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Family-based tests of association between a candidate locus and a disease evaluate how often a variant allele at the locus is
transmitted from parents to offspring. These tests assume that in the absence of association, an affected offspring is equally
likely to have inherited either one of the two homologous alleles carried by a parent. However, transmission distortion was
documented in families in which the offspring are unselected for phenotype. Moreover, if offspring genotypes are
associated with a risk factor for the disease, transmission distortion to affected offspring can occur in the absence of a causal
relation between gene and disease risk. We discuss the appropriateness of adjusting for established risk factors when
evaluating association in family-based studies. We present methods for adjusting the transmission/disequilibrium test for
risk factors when warranted, and we apply them to data on CYP19 (aromatase) genotypes in nuclear families with multiple
cases of breast cancer. Simulations show that when genotypes are correlated with risk factors, the unadjusted test statistics
have inflated size, while the adjusted ones do not. The covariate-adjusted tests are less powerful than the unadjusted ones,
suggesting the need to check the relationship between genotypes and known risk factors to verify that adjustment is
needed. The adjusted tests are most useful for data containing a large proportion of families that lack disease-discordant
sibships, i.e., data for which multiple logistic regression of matched sibships would have little power. Software for
performing the covariate-adjusted tests is available at http://www.stanford.edu/dept/HRP/epidemiology/COVTDT.
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INTRODUCTION

Two decades ago, geneticists noted that genetic
association with disease can be detected by
evaluating excess transmission of particular alleles
from parents to affected offspring. This strategy
was formalized in the haplotype relative risk test
and the transmission/disequilibrium test (TDT)
and their extensions [Field et al., 1986; Falk and
Rubinstein, 1987; Terwilliger and Ott, 1992; Spiel-
man et al., 1993]. These tests are not biased by
population stratification, a problem that can be
serious for large case-control studies of small
genetic effects [Marchini et al., 2004]. A funda-
mental assumption of family-based tests is that,
under the null hypothesis of no association
between disease and variant allele, a parent is

equally likely to have transmitted either of his two

homologous alleles to an affected offspring (here-

after called Mendelian transmission). Large devia-

tions fromMendelian transmission are interpreted

as evidence that disease risk varies with alleles of

the polymorphism or of a neighboring locus.
However, deviations from Mendelian transmis-

sion can occur for other reasons. These include
meiotic drive (biased segregation during meiosis),
gametic selection (differential success of gametes in
achieving fertilization), and postzygotic viability
selection for or against certain genotypes. Zollner
et al. [2004] studied 148 nuclear families ascertained
without reference to phenotype, and found evidence
for transmission distortion spread broadly through-
out the genome. At some loci, the distortion can be
appreciable [Eaves et al., 1999]. We shall use the
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term neutral distortion for departures from Mende-
lian transmission that are unrelated to phenotypes
for the disease of interest. As noted by Spielman et
al. [1993], such distortion can cause spurious
disease-genotype association in transmission/dise-
quilibrium tests based only on affected offspring.
More problematic to transmission-based asso-

ciation tests is nonneutral distortion, wherein
transmission distortion differs by disease status
of the offspring. Such differential distortion might
occur if genotypes are associated with a risk factor
for the disease. For example, the CYP17 gene
encodes an enzyme that functions at key branch
points in human steroidogenesis. Carriers of the
variant A2 allele of a polymorphism in this gene
appear less likely than noncarriers to use estrogen
therapy (ET) for menopausal symptoms [Feigel-
son et al., 1999]. Since ET is a risk factor for breast
cancer [Writing Group for Women’s Health
Initiative, 2002], women with breast cancer are
likely to have used the therapy and thus may be

less apt to carry the A2 allele than expected
according to their parental genotypes. Failure to
adjust for ETuse could induce a spurious negative
association between A2 carrier status and breast
cancer, if carrier status has no effect on breast
cancer risk. Such failure also could mask a true,
causal association between A2 status and risk that
is independent of ET use (Fig. 1A).
Nonneutral distortion also can occur if geno-

types are associated with one or more comorbid
conditions [Smoller et al., 2000; Robins et al.,
2001]. Such conditions are particularly likely to
occur in clinic-based data, because individuals
with multiple disorders are more apt to seek
medical care and receive diagnostic evaluation.
Bias can occur when the candidate gene is
unrelated to the disease of interest, but is in
linkage disequilibrium with a gene that affects the
comorbid condition.
Here we extend family-based tests to evaluate

such departures from Mendelian transmission

Breast Cancer

Breast CancerCYP19 Genotype

Estrogen

Age at Menarche

(B)

Estrogen Therapy

CYP17 Genotype
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Fig. 1. Possible associations between genotypes of estrogen-metabolizing genes and breast cancer risk. A: Carriers of A1 allele of CYP17

are less likely to use estrogen therapy than noncarriers. Since estrogen therapy is an established breast cancer risk factor, failure to

adjust for its use could produce a spurious negative CYP17-breast cancer association, or mask a positive association. B: CYP19

genotypes may increase circulating estrogen levels, which could cause both early age at menarche and increased breast cancer risk. If so,
controlling for age at menarche (a surrogate marker on the causal pathway between CYP19 genotype and breast cancer) would be

counterproductive, unless the aim is to detect a causal relationship between CYP19 and breast cancer that is independent of any effect

of CYP19 on age at menarche.
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while accomodating the effects of covariates such
as age and ET use. In applying these methods, we
must avoid controlling for unmodifiable covari-
ates that lie in a causal pathway between genotype
and disease. For example, endogenous estrogen
levels may vary with genotype of the CYP19 gene,
which encodes the enzyme aromatase that con-
verts androgens to estrogen. Since estrogens are
involved in both onset of menarche and the
development of breast cancer, certain CYP19
genotypes may increase breast cancer risk by
increasing estrogen levels (which also may cause
menarche at early age, an established risk factor
for breast cancer). Thus age at menarche is a
marker for estrogen levels, which may lie on the
causal pathway between CYP19 genotypes and
breast cancer (Fig. 1B). If so, then controlling for
age at menarche when examining the association
between CYP19 genotypes and breast cancer risk
would be counterproductive, unless interest fo-
cused on a possible association between genotype
and risk that is independent of the estrogen
pathway marked by age at menarche.
Below, we establish a notation and introduce

test statistics as efficient score statistics of like-
lihood functions that include covariates. We then
apply a covariate-adjusted TDT to CYP19 geno-
type data from nuclear families with multiple
cases of breast cancer. We use simulations to
examine the tradeoffs between bias and power
loss when considering covariate adjustment. We
conclude with general recommendations for deal-
ing with covariates and potential confounding in
family-based association studies.

NOTATION AND ASSUMPTIONS

We wish to evaluate whether an offspring’s
genotype influences his disease risk, while allow-
ing the possibility that his genotype also influ-
ences his risk factors for the disease (hereafter
called covariates). These possibilities are illu-
strated in Figure 2. The likelihood-based frame-
work for covariate-adjusted tests of genotype-
disease association is similar to that developed for
those without covariates (hereafter called ‘‘no-
covariate’’ TDTs) [Schaid and Rowland, 1998;
Clayton, 1999; Whittemore and Tu, 2000; Shih
and Whittemore, 2002]. We illustrate the theory by
applying it to a binary disease outcome and a
diallelic polymorphism with a variant and normal
allele, using nuclear family data with known
parental genotypes. Extension to data involving
multiple markers and missing parental genotypes
is similar to that described elsewhere for the no-
covariate TDT.
Suppose that for N unrelated nuclear families

we have gathered data on the genotypes, covari-
ates, and binary disease statuses of the offspring,
and the genotypes of their parents. Let h¼0, 1, or 2
denote the number of variant alleles in an
offspring’s genotype. We begin by considering
the possibility of neutral distortion, without
consideration of covariates. Specifically, we as-
sume that the probability of offspring genotype h,
given his parental genotypes g, is

PrðhjgÞ ¼ PMðhjgÞelhP2
h0¼0 PMðh0jgÞelh0

; l0 ¼ 0: ð1Þ

Genotype

Risk Factor

Diseasedominant
recessive
co-dominant

dominant
recessive
co-dominant

Fig. 2. Possible causal associations relating genotypes of candidate gene to risk factors and to disease risk. Relationship between

genotype and risk factor may take one of several forms (e.g., dominant, recessive, codominant), and need not be same as relationship

between genotype and disease risk.
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Here PMðhjgÞ denotes Mendelian transmission
probability and lh is a scalar parameter, with l0
equated to 0 to insure identifiability. In this
notation,

PrðhjgÞ
Prð0jgÞ ¼

PMðhjgÞ
PMð0jgÞ

elh ; h ¼ 1; 2

which states that the likelihood ratio of genotype h
for an offspring with parental genotype g is
distorted from the Mendelian ratio by the factor
elh . Thus l1¼l2¼0 corresponds to Mendelian
transmission.
To address the possibility that genotypes may

influence covariates (upper arrow in Fig. 2), we
assume an exponential family model [Hogg and
Craig, 1971] for the distribution of an offspring’s
covariates, given his genotype:

Pr zjhð Þ ¼ exp xhzþ S zð Þ þ xh0½ �: ð2Þ
Here z ¼ z1; . . . ; zp

� �T
denotes a p-dimensional

column vector of covariates, xh ¼ ðxh1; xh2; . . . ; xhpÞ
is a row vector of parameters, and

xh0 ¼ ln

Z
exp xhzþ S zð Þ½ � dz

� ��1

; h ¼ 0; 1; 2

is determined to insure that the probabilities (2)
sum or integrate to one over the covariate space.
The components of the vectors xh � x0 have
interpretions as log-odds-ratios, since for two
covariate vectors z and z0,

PrðhjzÞ
Prð0jzÞ �

Prðhjz0Þ
Prð0jz0Þ ¼

PrðzjhÞ
Prðzj0Þ �

Prðz0jhÞ
Prðz0j0Þ

¼ e xh�x0ð Þ z�z0ð Þ:

From Bayes’ rule, the probability that an offspring
has genotype h, given his parents’ genotype g and
his covariates z, is

Prðhjg; zÞ ¼ PðhjgÞPrðzjhÞP2
h0¼0 Pðh0jgÞPrðzjh0Þ

ð3Þ

where PðhjgÞ is given by (1). Here we assume that,
given his own genotype, an offspring’s covariates
are independent of the genotypes of his parents.
Substituting (1) and (2) into (3) gives

Prðhjg; zÞ ¼ PMðhjgÞ expðlh þ xh0 þ xhzÞP2
h0¼0 PMðh0jgÞ expðlh0 þ xh00 þ xh0zÞ

� PMðhjgÞ expðnhz�ÞP2
h0¼0 PMðh0jgÞ expðnh0z�Þ

; n0 ¼ 0:

ð4Þ
Here zT� ¼ ð1; zTÞ, and nh ¼ nh0; . . . ; nhp

� �
, with

nh0 ¼ lh þ xh0 � x00 and nhj ¼ xhj � x0j, j ¼ 1; . . . ; p.

The vectors n1 and n2 measure association between
offspring genotype and covariates.
Some special cases of model (4) warrant com-

ment. First, when there is no genotype-covariate
association (i.e., when xh � x in (2)), then since the
intercepts nh0 equal lh and the regression coeffi-
cients nhj are 0, j ¼ 1; . . . ; p, (4) reduces to the
neutral distortion probabilities (1). Second, when
there is neither genotype-covariate association nor
neutral distortion (i.e., xh � x in (2) and l1¼l2¼0
in (1)), then n1¼n2¼0, and the probabilities (4)
reduce to the Mendelian probabilities PMðhjgÞ.
Third, when genotypes and covariates are asso-
ciated, the intercepts n10 and n20 are generally
nonzero, even without neutral distortion. Specifi-
cation that the intercepts n10 and n20 are 0 (with
arbitrary regression coefficients nhj, j ¼ 1; . . . ; p)
corresponds not only to the assumption of no
neutral distortion, but also to the additional
assumption that Mendelian transmission holds
at the ‘‘baseline’’ covariate levels zj¼0, j ¼ 1; . . . ; p.
Since our primary concern here is with confound-
ing by covariates rather than neutral distortion,
we shall assume hereafter that l1¼l2¼0.
Model (4) requires estimating the 2(p+1) para-

meters in n1 and n2, and more parsimonious
submodels may be desirable. For example, setting
n1¼n2 (equivalently, setting x1¼x2 in (2)) indicates
that the covariate distribution among carriers of
one variant allele is similar to that among carriers
of two variants (a dominant model for the effect of
genotype on covariates). Alternatively, setting
n1¼0 (equivalently, setting x1¼x0 in (2)) indicates
that the covariate distribution among carriers of
one variant allele equals that among those with a
normal genotype (a recessive genotype-covariate
model).
We illustrate these models by considering a

single binary exposure having a prevalence of 20%
among normal homozygotes and 30% among all
carriers of a variant allele A (a dominant geno-
type-covariate model). We let z denote an indi-
cator for exposure, with z¼1 for exposed and z¼0
for unexposed, and write Prðz ¼ 1jhÞ ¼ exh1z=
ð1þ exh1Þ. This corresponds to model (2) with
S(z)¼0 and xh0 ¼ � lnð1þ exh1Þ. Equating Prðz ¼
1jh ¼ 0Þ to 0.2 and Prðz ¼ 1jh ¼ 1Þ ¼ Prðz ¼ 1jh ¼
2Þ to 0.3 in equation (2) and solving for the x yields

x00; x01ð Þ ¼ �0:223;�1:386ð Þ and

x10; x11ð Þ ¼ x20; x21ð Þ ¼ ð�0:357;�0:847Þ:

Table I gives the offspring genotype probabilities
Prðhjg; zÞ, conditional on parental genotype and
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offspring exposure. Column 3 of Table I gives the
usual Mendelian transmission probabilities. Col-
umns 4 and 5 show the probabilities Prðhjg; zÞ for
exposed (z¼1) and unexposed (z¼0) offspring,
based on (4) with n1¼n2¼(�0.357,�0.847)�
(�0.223,�1.386)¼(�0.134, 0.539). Comparison of
columns 4 and 5 with column 3 illustrates two
points. First, offspring genotypes that are incon-
sistent with parental genotypes under Mendel’s
laws remain so according to (4). Second, the
offspring of parental mating type AA�AB have
a 50:50 chance of carrying two variants rather than
one, regardless of their exposure level, in agree-
ment with Mendelian inheritance. This agreement
occurs because we assume the same exposure
prevalence among carriers of one variant and two
variants (a dominant model for the effects of
genotype on exposure).
To address the possibility that both genotypes

and covariates affect disease risk, we must specify
a model jðh; zÞ for the probability of a disease
given the genotype and covariates. We assume that
jðh; zÞ depends on h only through a term bc(h),
where b is an unknown scalar parameter and c(h)
indicates how genotypes affect risk (lower arrow
in Fig. 2). For example, in the simulations we shall
assume a logistic regression model of the form

jðh; zÞ ¼ Prðy ¼ 1jh; zÞ ¼ eaþbcðhÞþdz

1þ eaþbcðhÞþdz
ð5Þ

where y is an indicator for disease, and d ¼
ðd1; . . . ; dpÞ is a vector of parameters relating
covariates to disease risk. For a dominant model,
c(h)¼1 if h¼1, 2, with c(0)¼0. For a recessive model,
c(h)¼1 if h¼2, with c(h)¼0 otherwise, while for an
additive model, c(h)¼h. The null hypothesis of
interest is that b¼0, i.e., that genotypes are
unrelated to disease risk.
We shall base inferences for b on the likelihood

L of the offspring genotypes, given their pheno-
types, their covariates, and the genotypes of their
parents. This likelihood is the product over
families of family-specific contributions

fLi ¼
Yni
j¼1

Pr hijjyij; gi; zij
� �

¼
Yni
j¼1

Pr hijjgi; zij
� �

j hij; zij
� �yij 1� j hij; zij

� �� �1�yijP2
h0¼0 Pr h0jgi; zij

� �
j h0; zij
� �yij 1� j h0; zij

� �� �1�yij

( )
:

ð6Þ

Here subscripts i and j denote the jth offspring
of the ith family, j ¼ 1; . . . ;ni, and Prðhjg; zÞ is

given by (4). In (6), we assume conditional
independence of offspring phenotypes, given
their genotypes and their covariates. This is a
weaker assumption than that underlying the ‘‘no-
covariate’’ TDT, which assumes that offspring
phenotypes are conditionally independent, given
just their genotypes.
The likelihood contributions (6) are conditioned

on offspring phenotypes, because families are
ascertained on that basis. They are conditioned on
parental genotypes because such conditioning
avoids potential bias due to ethnic stratification
of the parental population [Spielman et al., 1993].
The contributions also are conditioned on the
offspring covariates, because such conditioning
avoids specifying the joint distribution of the
offspring covariates, which typically is complex
and poorly understood. Note that this condition-
ing on both the phenotypes and the covariates of
the offspring precludes estimating the parameters
that relate covariates to disease risk. Instead, this
relationship must be specified a priori. Thus, for

TABLE I. Offspring genotype probabilities under
Mendelian inheritance and transmission distortion

Probability of offspring genotype

Distortiona

Parental
mating type

Offspring
genotype

Mendelian Exposed
(z¼1)

Unexposed
(z¼0)

AA�AA AA 1.0 1.0 1.0
AB 0.0 0.0 0.0
BB 0.0 0.0 0.0

AA�AB AA 0.50 0.50 0.50
AB 0.50 0.50 0.50
BB 0.0 0.0 0.0

AA�BB AA 0.0 0.0 0.0
AB 1.0 1.0 1.0
BB 0.0 0.0 0.0

AB�AB AA 0.25 0.27 0.24
AB 0.50 0.55 0.48
BB 0.25 0.18 0.28

AB�BB AA 0.0 0.0 0.0
AB 0.50 0.60 0.47
BB 0.50 0.40 0.53

BB�BB AA 0.0 0.0 0.0
AB 0.0 0.0 0.0
BB 1.0 1.0 1.0

aAssuming single binary covariate z with prevalence 20% among
BB homozygotes and 30% among carriers of allele A.
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example, we must specify the parameters a and d
in the logistic model (5).
The likelihood function L prompts several

hypotheses about the offspring genotype prob-
abilities, conditional on covariates and parental
genotypes. These derive from comparison of the
nested models shown in Figure 3. Model 1, the
most general model of the four, allows arbitrary
values for b and the two ns. Model 2, with b¼0
and the ns arbitrary, specifies that within each
covariate level, allele transmission is independent
of disease phenotype, although it need not follow
Mendelian expectation. Model 3, with b arbitrary
and n1¼n2¼0, specifies that in families unselected
for disease, alleles are transmitted according to
Mendelian expectation. Model 4 (b¼n1¼n2¼0)
specifies Mendelian expectation for allele trans-
mission, regardless of the offspring phenotypes or
covariates. Models 2 and 4 both specify that
disease risk jðh; zÞ ¼ jðzÞ depends only on
covariates. The no-covariate TDT and its exten-
sions are efficient score statistics in evaluating the
adequacy of model 4 relative to model 3. In
contrast, the covariate-adjusted TDTs are efficient

score statistics in evaluating the adequacy of
model 2 relative to model 1.
The covariate-adjusted TDT is based on the

efficient score q log L=qb evaluated at b¼0, and
with the ns equated to their null maximum
likelihood estimates. When standardized by an
estimate of its null standard deviation, the test
statistic has approximately a standard Gaussian
distribution. As outlined in the Appendix, the
efficient score has a form analogous to that for the
no-covariate TDT. Both are sums over all offspring
of terms

y� jðzÞ½ � cðhÞ � m zð Þ½ � ð7Þ

which measure the covariance between null trait
residuals and null genotype residuals. Here jðzÞ
is the user-specified disease prevalence among
individuals with covariates z, and m(z) is the null
expected value of the offspring’s genotype value
c(h), given his parental genotypes and (for the
covariate-adjusted TDT) his covariates. Both jðzÞ
and m(z) are assumed independent of z in
computing the no-covariate TDT. Expression (7)
shows that misspecification of m(z) induces bias in

covariate-

adjusted TDT

no-covariate 

TDT

1. �, � arbitrary

4.  � = � = 0

2.   � = 0

�  arbitrary
3.   � arbitrary

� = 0

Fig. 3. Nested models for joint effects of genotypes, phenotypes, and covariates on parental transmission probabilities. Model 1 allows
departures from Mendelian genotype transmission according to offspring risk factors (association parameter n arbitrary) and disease

phenotypes (association parameter b arbitrary). Model 2 specifies that, within each covariate level, allele transmission is independent of disease

phenotype (b¼0 but n arbitrary). Model 3 specifies that in families unselected for disease, alleles are transmitted according to Mendelian

expectation (n¼0 but b arbritrary). Model 4 specifies Mendelian expectation for allele transmission, regardless of offspring phenotypes or

covariates (b¼n¼0). The no-covariate TDT and its extensions evaluate adequacy of model 4 relative to model 3. In contrast, covariate-adjusted

TDTs evaluate adequacy of model 2 relative to model 1.
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the test statistic, for then the null expectation of
c(h)�m(z) is nonzero. In contrast, misspecification
of the disease probabilities jðzÞ does not affect the
null expectation of the standardized test statistic,
since wðzÞ ¼ y� jðzÞ serves only as a user-
specified weight for the null genotype residual
of each offspring. According to (7), positive
residuals c(h)�m(z) of affected offspring
(w(z)40) contribute positively to the test statistic.
Moreover, affected offspring with low-risk cov-
ariates (jðzÞ � 1 and w(z)B1) contribute more
than do those with high-risk covariates (jðzÞ � 1
and w(z)B0). In addition, the positive residuals
c(h)�m of unaffected offspring (w(z)o0) contri-
bute negatively, and unaffected offspring with
high-risk covariates (w(z)B�1) contribute larger
negative values than do those with low-risk
covariates (w(z)B0). While misspecification of
the weights could decrease power, in our limited
simulations and data analyses, we found that
weight specification has a negligible impact on
either the value of the test statistic or its power.

APPLICATION TO DATA

The need for covariate adjustment in family-
based association tests was brought to our atten-
tion in the analysis of genotypes of a tetranucleo-
tide (TTTA) repeat polymorphism in the CYP19
gene in 278 nuclear families with multiple cases of
breast cancer. The polymorphism is characterized
by a variable number of repeats, ranging from
7–13. Previous studies suggested that carriers of 10
or more repeats have an elevated breast cancer risk
[reviewed in Dunning et al., 1999]. We genotyped
299 affected and 213 unaffected daughters and 107
of their 2� 278¼556 parents, and found that
carrier status of the allele containing 11 repeats
(hereafter called allele A) was associated with
increased breast cancer risk, with a (no-covariate)
TDT statistic of 1.83 (one-tailed P¼0.03) [Ahsan
et al., 2005; Kraft and Thomas, 2004].
We were concerned about possible confounding

of this association by nongenetic risk factors for
breast cancer. To address this issue, we first
performed conditional logistic regression (CLR)
of the 183 phenotype-discordant sibships. The
regression model included: carrier status of the A
allele, age at risk (defined as age at breast cancer
diagnosis for affected sibs and age at interview for
unaffected sibs), age at menarche, parity, oral
contraceptive use, and ETuse. The estimated odds
ratio relating CYP19 genotype to breast cancer risk

was 1.9 (95% confidence interval, 0.9–3.5; one-
tailed P¼0.09). It is not clear whether this
attenuated statistical significance reflects con-
founding due to failure to adjust for the risk
factors, or power loss because only 183 of the 278
sibships were phenotype-discordant. The covari-
ate most strongly correlated with disease was age
at risk (Po0.001 in the CLR). Indeed, as seen in
the last column of Table II, daughters with breast
cancer were, on average, younger than their
unaffected sisters. Confounding by age at risk is
possible because age was also related to genotype.
Table II shows that homozygotes for the variant
were younger than daughters with fewer than two
variants, regardless of their disease status.
In an attempt to distinguish confounding from

power loss, we examined possible departures from
Mendelian transmission to affected and unaf-
fected daughters, adjusted for age at risk. Moti-
vated by the dominant disease-genotype
association found for the no-covariate TDT
[Ahsan et al., 2005; Kraft and Thomas, 2004], we
assumed a dominant model for the effect of
genotype on breast cancer. Motivated by the data
in Table II, we assumed a recessive model for the
effect of genotype on age at risk (coded as a
continuous variable). We specified the null pre-
valence of breast cancer by age z years as
jðzÞ ¼ 1� exp½�

R z
0 IðsÞ ds�, where I(z) is an esti-

mate of the US age-specific breast cancer incidence
rate for the period 1973–1977 [SEER, 1981]. This
specification corresponds to a weight wð40Þ ¼ 1�
jð40Þ ¼ 0:99 for an affected woman aged 40 years,
and weight wð70Þ ¼ �jð70Þ ¼ �0:09 for an
unaffected woman aged 70 years. The resulting
age-adjusted test statistic was 1.27 (P¼0.10). This
result is consistent with the attenuated findings
obtained by CLR. The consistency suggests either
that the phenotype-genotype association seen in
the no-covariate TDT is due to confounding by

TABLE II. Distribution of daughters and their mean ages
at risk, by CYP19 genotype and breast cancer statusa

CYP19 Genotypeb

Breast cancer BB N (age) AB N (age) AA N (age) Total N (age)

Yes 145 (44.8) 135 (44.4) 19 (41.4) 299 (44.4)
No 103 (49.4) 94 (49.1) 16 (44.1) 213 (48.9)
Total 248 (46.7) 229 (46.3) 35 (42.6) 512 (46.3)

aMean age (in years) at breast cancer diagnosis for affected
daughters, and age at interview for unaffected daughters.
bEleven repeats (A allele) of tetranucleotide TTTA repeat poly-
morphism vs. all other repeat lengths (B allele).
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age, or that both the covariate-adjusted TDT and
CLR lack power to detect the association.
We attempted to distinguish the two explana-

tions using simulated data. Specifically, we eval-
uated the power and size of the three tests (no-
covariate TDT, covariate-adjusted TDT, and CLR)
in samples with sizes comparable to the CYP19
genotype and breast cancer data. The results,
described below, suggest that the covariate-
adjusted TDT forfeits about 25% of the power of
the no-covariate TDT, while CLR based on only half
the sibships forfeits about 50% of this power. Thus
while the covariate-adjusted TDT is clearly more
powerful than CLR for the CYP19 data, both are
considerably less powerful than the no-covariate
TDT. Therefore, although both covariate-adjusted
analyses provided only weak evidence of an
association between CYP19 and breast cancer, we
cannot exclude the possibility that both analyses
lacked the power needed to detect a small increase
in risk associated with carrier status of the A allele,
independent of age at risk.

SIMULATIONS

We simulated genotype, phenotype, and covari-
ate data for a diallelic polymorphism in a
candidate gene for 300 nuclear families, each with
two offspring. We considered two sibship config-
urations: A, all 300 sibships were discordant for
disease; and B, half the sibships were discordant
and the remaining half consisted of two affected
siblings. We assumed that genotypes were missing
for both parents in half the families, and that one
parental genotype was missing in the remaining
half. We studied a single binary covariate with
values z¼1 (exposed) and z¼0 (unexposed). For
each data set of 300 families, we computed test
statistics corresponding to the no-covariate TDT,
the covariate-adjusted TDT, and the conditional
logistic regression of both genotypes and covari-
ates of the discordant sibships.
We generated the data for each family in the

following four steps:

1) Generate parental genotypes assuming random
mating and Hardy-Weinberg genotype fre-
quencies, with variant allele frequency equal
to 10%.

2) Given the parental genotypes, generate off-
spring genotypes assuming Mendelian trans-
mission.

3) Given the offspring genotypes, generate off-
spring exposure indicators according to two

models: a) exposure prevalence of 20%, regard-
less of genotype (this value corresponds in (4)
to parameter values nh¼(0,0), h¼1, 2, and
specifies that exposure is unrelated to geno-
type); and b) exposure prevalence of 40%
among carriers of the variant and 20% among
noncarriers. These values correspond to a
dominant model for the effects of genotype
on exposure, with parameters n1¼n2¼(�0.29,
0.98) in equation (4).

4) Given the offspring genotypes and covariates,
generate offspring disease phenotypes accord-
ing to the logistic regression model (5), with
c(h) taken to be an indicator for carrier status
of the variant allele. We took a¼�2.75,
and considered four models, depending on
whether or not disease was associated with
genotype (b¼0 or b¼0.76), and whether or not
disease was associated with exposure (d¼0 or
d¼0.76). These values correspond to risks of 6%
in unexposed normal homozygotes, 12% in
unexposed carriers of allele A and exposed
normal homozygotes, and 23% in exposed
carriers of allele A. We generated family data
until we had obtained 300 families with the
desired offspring phenotypes. In summary, we
considered two family configurations (A and
B), two models for association between geno-
type and covariate, and four models for disease
risk in relation to genotype and covariate, a
total of 2� 2� 4¼16 simulations.

The test statistics used to analyze the data
assumed that offspring genotypes affect covari-
ates according to the same dominant model used
to generate the data. We evaluated various correct
and incorrect specifications for the relationship
beween genotypes and disease (i.e., the weights),
and found that the choice of weights had
negligible effect on power. Here we report only
the results based on the correct specification. For
CLR analyses, we used the t-test statistic for the
coefficient b to test the relationship between
genotype and disease risk.
Table III gives results when all sib-pairs are

disease-discordant (Table IIIA) and when only
half the sib-pairs are discordant (Table IIIB). Each
half of Table III shows test size (b¼0) and power
(b40) in four blocks, depending on whether or
not the covariate is correlated with genotype and
with disease risk. Only the fourth block (covariate
correlated with both genotype and disease risk)
corresponds to confounding of the genotype-
phenotype relationship. Thus, as expected, the
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nominal and empirical test sizes in Table III are
similar for blocks 1–3, while in the fourth block,
the sizes of the no-covariate TDT are inflated.
The covariate-adjusted TDT has power compar-

able to that of CLR in situations when the latter
can use all sibships (Table IIIA). However, both
suffer appreciable power loss compared to the no-
covariate TDT. When half the sibships are disease-
concordant and thus are excluded from the CLR
analyses (Table IIIB), the power loss of this
method is substantial. In this case, the covariate-
adjusted TDT has power intermediate between
that of the other two tests.

DISCUSSION

We extended the TDT to accommodate potential
confounding by established risk factors in tests of
genetic association using nuclear families. Like-
lihood-based arguments and simulations show
that when the covariates are associated with both
genotype and disease risk, the empirical type I
error rates for the extended tests are similar to

their nominal values, while those for the un-
adjusted test statistics are inflated.
The covariate-adjusted tests are based on the

probability distribution of the offspring geno-
types, given parental genotypes, offspring disease
status, and offspring covariates. Because of this
joint conditioning on both disease status and
covariates, the method does not allow evaluation
of association between covariates and disease.
Instead, this relationship must be specified a
priori. Misspecification of the relationship does
not affect the type I error rate, although it could
decrease power. In simulations and in practice,
however, we found little variation in test power
with various specifications of this relationship.
Although the covariate-adjusted tests presented
here handle missing parental data using like-
lihood-based methods, the underlying theory also
could be applied to extensions based on minimal
sufficient statistics for nuisance parameters
[Horvath and Laird, 1998; Rabinowitz and Laird,
2000] or based on projections onto subsets of the
parameter space [Rabinowitz, 2002; Allen et al.,
unpublished manuscript].

TABLE III. Empirical size and powera of test statistics using 300 nuclear families,b each with two offspring

A. 300 affected/unaffected sib-pairs
Covariate uncorrelated with disease Covariate correlated with disease

b¼0 b40 b¼0 b40

Covariate uncorrelated with genotypes
TDT/no covariates 0.07 0.91 0.06 0.88
TDT covariates 0.06 0.82 0.06 0.77
CLR 0.05 0.81 0.05 0.74

Covariate correlated with genotypes
TDT/no covariates 0.05 0.89 0.09 0.97
TDT/covariates 0.05 0.79 0.06 0.73
CLR 0.05 0.79 0.05 0.77

B. 150 affected/unaffected and 150 affected/affected sib-pairs
Covariate uncorrelated with disease Covariate correlated with disease

b¼0 b40 b¼0 b40

Covariate uncorrelated with genotypes
TDT/no covariates 0.07 0.98 0.07 0.98
TDT/covariates 0.05 0.77 0.05 0.77
CLR 0.04 0.46 0.05 0.47

Covariate correlated with genotypes
TDT/no covariates 0.06 0.98 0.14 0.99
TDT/covariates 0.05 0.76 0.05 0.76
CLR 0.05 0.47 0.04 0.47

aTo detect association between binary disease outcome and diallelic polymorphism, based on 1,000 replications.
bOne parental genotype is missing for 150 families, and both genotypes are missing for remaining 150 families.
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The robustness of the covariate-adjusted statis-
tics is purchased at the price of decreased power
relative to that of unadjusted TDT statistics. This
tradeoff between robustness and power raises
fundamental issues for the design of family-based
association studies. Gathering and typing DNA
from parents is costly, and indeed impossible
when parents are deceased. An alternative strat-
egy would genotype only siblings and compare
genotypes of affected and unaffected sibs. Kraft
and Thomas [2004] reviewed several methods for
analyzing age-at-onset data for sibships, covering
a spectrum of levels of control for potential
population stratification. Conditional logistic re-
gression of genotypes and of risk factors in
matched sibship data provides perhaps the most
attractive option for controlling potential con-
founding by established risk factors. Such ana-
lyses are simple to apply and interpret, and
provide a measure of the strength of association
in addition to a P-value. However, our simulations
showed that this option can lose substantial power
(relative to transmission-based tests) when a
significant proportion of families lack discordant
sibships. Nevertheless, when designing a family-
based genetic association study, it may be advan-
tageous (both economically and logistically) to
restrict the analysis to sibships, without parents.
An exception is the situation when genotypes of
extended pedigrees have already been collected
for other purposes (such as linkage analysis), and
an appreciable fraction of the sibships in these
pedigrees lack phenotype-discordant sibs. In this
case, the covariate-adjusted statistics provide an
alternative strategy. It is important to examine
evidence for correlation between genotypes and
risk factors when considering the need for adjust-
ment, and to adjust for a covariate only when it
appears to be correlated with genotype yet does
not lie on a causal pathway between genotype and
disease.
Yet another option for dealing with confounding

is the unconditional logistic regression of all
affected and unaffected family members, whose
phenotypes and genotypes are available, and
ignoring the relationships of family members
[Slager and Schaid, 2001, 2003; Whittemore and
Halpern, 2003]. For this strategy, robust variance
estimators are used to accommodate within-
family correlations in covariates. A weakness of
this approach is its potential sensitivity to bias
from population stratification.
In conclusion, we suggest the following strat-

egy for dealing with potential confounding of

genetic association tests by established risk
factors when analyzing data from parents and
offspring. First, one should check informally
whether the risk factor is associated with the
genotype of interest. If not, the no-covariate TDT
is the preferred analytic method. If there is
evidence for such an association, and if most of
the families contain discordant sibships, condi-
tional logistic regression of matched sibships is
simple and yields estimates of the strength of the
association. If an appreciable fraction of the
families lack discordant sibships, greater power
can be expected with covariate adjustment, using
the methods presented here. Software for using
these methods is freely available at http://
www.stanford.edu/dept/HRP/epidemiology/
COVTDT.
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APPENDIX

A family’s contribution to the "no-covariate"
likelihood function [Clayton, 1999; Whittemore
and Tu, 2000] is the joint probability PrðG;HjYÞ of
the parent and offspring genotype data G and H,
respectively, conditional on the offspring pheno-
types Y. To include covariates, we take a family’s
likelihood contribution to be the joint probability
PrðG;HjY;ZÞ of family genotype data, condi-
tioned also on offspring covariates Z. The like-
lihood depends on a parameter y¼(b, n, g), where
b relates genotype to trait, n¼(n1, n2) relates
offspring genotypes to covariates in model (4),
and g denotes the parameters in the null distribu-
tion Pr(G) of parental genotypes.
When parental genotypes are known, the like-

lihood factors as the probability PrðGjY;ZÞ of the
parental genotypes, given offspring phenotypes
and covariates, times the probability
PrðHjG;Y;ZÞ of the offspring genotypes, given
parental genotypes, offspring phenotypes, and
offspring covariates. The vector U of efficient
scores at b¼0, obtained from the second factor
PrðHjG;Y;ZÞ, is used to construct the test
statistic. Specifically, the test is based on the b-
component Ub ¼ UbðnÞ of this score vector,
evaluated at n ¼ n̂n, where n̂n maximizes the null
probability (4) of the offspring genotypes, given
parental genotypes and offspring covariates.
Standard likelihood theory gives the asymptotic
distribution of Ub as Gaussian, with mean zero
and variance

VðUbÞ ¼ Jbb � JbnJ
�1
nn Jnb: ð8Þ

Here, for example, Jbn is the null expectation of
the product UbUT

n . The test statistic is

T ¼ Ubffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðUbÞ

p ð9Þ

evaluated at n̂n.
When parental genotypes are incomplete, the

usual likelihood-based arguments give the score
and information for the incomplete family geno-
type data in terms of moments of the correspond-
ing functions for the complete data, taken over the
distribution of the complete data given the
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observed data. A disadvantage of tests based on
this score is their dependence on the model for the
distribution of parental genotypes and the result-
ing possibility of biased inferences for b due to
misspecification of this distribution. To address
this problem, we use a ‘‘partial score’’ [Clayton,
1999], whose g-components are the logarithmic
derivatives of the parental genotype probabilities,
and whose b- and n-components are the logarith-
mic derivatives of the offspring genotype prob-

abilities, given their phenotypes, their covariates,
and the parental genotype information available.
The test is based on the b-component of this

partial score, which now depends on the parental
genotype parameter g in addition to n. The
asymptotic variance of this b-component and the
form of the test statistic are similar to (8) and (9),
with g estimated from the null likelihood for the
family genotype data, given the offspring covari-
ates [details in Shih and Whittemore, 2003].
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