T2K RESULTS ON NEUTRINO OSCILLATIONS

AND INTERACTIONS

E. D. Zimmerman University of Colorado INFO15 Santa Fe, N.M. July 13, 2015

T2K Results on Neutrino Oscillations and Interactions

- T2K: Physics goals and approach
- T2K: The facility and experiment
- Neutrino oscillation analyses
 - v_e appearance
 - ν_μ disappearance
 - Joint fit
 - ν_μ disappearance
 - Future sensitivity
- Neutrino interactions

T2K: Physics goals and approach

- T2K's major physics goals:
 - Search for $v_{\mu} \rightarrow v_{e}$ appearance (found!) and measure precisely (underway)
 - Measure v_{μ} disappearance precisely (done, improving)
 - Search for CP violation using antineutrino beam (underway)
 - Measure neutrino interaction cross-sections (some done, others underway)
 - Searches for exotic physics (underway)

Dominant oscillation terms at the atmospheric Δm^2 (ignoring matter effects):

$$\begin{split} P(\nu_{\mu} \to \nu_{e}) & \approxeq \sin^{2}(2\theta_{13}) \Delta_{32} \left(\sin^{2}\theta_{23} - \frac{\sin(2\theta_{12})\sin(2\theta_{23})\sin\delta_{CP}}{2\sin\theta_{13}} \Delta_{21} \right) \\ P(\nu_{\mu} \to \nu_{\mu}) & \approxeq \sin^{2}(2\theta_{23}) \Delta_{32} \\ P(\nu_{e} \to \nu_{e}) & \approxeq \sin^{2}(2\theta_{13}) \Delta_{32} \end{split} \qquad \text{where } \Delta_{ij} \equiv \sin^{2}\frac{\Delta m_{ij}^{2} L}{4E} \end{split}$$

Dependences on:

Dominant oscillation terms at the atmospheric Δm^2 (ignoring matter effects):

Dominant oscillation terms at the atmospheric Δm^2 (ignoring matter effects):

Dominant oscillation terms at the atmospheric Δm^2 (ignoring matter effects):

Dominant oscillation terms at the atmospheric Δm^2 (ignoring matter effects):

Disappearance modes (somewhat) simpler to interpret

Two approaches to measuring θ_{13} :

- Search for $v_{\mu} \rightarrow v_{e}$ in long-baseline accelerator measurements:
 - Present: T2K, NOvA, MINOS
 - Future: Hyper-Kamiokande, DUNE
- Search for $\overline{\mathbf{v}}_e$ disappearance at nuclear reactors
 - Daya Bay, RENO, Double Chooz

Accelerator-based neutrino beams

- Positive particles focused
- Negative particles defocused
- Protons strike a target; the secondary mesons enter a decay region and decay in flight to neutrinos upstream of a beam stop.
- Leaving target, charged particles may be focused before entering decay volume
 - Several magnetic focusing schemes possible: most common is "horns" (coaxial conductors producing toroidal fields)
 - Horn current direction determines whether π^+ (for ν beam) or π^- (for $\overline{\nu}$ beam) focused

Accelerator-based neutrino beams

- Positive particles focused
- Negative particles defocused
- There are numerous variants on the conventional beam: narrow-band and broad-band designs, off-axis beams, multiple horns, short (km) or long (100-1000 km) baseline...
- All have common properties:
 - Predominantly ν_{μ} , with ν_{e} contamination at the ~1% level from muon, kaon decays.
 - Neutrino energies can be from <0.5 GeV to >400 GeV
 - Even "narrow-band" beams tend to have tails to high energy
 - Fluxes have significant systematic errors

Off-axis beam technique

- For wide range of pion momenta, E_{ν} depends more on decay angle than E_{π}
- Exploit to make narrow-band v_{μ} beams by going off-axis
- At 295 km baseline, first oscillation maximum is at 570 MeV for $\Delta m^2 = 2.4 \cdot 10^{-3} \text{ eV}^2 \implies \text{T2K wants } 2.5^\circ \text{ off-axis angle}$

T2K: the facility and experiment

- J-PARC accelerator
- Neutrino beam facility
- Near detector complex
- Far detector: Super-Kamiokande
- Operations and data collection so far

Neutrino Beam

Target Station building: three horns in helium vessel

(Horn 3 shown during installation)

280m on-axis near detector: INGRID

- Array of 9-ton iron-scintillator neutrino detectors in cross shape centered on beam axis
- Designed to show neutrino beam profile, event rate, and precise measure of beam center/off-axis angle

Off-axis Near Detector

- Pi Ø Detector (PØD): optimized for π⁰ detection, includes H₂O target
- Tracker: 2 Fine-Grained Detectors (FGD), H₂O target, 3 TPCs: measure fluxes before oscillation
- ECAL: surrounding POD and Tracker, measure EM activity
- Side Muon Range
 Detector: in the
 magnet yokes, identify
 muons

Super-Kamiokande

- 50 kt water Cherenkov (22.5 kt fiducial)
- 11129 20-inch PMTs in inner detector; 1885 8-inch PMTs in outer veto detector

- Originally commissioned 1997
- Designed for proton decay and neutrino measurements
- Sensitive to solar and supernova neutrinos as well as atmospheric
- Now also used as far detector for T2K

First proton beam on target

April 2009

Neutrino physics runs

- Beam delivered in six run periods so far, starting in early 2010
- 1.11×10²¹ protons on target so far
- Under 20% of approved total T2K beam
- Expecting to make improvements in the next few years through higher beam power, more months/ year operation

March 2011: Great East Japan Earthquake

May 2013: Hadron hall radiation incident

T2K data analysis

Neutrino flux prediction from beam MC

- Proton beam interaction in target: primary information comes from dedicated running of CERN NA61 experiment that measured particle production from 30 GeV protons on carbon (covers 95% of relevant production phase space for T2K). Crucial for T2K analysis!
- Kaon production, pions outside the NA61 acceptance, and secondary interactions all simulated with FLUKA
- Secondary interactions outside target tuned to external data
- Horn focusing, decay region, beam absorber simulated in GEANT3

Beam stability

NA61 contribution to T2K flux measurements

- NA61 at CERN measures distributions of pions and kaons produced from 30 GeV/c protons on carbon target
- T2K uses these results to tune the beam simulation and reduce systematic errors
- Improvement in the new T2K flux errors due to addition of 2009 NA61 data.
- Future improvements expected from analysis of T2K replication target data

2015 analysis

 ν_{μ} flux uncertainties in neutrino running mode

Predicted neutrino flux

External cross-section info

 Most common process at oscillation maximum (600 MeV) is charged-current quasielastic scattering:

•
$$v_{\ell} + n \rightarrow \ell^- + p$$

- Also have resonant pion production, NC elastic, and some coherent- and multi-pion events.
- Use NEUT simulation (2012) for initial interaction, final state nuclear effects (charge exchange, pion absorption, etc)

Near-detector analysis

- For further flux and cross-section constraint, identify ν_μ events originating in fine-grained tracker
- Classify in one of three samples based on extra-track topology

Near-detector muon samples for constraining flux/xsec

- Very high statistics!
- $CC1\pi$ sample is particularly important in reducing systematic errors vs. pre-2013 results.

ND280 fit to constrain SK prediction

- $-\mu^{-}$ momentum and angle
- All parameters in fit are systematic errors
 - Flux, cross sections, detector errors
 - No ND ν_{μ} oscillations

ND280 and flux fit for SK predictions

 Correlation matrix (improved since previous results)

Near detector greatly reduces errors on predicted events at SK

Neutrino physics runs: Super-Kamiokande

FC: Fully contained event

- Event time distribution clearly shows eight-bunch (six in Run 1) beam structure
- Expected non-beam background: $\sim 10^{-2}$ events

(in OD trigger)

Signal and background for V_e appearance analysis

Signal is CCQE scattering

- e/μ separation is mostly via ring shape; decay electron identification helps too
- Signature in Super-Kamiokande is a single Cherenkov ring, as proton usually below threshold
- Largest background is intrinsic v_e
- Most common non- ν_e background is neutral-current π^0 production, where one photon has very low energy

T2K neutrino events

Single-ring µ-like event

Single-ring e-like event

• Pink diamonds are placed on the wall in the beam direction starting from the reconstructed vertex.

Reduction of non-CCQE background

- Remove events with muon-decay electrons: these are likely to be from unseen pions in final state
 - π^{\pm} Cherenk. threshold: 160 MeV
 - e[±] Cherenk. threshold: 0.8 MeV

- Likelihood-based reconstruction
 - Compare e-like and π^0 -like hypotheses
 - Cut line optimized in likelihood-inv. mass space

Reduction of intrinsic Ve

- Remove events with reconstructed energy >1250 MeV
 - Signal mostly at lower energy
 - Intrinsic beam v_e dominate at higher energy

Far detector analysis: cuts

For v_u disappearance analysis

For v_e appearance search

Timing coincidence w/ beam timing (+TOF)

Fully contained (No OD activity)

Vertex in fiducial volume (>2m from wall)

Number of rings = 1

 $E_{\rm vis} > 30 \, \rm MeV$

μ-like ring

0 or 1 decay electron

 $p_{\mu} > 200 \text{ MeV/c}$

 $E_{\text{vis}} > 100 \text{ MeV}$

e-like ring

No decay electron

Remove π^0 -like events

 $E_{\rm v}^{\rm rec} < 1250 {\rm MeV}$

After all cuts:

- Signal efficiency 66% for fiducial volume
- Intrinsic beam v_e
 background
 efficiency is 23%
- NC efficiency<1%

Systematic Uncertainties

v _e Events		v_{μ} Events		
ND280-constrained flux and cross section	3.1%	ND280-constrained flux and cross section 2.7%		
Unconstrained cross section	4.7%	Unconstrained cross section 5.0%		
SK detector efficiency	2.4%	SK detector efficiency 3.0%		
Final or secondary hadronic interactions	2.7%	Final or secondary 4.0% hadronic interactions		
Total	6.8%	Total 7.7%		

Flux and cross section would be > 20% without ND280 constraint

Final candidates at SK

- Predicted background events:
 4.9±1.6
- Observe 28 events
- 7.3 σ significance for v_e appearance
- 21.6 events expected if $\sin^2 2\theta_{13} = 0.1$, $\delta_{CP} = 0$, $\sin^2 \theta_{23} = 0.5$
- Assuming above δ_{CP} , θ_{23} , $\sin^2 2\theta_{13}$
 - 0.140 + 0.038 0.032 (Assuming normal hierarchy)
 - 0.170 +0.045 -0.037
 (Assuming inverted hierarchy)
- PRL 112, 061802 (2014)

ν_μ disappearance analysis:

CCQE selection

One mu-like ring

ν_μ disappearance analysis

 Data selection cuts very similar to appearance, but with particle ID cuts reversed

ν_μ disappearance analysis

- Off-axis beam (by design) puts maximum disappearance at the energy peak!
- Fit favors maximal disappearance
- Not quite the same as maximal $\sin^2 2\theta_{23}$ because of higher-order terms depending on θ_{13} :

$$P(\nu_{\mu} \to \nu_{\mu}) \simeq 1 - 4\cos^{2}(\theta_{13})\sin^{2}(\theta_{23})[1 - \cos^{2}(\theta_{13}) \times \sin^{2}(\theta_{23})]\sin^{2}(1.267\Delta m^{2}L/E_{\nu}),$$

An aside: multi-nucleon interactions

- Neutrinos may interact with multiple nucleons
 - Looks CCQE, but has different kinematics
 - Potential explanation for $M_A \approx 1.2$ GeV instead of 1.0 GeV
- Studied potential for bias in our result from neglecting multinucleon interactions
 - Use many fake experiments with random systematic errors

Our model:

- J. Nieves et. al., PRC83, 045501 (2011)
- J. Sobczyk, PRC86, 015504 (2012)

Suggested potential for bias in oscillations:

- O. Lalakulich and U. Mosel, PRC86, 054606 (2012).
- D. Meloni and M. Martini, PLB716, 186 (2012).
- P. Coloma, et al, arXiv:1311.4506 (2013).

Effect on SK spectrum

Reconstruction bias from multinucleon interactions

Will be included in later analyses as systematic error

ν_μ disappearance analysis

- T2K now has most precise result on θ_{23}
- Result depends slightly on hierarchy assumption
- Before this result, atmospheric neutrinos dominated this parameter
- Phys. Rev. Lett. 112, 181801 (2014)

Joint fit to appearance and disappearance

- Likelihood ratio fit of v_{μ} and v_{e} samples
- Both frequentist and Bayesian analyses performed
- Simultaneous fit for δ_{CP} , θ_{13} , θ_{23} , Δm^2_{32}

Dependence on other parameters

$$P(\nu_{\mu} \to \nu_{e}) \approx \sin^{2}(2\theta_{13})\Delta_{32} \left(\sin^{2}\theta_{23} - \frac{\sin(2\theta_{12})\sin(2\theta_{23})\sin\delta_{CP}}{2\sin\theta_{13}}\Delta_{21}\right)$$

- Appearance probability also depends strongly on θ_{23} and $\delta_{\textit{CP}}$
- Can marginalize over these parameters and extract θ_{13} , but result is uncompetitive with reactor measurements (PDG 2012: $\sin^2 2\theta_{13} = 0.098 \pm 0.013$; PDG 2014: 0.093 ± 0.008)
- One approach: scan value of $\delta_{\it CP}$, marginalize over θ_{23} , look for regions consistent with reactor θ_{13} . (Frequentist intervals shown)
- Combined T2K+reactor favor larger θ_{23} , δ_{CP} <0

Reactor $\theta_{13} 1\sigma$ allowed (approx.)

Dependence on other parameters

- Can also use reactor data (2012 PDG) as a constraint on θ_{13} and show T2K data as an allowed region in θ_{23} and δ_{CP} .
- Large T2K v_e rate is favoring δ_{CP} values in the $-\pi/2$ range, especially in inverted hierarchy

Bayesian δ_{CP} , MH, Octant Constraints

- Bayesian analysis
 can marginalize over
 the mass hierarchy
- Compare probabilities of different hierarchies and θ_{23} octants

	NH	IH	Sum
$\sin^2(\theta_{23}) \le 0.5$	18%	8%	26%
$\sin^2(\theta_{23}) > 0.5$	50%	24%	74%
Sum	68%	32%	

New this season: antineutrino oscillation searches

- Next step toward getting ultimate sensitivity for T2K physics (CP and θ_{23} octant)
- Sensitivity is roughly optimized by 50/50 POT between two modes
- Started data collection in antineutrino mode last year; now have over 1/3 of POT in this mode
- Initial look at data: $\overline{\nabla}_{\mu}$ disappearance
- Coming soon: search for $\overline{\mathbf{v}}_{\mathrm{e}}$ appearance

Muon antineutrino disappearance

- Using data through March for far detector (2.3E20 POT) (only half of what's been collected by now)
- Using small ND280 samples for now (0.43E20 POT)

Flux predictions

- SK flux is highly correlated with ND280 flux

erial College don

Flux uncertainties

Flux errors very small compared to expected statistics

Cross-sections

- Errors come from underlying model parameters and normalizations (similar to neutrino mode)
- Are already comparable to neutrino mode

Near detector data

- Samples are very small (even compared to full current data set)
- Important look at what ND280 will see in antineutrino data

SK data

17 events observed

- Data show clear evidence of oscillation
- Clear, visible oscillation "dip" in the data

Oscillation fit

Comparing to neutrino result

- Errors are of course larger than for neutrino mode
- CPT is under no threat at present

Comparing to MINOS

- MINOS has best previous measurement (SK also measured in 2011)
- We agree quite well: our errors now smaller in mixing angle, still slightly larger in Δm^2

Neutrino interactions

- Lots of results from:
 - INGRID (on axis)
 - Off-axis ND
 - …and even SK

Oscillations: future sensitivity

- Recently published a long paper on future sensitivity: PTEP 2015 (2015) 4, 043C01
- Sensitivities were calculated with full approved T2K running (7.8E21 POT) and various assumptions of neutrino/ antineutrino split, plus combinations with other experiments
- Most physics sensitivities optimized with 50% neutrino/50% antineutrino operation

θ₂₃ octant sensitivity

• Sensitivity assuming "ultimate" reactor error on θ_{13}

CPV sensitivity: T2K alone

CPV sensitivity: T2K+NOvA

Region where δ_{CP} can be discovered at 90% CL

Sensitivity to $\sin \delta /= 0$

Inclusive V_{μ} CC cross-section on Fe and CH (on-axis)

- Motivation: very few v cross sections on heavy nuclei.
- Event selection:
 - Identify the µ- track in an interaction starting within a central module
 - µ- candidate: should be in-time with the beam and the longest track.

Results

■ Flux average CC inclusive cross section

$$\sigma_{CC}^{Fe} = \left(1.444 \pm 0.002(\text{stat}) \right)_{-0.157}^{+0.189}(\text{syst}) \times 10^{-38} \text{ cm}^2 / \text{nucleon}$$

$$\sigma_{CC}^{CH} = \left(1.379 \pm 0.009(\text{stat}) \right)_{-0.147}^{+0.178}(\text{syst}) \times 10^{-38} \text{ cm}^2 / \text{nucleon}$$

- Dominated by flux systematic (~11.5%)
- Cross section ratio

$$\frac{\sigma_{CC}^{Fe}}{\sigma_{CC}^{CH}}$$
 = 1.047 ± 0.007(stat) ± 0.035(syst)

Flux systematic mostly cancels out

v_{μ} CCQE cross-section on carbon (off-axis)

- Interactions are required to have one muon track starting in fine-grained tracker, and no pions reconstructed. Analysis is based on muon momentum and angle vs. neutrino beam.
- Using Smith-Moniz/RFG, fit M_A to be $1.26+0.21-0.18~{\rm GeV/c^2}$ using normalization; $1.43+0.28-0.22~{\rm GeV/c^2}$ from shape only
- arXiv:1411.6264 (in press at PRD)

Ve CC Inclusive Cross-section on hydrocarbon

Motivation

- v_e contamination is the largest background in $v_u \rightarrow v_e$ Appearance
- Events selection
 - Identify the e⁻ track in an interaction starting within FGD1
 - e⁻ candidate: Highest momentum, negative charged track that pass electron TPC dE/dx and ECal PID cuts.
 - Main background $\gamma \rightarrow e^+e^-$ treat
 - Veto activity upstream of FGD1
 - e⁺e⁻ invariant mass cut
 - Selected: $315 v_e$ CC events

Ve CC Inclusive Cross-section

- Results
 - Differential distributions: p_e , $\cos \theta_e$ and Q^2
 - Total v_e CC inclusive cross section

 $\langle \sigma \rangle_{\phi} = 1.11 \pm 0.10 \text{(stat)} \pm 0.18 \text{(syst)} \times 10^{-38} \text{cm}^2/\text{nucleon}$

■ Dominant systematics: Flux (12.9%), Statistics (8.7%), Detector (8.6%)

1000 1500 2000 2500 3000 3500 4000 4500 500

Momentum (MeV/c)

First total v_e cross section measurement since 1978

(Gargamelle, Nucl. Phys. B 133, 205)

PRL 113 (2014) 241803

Neutral-current elastic on oxygen (SK data)

- Measurement method
 - Cross section extracted from

$$\langle \sigma_{NCQE}^{obs} \rangle = \frac{N^{obs} - N_{BG}^{exp}}{N^{exp} - N_{BG}^{exp}} \langle \sigma_{NCQE}^{theory} \rangle$$

$$obs = observed in data$$

$$exp = expected by MC$$

$$BG = background$$

$$\langle \sigma_{NCQE}^{theory} \rangle = 2.01 \times 10^{-38} \text{cm}^2 \text{ [PRL 108 (2012) 052505]}$$

- Results
 - Flux-average v-Oxygen NCE $\langle \sigma_{NCOE}^{obs} \rangle = 1.55^{+0.71}_{-0.35} \times 10^{-38} \text{cm}^2/\text{nucleus}$
 - Dominant systematics
 - o Primary (15%) and secondary (13%) γ productions
 - Flux uncertainty (10%)
- First measured v-Oxygen NCE cross section!

Primary Gamma

(~ 6MeV)

More exotic physics

 Neutrino time-of-flight: relative TOF analysis in preprint (arXiv:1502.06605), no evidence of non-zero mass

• Short-baseline v_e disappearance search: Phys.Rev. D91 (2015) 5, 051102

 Allowed regions shown are consistent with reactor/ gallium anomalies but nullresult p-value is 0.085

FIG. 14. Timing residuals of T2K CCQE neutrino candidate events as a function of derived neutrino energy. Events have been grouped into energy bins of 100 MeV below 1 GeV and bin sizes of 1GeV above 1 GeV.

Summary

• T2K has:

- Discovered and measured $\nu_{\mu} \rightarrow \nu_{e}$ appearance at the atmospheric Δm^{2}
- Made the most precise measurement of θ_{23} , still favoring maximal disappearance
- Seen $\overline{\nu}_{\mu}$ disappearance consistent with CPT conservation
- Made many precise measurements of neutrino interaction channels

• T2K will:

- Continue progress and improve precision on all the above
- Measure $\overline{\mathbf{v}}_{\mathrm{e}}$ appearance (first results very soon)
- Eventually have significant sensitivity to θ_{23} octant and δ

BACKUPS

Cross Section Systematic Uncertainties

- Fit to ND280 ν_{μ} data reduces errors correlated between ND280 and SK \approx
 - Reduced by a factor of 2 or more
- Not constrained:
 - 52% W-shape
 - 3% $\sigma(\nu_e)/\sigma(\nu_\mu)$
 - $-40\% \sigma(\overline{\nu})/\sigma(\nu)$
 - 30% out of fiducial volume
 - 4% Final state interactions

