Probing TeV Scale Origin of Neutrino Mass and Baryon Excess

R. N. Mohapatra

INFO2015, Santa Fe

Neutrino mass and BSM physics

- Neutrino are now known to have mass !
- Since $m_{\nu} = 0$ in SM, neutrino mass is first evidence of physics beyond SM (BSM).
- Origin of matter cannot be understood within SM: its understanding requires BSM physics.
- This talk: Could both these problems be connected to physics at TeV scale and be accessible at colliders and in low energy searches ?

Weinberg Effective operator as starting paradigm for m_v

Add effective operator to SM:

After symmetry breaking

$$m_{\nu} = \lambda \frac{v_{wk}^2}{M}$$

M is BSM physics and is arbitrary; can be large
 → M ≫ v_{wk} → small m_ν
 Operator breaks lepton number !!

Scale of L-violation

$$m_{\nu} = \lambda \frac{v_{wk}^2}{M}$$

Naive lore:

- So if $\lambda \sim 1; M \sim 10^{14}$ GeV (Beyond reach!)
- Dimensional analysis arguments, however, can be quite misleading !!
- To explore true scale, UV completion of Weinberg operator essential (*build models*) !!

Seesaw as step towards UV completion of Weinberg Op.

Add right handed nu N and a Majorana mass for it: Seesaw mechanism:

$$m_{\nu} \cong -\frac{{h_{\nu}}^2 {v_{wk}}^2}{M_R}$$

Minkowski'77, Gell-Mann, Ramond, Slansky;Yanagida; Glashow; Mohapatra,Senjanovic'79

- Majorana mass of $N \rightarrow L$ violation
- Could Majorana N be accessible (~TeV) ?

BONUS FROM SEESAW UV COMPLETION LEPTOGENESIS ORIGIN OF MATTER

- Fukugita and Yanagida (1986) RH neutrino is its own anti-particle: so it can decay to both leptons and anti-leptons:
- **Proposal:** Heavy ν_R decays:

$$\nu_R \to L + H R = (1 + \varepsilon)$$

$$\nu_R \to \overline{L} + \overline{H} \overline{R} = (1 - \varepsilon)$$

- Generates lepton asymmetry: ΔL (Leptogenesis)
- Sphalerons convert leptons to baryons

(Kuzmin, Rubakov, Schaposnikov'83)

Related to neutrino mass and hence attractive; motivates search for CP violation in nu-oscillations !!

Can seesaw and hence leptogenesis scale be TeV's ?

- Search for explicit UV complete models
- Guiding principle in this search
- (i) Existence of N should be predicted by theory
- (ii) Seesaw scale should be related to symmetry
- Two simple theories that conform to these:
- (i) Left-right model where N is the parity partner
 - of ν_L and seesaw scale is SU(2)_R scale could be TeV
- (ii) SO(10) GUT where N+15 SM fermions =16 spinor

and seesaw scale = GUT scale. (Hard to test)

Naturalness arguments for lower Seesaw scale

Correction to Higgs mass from RHN Yukawa

\rightarrow M_R < 7 x 10⁷ GeV (not a GUT scale)

(Vissani'97; Clarke, Foot, Volkas'15)

Explore TeV scale models !!

SUSY+Leptogenesis also prefer low scale seesaw

- For leptogenesis to occur, M_N < T_{reheat};
- Gravitino overclosing prefers that T_{reheat} < 10⁶ GeV (Kohri et al.)
- \rightarrow Hence preference of leptogenesis for lower seesaw scale !!

This talk: TeV LR seesaw

A "natural" TeV scale theory for neutrinos

Minimal SUSY LR *requires* TeV scale L-violation

How to probe this TeV scale theory in colliders

Leptogenesis with TeV scale / and constraints

Left-Right Model Basics

• LR basics: Gauge group: $SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L}$

Fermions $\begin{pmatrix} u_L \\ d_L \end{pmatrix} \stackrel{P}{\Leftrightarrow} \begin{pmatrix} u_R \\ d_R \end{pmatrix} \begin{pmatrix} v_L \\ e_L \end{pmatrix} \stackrel{P}{\Leftrightarrow} \begin{pmatrix} v_R \\ e_R \end{pmatrix}$

$$L = \frac{g}{2} [\vec{J}_{L}^{\ \mu} \cdot \vec{W}_{\mu L} + \vec{J}_{R}^{\ \mu} \cdot \vec{W}_{\mu R}]$$

Parity a spontaneously $M_{W_R} \gg M_{W_L}$ broken symmetry: (Mohapatra, Pati, Senjanovic'74-75)

Why these models are attractive ?

- New way to understanding parity violation:
- A more physical electric charge formula
- Explains small neutrino masses via seesaw:
- Solves strong CP problem:
- With supersymmetry, provides a naturally stable dark matter (automatic R-parity)
- Can explain the origin of matter (see later)

New Higgs fields and Yukawa couplings

- LR bidoublet: $\phi = \begin{pmatrix} \phi_1^0 & \phi_2^+ \\ \phi_1^- & \phi_2^0 \end{pmatrix}$

 $\mathcal{L}_Y = h\bar{L}\phi R + \tilde{h}\bar{L}\tilde{\phi}R + fRR\Delta_R + h.c.$ $\langle \mathbf{0} \rangle$ $(1 \sim 0)$

$$<\Delta_R > = \begin{pmatrix} 0 & 0 \\ \nu_R & 0 \end{pmatrix} \qquad \phi = \begin{pmatrix} \kappa & 0 \\ 0 & \kappa' \end{pmatrix}$$

• Any theoretical justification for TeV \mathcal{V}_R ?

Minimal SUSY left-right requires low scale W_R

- Supersymmetrize this minimal LR model
- First consequence: Tree level global minimum violates electric charge: $<\Delta^{++}> \neq 0$
 - (i) unless R-parity is broken (Kuchimanchi, R. N. M.'94, '95)
 - (ii) W_R mass has an upper limit:

$$M_{W_R} \le \frac{M_{SUSY}}{f}$$

i.e. W_R is in TeV range !

However due to RPV, neutrino masses get complicated !

Minimal SUSYLR with exact R-parity

■ Extend with a singlet and add one loop → RP exact ! (Babu, R. N. M.'08; Babu, Patra'14; Basso, Fuks, Krauss, Porod'15)

 Upper bound on W_R required to conserve electric charge;

Implies a light (< TeV) doubly charged Higgs</p>

Neutrino masses from usual seesaw

Seesaw formula in TeV scale LR models

- Generic LR models with parity down to TeV, $<\Delta_R^0 > v_R \rightarrow <\Delta_L^0 > \simeq \frac{\kappa^2}{v_R}$
- \rightarrow Seesaw formula $m_{\nu} \simeq f \frac{\kappa^2}{v_R} m_D^T \frac{1}{f v_R} m_D$
- First term too large for TeV seesaw; two ways to prevent (i) decouple P breaking from $SU(2)_{R}$ $\phi \qquad v_L \sim \frac{h_\tau^2 \overline{f^2 \kappa^2 M_{SSB}}}{16\pi^2 v_{-}^2}$ (ii) SUSYLR \rightarrow zero at tree level; 1-loop small $\begin{array}{c} \Delta_L \\ & &$

Small Neutrino masses
with TeV WR (non-SUSY)
•
$$\mathcal{L}_{\mathcal{Y}} = h\bar{L}\phi R + \tilde{h}\bar{L}\tilde{\phi}R + h.c.$$

• Using $\phi = \begin{pmatrix} \kappa & 0 \\ 0 & \kappa' \end{pmatrix} \Rightarrow \qquad M_{\ell} = h\kappa + \tilde{h}\kappa' \\ m_D = h\kappa' + \tilde{h}\kappa$

• How to get small m_{ν} for TeV seesaw: (i) $\kappa' = 0$; $\tilde{h} \sim 10^{-5.5} (\sim h_e^{SM})$ (ii) Cancellation with κ', κ similar (iii) assume texture for Dirac mass

Right handed neutrino mass restricted by low energy obs.

- Low scale seesaw $\rightarrow \Delta_R$ masses below 10 TeV
- $\mu \to 3e, \ \mu \to e + \gamma, \ \tau \to 3e$ etc. bounds restrict flavor structure of Δ_R coupling f and hence RHN mass texture $M_N = fv_R \parallel$
- One (only) allowed texture: $M_N = \begin{pmatrix} 0 & M_1 & 0 \\ M_1 & 0 & 0 \\ 0 & 0 & M_2 \end{pmatrix}$

Understanding small nu mass

Neutrino Mass texture:

$$m_D = \begin{pmatrix} m_1 & \delta_1 & \epsilon_1 \\ m_2 & \delta_2 & \epsilon_2 \\ m_3 & \delta_3 & \epsilon_3 \end{pmatrix} M_N = \begin{pmatrix} 0 & M_1 & 0 \\ M_1 & 0 & 0 \\ 0 & 0 & M_2 \end{pmatrix}$$

 $m_{D_{1,2,3}} \sim GeV \to Y_{\nu} \sim 10^{-2} - 10^{-4}$

• Sym limit $\epsilon_i, \delta_i \to 0 \Rightarrow m_\nu = m_D M_R^{-1} m_D^T = 0$

- sym. Br. $\delta_i, \epsilon_i \ll m_i \rightarrow \text{for TeV } M_{R_i} \rightarrow \text{small } m_{\nu}$
- Small δ, ϵ arise from one loop SUSY breaking effects; Good fit to neutrinos (Dev, Lee, RNM'13)

Experimental searches for TeV W_R effects

Collider searches for W_R and N: LHC (i) Direct WR production (ii) ν -N mixing from seesaw $V_{\ell N}$ =

(Han, Ruiz et al; Senjanovic, Nemevsek, Nesti, Tello,..Deppisch, Dev, Pilaftsis;..Del Aguila et al.)

• New leptophilic Higgses: Δ^{++}, Δ^+

(Chakrabortty, Gluza, Bhambaniya, Zafron,...Dutta, Goa, Ghosh, Eusebii, Kamon...)

Neutrinoless double beta decay and LFV

(Das, Deppisch, Kittel, Valle; Dev, Goswami, Mitra;....)

Light N's and displaced vertices (Helo, Dib, Kovalenko, Ortiz,)

Golden channel: $\ell_i \ell_k j j$;

Probes RHN flavor pattern:

Current LHC analysis: only W_R graph

Current W_R limits from CMS, ATLAS 2.9 TeV;

14-TeV LHC reach for M_{WR} < 6 TeV with 300 fb⁻¹
 A recent CMS excess in ee channel (next page)

Intriguing excess in CMS

CMS: arXiv:1407.3683

ATLAS Diboson anomaly

- Another W_R decay mode: W_R → W_L Z (via WL-WR mixing)
- Could it be connected to ATLAS diboson anomaly around 2 TeV?

arXiv:1506.00962

Anomaly in Wh channel

(Hisano et al. Dobrescu, Liu; Gao, Ghosh, Sinha, Yu; Cheung et al)

New (RL) contribution to like sign dilepton signal

When $V_{\ell N} \sim 0.01 - 0.001$, new contributions:

(Nemevsek, Tello, Senjanovic'12; Chen, Dev, RNM' arXiv: 1306.2342- PRD)

 $q\bar{q} \to W_R \to \ell + N;$ $N \to \ell W_L$

Higher Mass WR probe at Future Circular colliders

So far one study by Rizzo: $W_R \rightarrow \ell + \nu'$ channel

Reach: M_{WR} < 30 TeV

For the $\ell^{\pm}\ell^{\pm}jj$ channel, see Ng, Puente, Pan'15

New contributions to $\beta\beta_{0\nu}$

Cosmology and $\beta\beta_{0\nu}$ 0.08Low WR effect could 30 fake IH or appear in 0.06 2σ in the forbidden area [A a] ^{gg} [e A] IH 0.02 30 NH 2σ (95 % C.L.) 1σ 0.00 0.05 0.10 0.20 0.15 $\Sigma_{\rm cosm}$ [eV]

LHC and double beta reach

Constraints RH Neutrino M_N in the lower mass range

Understanding origin of matter with TeV scale L- violation !

Does Leptogenesis work in
TeV W_R models
Since
$$m_{\nu} \simeq -\frac{(Y\kappa)^2}{fv_R}$$
, TeV v_R means $Y \le 10^{-5.5}$

• Vertex diagram
$$\epsilon_{CP} \sim \frac{Im(Y^{\dagger}Y)^2}{4\pi Y^{\dagger}Y} \sim 10^{-12}$$

• since $\frac{n_B}{n_\gamma} \sim 10^{-2} \epsilon_{CP} \kappa_{eff}$ (κ_{eff} =wash out)

■ Vertex diagram does not work→resonant leptogenesis

- Generic model requires degenerate RHNs to get enough n_B/n_γ
- Deg. Natural with our texture: $\int 0 M_1$

$$M_N = \begin{pmatrix} 0 & M_1 & 0 \\ M_1 & 0 & 0 \\ 0 & 0 & M_2 \end{pmatrix}$$

Final baryon asymmetry from lepton asymmetry

- Wash out effect important: (Buchmuller, Di Bari, Pliumacher) $\frac{n_B}{n_\gamma} \sim 10^{-2} \epsilon_{CP} \kappa_{eff}$
- In LR, $\kappa_{eff} \propto \frac{\Gamma_D / \Gamma_S}{1 + \Gamma_D / \Gamma_S} \ll 1$ Given Y, Washout increases as M_{WR} decreases:
 - \rightarrow lower bound on M_{WR}
- Two papers: small Y: $M_{WR} > 18 \text{ TeV}$ (Frere, Hambye, Vertongen) Larger Y with nu fits: $M_{WR} > 10 \text{ TeV}$ (Dev, Lee, RNM.'14)

Case of M_N > M_{WR} CP conserving decay mode N → W_R + ℓ dominates !

Leptogenesis impossible (Deppisch, Harz, Hirsch'14)

If experimentally it is found, M_N > M_{WR}, this by itself can rule out leptogenesis as a mechanism for origin of matter !!

Summary

- TeV scale seesaw is theoretically appealing, can explain neutrino masses contrary to common lore!
- Left-Right theories provide a simple realization with testable collider implications (W_R , Z', N, Δ_R^{++})!
- Minimal susy LR-rational requires $\rightarrow M_{WR} < multi-TeV$
- Leptogenesis bound on $W_R \rightarrow M_{WR} > 10 \ TeV$
- If colliders find W_R with mass < 10 TeV or M_{WR} < M_N or light N, leptogenesis can be ruled out.
- Further impetus to search for W_R !

Thank you for your attention !

LHC anomalies (~2 TeV)

■ 3.4 σ WZ → JJ excess (ATLAS)

CMS JJ excess 1.8σ excess

2.2σ Wh excess (ATLAS)

2.8σ eejj excess (CMS)

2.6σ excess WW and ZZ channel (ATLAS)

LHC anomalies and LR interpretation (~2 TeV) 2 TeV W_R: $\sigma(W_R) \times B_{W_R \to WZ} \approx 600 g_R^2 B fb$

- If no leptons $\rightarrow M_{N_{e,\mu}} \geq M_{W_R}$
- WZ channel signal at the level of 6-7 fb→ arises from $W_L W_R$ mixing, corresponds to $\zeta_{LR} \sim 0.01$
- Signal fits for $g_R \sim 0.5 g_L \rightarrow \sim 8$ excess events $\frac{jjjj}{j}$
- Predicts ~2-3 excess events in the Wh⁰ channel consistent with CMS excess for this channel. $b\overline{b\ell\nu}$
- Should not see any signal in WW and ZZ mode.

Leptogenesis with M_{Z'} << M_{WR}

- Effective theory: $SU(2)_L \times U(1)_{I_{3R}} \times U(1)_{B-L}$
- Z' couples also to NN and effects leptogenesis
 Origin of CP asymmetry same as in WR case via resonant leptogenesis and requires deg N_{1,2}:
 ε can be as large as 1.
- Washout has no W_R contribution but only
 - $NN \rightarrow Z' \rightarrow qq$, II type.
- Lower the Z', more washout in generic case

Lower bound on M_{Z'}

(Blanchet, Chacko, Granor, RNM'2009, PRD)

 $M_{7'} > 3 \text{ TeV}$

Directly probing leptogenesis in Z' case:

• Lepton asymmetry \mathcal{E} is directly related to the following collider observable:

$$\frac{N(\ell^+\ell^+) - N(\ell^-\ell^-)}{N(\ell^+\ell^+) + N(\ell^-\ell^-)} = \frac{2\sum_i \varepsilon_i}{\sum_i 1}$$

Makes it possible to see origin of matter directly.

Distinguishing different mechanisms (RR vs RL)

Look for end points in various inv. Masses:

	RL	LL	RR	LR
m_{jj}^2	m_W^2	m_W^2	m_N^2	m_N^2
m_{ll}^2	$\frac{(m_{W_R}^2 - m_N^2)(m_N^2 - m_W^2)}{m_N^2}$	$rac{(s{-}m_N^2)(m_N^2{-}m_W^2)}{m_N^2}$	$m_{W_R}^2-m_N^2$	$s-m_N^2$
$m_{jl}^{>2}$	$m_N^2-m_W^2$ or	$m_N^2-m_W^2$ or	m_N^2 or	m_N^2 or
$m_{jl}^{< 2}$	$m_{W_R}^2 - m_N^2$	$s-m_N^2$	$m_{W_R}^2 - m_N^2$	$s-m_N^2$
m_{llj}^2	$m_{W_R}^2 - m_W^2$	$s-m_W^2$	$m^2_{W_R}$	8
$m_{ljj}^{>2}$	m_N^2 or	m_N^2 or	$m^2_{W_R}$	8
$m_{ljj}^{<~2}$	$m_{W_R}^2-m_N^2+m_W^2$	$s-m_N^2+m_W^2$	m_N^2	m_N^2
m^2_{lljj}	$m_{W_R}^2$	8	$m^2_{W_R}$	8

(Kim, Dev, RNM'15)

M_{WR} vs M_N Plot for one model for leptogenesis

Low scale Leptogenesis Plot

