 1 picks a vertex b, in B, and wins. So W, contains
B, and similar argument shows that W, contains C.

It is an immediate consequence that L, contains R, (C) and L, contains R, (B), since if
player 2, for instance, picks a vertex in R, (B), then he cannot prevent player 1 from picking a
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vertex in B and eventually winning. It only remains to show that D, = U, (C) — B and
D, = U, (B) — C: this will exhaust the set of vertices, and thus prove parts (i) and (ii), as well

as (iii).

Suppose player 2 picks a vertex veU; (B) — C. Then player 1 must choose a vertex w
such that veR, (w), and so weB, since veU, (B). If player 1 chooses a vertex weR, (C),
then we have seen that he cannot prevent his eventual loss. However, we observe that player 1
can always choose a vertex weU, (C), since veC = U, (U, (C)); i.e. since veR; (U, (C)).
Thus, whenever player 2 picks a vertex in U, (B) — C, player 1 can always respond by choos-
ing a vertex in U, (C) — B (and his only other choice is to choose a vertex in R, (C)).

Similarly, whenever player 1 chooses a vertex in U, (C) — B, player 2 cannot reach a ver-
tex in C, but he can respond by choosing a vertex in U, (B) — C. So D, = U, (C) — B and
D, = U, (B) — C: if player i picks a point in D;, player j (j # i) can always choose a point in
D;, and must choose such a response to avoid an eventual loss. This completes the proof of
the theorem.

As a final note, observe that if player 1, say, picks a winning vertex v in B, then he can
assure a win after making m more choices, where m is the number such that ved,,,,—A4,. If
player 1 chooses a losing vertex veR, (C), then he can count on making only p moves before
losing, where p is the number such that veR, (C,,)) — R, (C,).

For example, consider the graph with vertices V = {a, b, ¢, d, e, f} and arcs 4, =
A'"U {(d e) (e,e)) and A,=4"U {(c, /), (£, /), where A' = {(a, d), (d, ¢), (¢, b),
(b, @)}. Then it is straightforward to verify that W, = B, = {a, e}, W, = C, = {f}, L, =
{e. f}, Ly=1{bd e}, D, = {b, d}, and D, = {a, ¢}. Thus, for instance, if player 1 moves to
vertex b he can assure himself of a draw, but if player 2 moved to b, he could not prevent a
loss.

Of course, in a symmetric game this could not occur: a vertex which is losing for one
player would also be losing for the other. For a discussion of the symmetric case, and its rela-
tionship to classical concepts of stability in games and graphs, see Roth [2].
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