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Supernova Explosion 

•  Collapse is halted when the 
equation of state stiffens and 
explosion happens 

•  Neutrinos are trapped inside the 
neutrino sphere because their 
mean free path is very small PNS 

•  When the mass of the core exceeds 
the Chandrasekhar limit, the collapse 
starts 



Supernova Neutrinos 

•  Neutrinos interact with matter and background neutrinos 
above proto-neutron star  

 
•  We need to study neutrino evolution above proto-neutron star 

•  they modify n/p ratio  

 
•  we can detect SN neutrinos 
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Supernova Neutrinos 
•  Equation of motion 

•  Hamiltonian 
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•  We have a 7-D problem! 

space	
   momentum	
  

spherical symmetry & axial symmetry around radial direction 
 

time translation symmetry 
 

3

II. BACKGROUND PHYSICS

A. Neutrino Bulb Model

At tPB ! 3 s, the inner core of the progenitor star has
settled down into a proto-neutron star with a radius of
about 10 km. In the following ∼ 10 s, the nascent neu-
tron star radiates away its gravitational binding energy
as outlined above. During this time, neutrinos could de-
posit energy into the matter above the neutron star and
create a high-entropy “hot bubble” between the proto-
neutron star surface and the shock. Inside the hot bub-
ble, a quasistatic and near adiabatic mass outflow, the
so-called “neutrino-driven wind”, may be established at
this epoch as a result of neutrino/antineutrino heating
[24, 25]. To simplify the numerical calculations of the
flavor transformations of neutrinos and antineutrinos in-
side the hot bubble, we approximate the physical and
geometric conditions of the post-shock supernova by a
“neutrino bulb model”. This model is characterized by
the following assumptions:

1. The neutron star emits neutrinos uniformly and
isotropically from the surface of a sphere (neutrino
sphere) of radius Rν ; [Note that the neutrino flux
emitted at angle ϑ0 with respect to the normal di-
rection at the neutrino sphere comes with a geo-
metric factor cosϑ0. See Eq. (5).]

2. At any point outside the neutrino sphere, the phys-
ical conditions, such as baryon density nb, temper-
ature T , etc., depend only on the distance r from
this point to the center of the neutron star;

3. Neutrinos are emitted from the neutron star sur-
face in pure flavor eigenstates and with Fermi-Dirac
type energy spectra.

The neutrino bulb model, as illustrated in Fig. 1, has
multifold symmetries. It is clearly spherically symmetric.
This means that one only need study the physical condi-
tions at a series of points along one radial direction, which
we choose to be the z–axis. It is also obvious that the
neutrino flux seen at any given point on the z–axis has
a cylindrical symmetry. As a result, different neutrino
beams possessing the same polar angle with respect to
the z–axis and with the same initial physical properties
(flavor, energy, etc.) should be completely equivalent.
In other words, they will have identical flavor evolution
histories. One may choose this polar angle to be ϑ, the
angle between the direction of the beam and the z–axis.
Alternatively, a beam could be specified by the polar an-
gle Θ giving the emission position of the beam on the
neutrino sphere (see Fig. 1). A third option, which we
have found to be most useful in our numerical calcula-
tions, is to label the beam by emission angle ϑ0. This is
defined to be the angle with respect to the normal direc-
tion at the point of emission on the neutrino sphere (see
Fig. 1). This emission angle ϑ0 is an intrinsic geometric
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FIG. 1: The geometric picture of the neutrino bulb model. An
arbitrary neutrino beam (solid line) is shown emanating from
a point on the neutrino sphere with polar angle Θ. This beam
intersects the z–axis at point P with angle ϑ. Because neutri-
nos are emitted from the neutrino sphere of radius Rν , point
P sees only neutrinos traveling within the cone delimited by
the dotted lines. One of the most important geometric char-
acteristics of a neutrino beam is its emission angle ϑ0, defined
with respect to the normal direction at the point of emission
on the neutrino sphere (ϑ0 = Θ + ϑ). All other geometric
properties of a neutrino beam may be calculated using radius
r and ϑ0.

property of the beam, and does not vary along the neu-
trino trajectory. Moreover, because of assumptions 1 and
2 in the neutrino bulb model, all the neutrino beams with
the same emission angle ϑ0 and the same initial physical
properties must be equivalent. In simulating the flavor
transformations of neutrinos in the neutrino bulb model,
it is only necessary to follow a group of neutrinos which
are uniquely indexed by their initial flavors, energies and
emission angles.

At any given radius r, all the geometric properties of
a neutrino beam may be calculated using r and ϑ0. For
example, ϑ and Θ are related ϑ0 through the following
identity:

sinϑ

Rν
=

sinΘ

l − l0
=

sinϑ0

r
, (1)

where

l ≡ r cosϑ, (2)

and

l0 ≡ Rν cosϑ0. (3)

Length l − l0 in Eq. (1) is also the total propagation
distance along the neutrino beam. At a point at radius
r, the neutrino beams are restricted to be within a cone
of half-angle

ϑmax = arcsin

(
Rν

r

)
(4)

(see Fig. 1).
One can integrate flux over all neutrino beams (angles)

and calculate the neutrino number density nν at radius
r. In this paper we use the symbol ν in the general
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Azimuth-angle Flavor Instability 

•  Axial symmetry is broken in NH 
    [Raffelt	
  et	
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  Phys.Rev.LeJ.	
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  (2013)	
  9,	
  091101] 
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•  Solutions of the equations for collective flavor oscillations 
does not have the symmetries of initial condition on the 
surface of the proto-neutron star!  



Figure 1. Caption goes here

It is more convenient to write the equations of motion in terms of z instead of the
propagations distance l. Eq. 2.1 can be recast in terms of x using the relations.
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The Hamiltonian has three components corresponding to the vacuum, matter and self-
interaction term. In presence of large matter density the effective mixing angle is smaller
than vacuum mixing angle. In order to take into account the large matter density we assume
a mixing angle of zero, with a tiny initial perturbation to the off-diagonal components of the
flavor density matrices. The vacuum Hamiltonian can thus be written as,
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where, ⌘ is a parameter which takes a value of either +1 or �1 for normal or inverted hierarchy.
The self-interaction Hamiltonian for a beam x, ✓, z depends on the density matrices of all the
beams which intersect with the beam under consideration at that particular z,
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Here, ⇢̄ represents the density matrix of the anti-neutrinos.
It is convenient to recast the density matrix depends on x in terms of moments. This

not only helps in gaining a insight in to the physics of system but also significantly helps in
achieving numerical convergence with a fewer number of equations of motion. This is similar
to the advantages gained when this method applied to the angular distribution [13]. We
define,
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Spatial symmetry breaking 

Figure 2.  (growth rate) for inverted(left) and normal(right) hierarchy as a function of µ and m.

Figure 3.  values for inverted(left) and normal(right) hierarchy with m=0 with 100 ✓ bins

Figure 4.  values for inverted(left) and normal(right) hierarchy with m=5000 with 100 ✓ bins
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Time-Dependent Bulb Mode 

•  All the previous studies are based on the assumption that 
neutrino gas outside the proto-neutron star is stationary. 

•  Does stationary neutrino flux at the surface of the proto-
neutron star mean that the flux remain stationary at large 
radii? 



Time-Dependent Bulb Mode 
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Time-Dependent Bulb Mode 
•  Neutrinos are emitted in flavor eigenstates 
 

•  A positive exponent means that perturbation grows exponentially 
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•  Linearized EoM 
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Time-Dependent Bulb Mode 
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•  Frequencies that can significantly modify the densities for which we have 
collective oscillations are very large 

•  Density of frequencies are very large around  ⇠ = 0



Time-Dependent Bulb Mode 
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•  Negative frequencies seem to be more unstable 



Summary 

 
 
•    Time translation symmetries is broken 

•  Combining breaking of time translation symmetry with 
spatial and axial symmetry breaking ...... 

                     

•  The neutrino densities for which collective oscillations 
occur are not affected significantly by time dependence 

•  Neutrino collective oscillations is a time-dependent 
phenomenon 

•  Negative frequencies seem to be more unstable 



we are back to the 7-D problem	
  


