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Motivation

Neutrino physics needs a better understanding of axial form factor:

e Model-dependent shape parameterization introduces
systematic uncertainties and underestimates errors

e Nuclear effects entangled with nucleon cross sections

e Measurement of oscillation parameters depends on nuclear
models and nucleon-level form factors
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Why Do We Still Need Better Theory?

Neutrino physics uses near detector/far detector paradigm,
measures number distribution:

NCCQE,near(EV) _ ¢near(Eu) UCCQE(EZ/) €near
NCCQE,far(EZ/) Qbfar(EV) UCCQE(EV) €far

Problems:
e ¢ depends on near/far detector technology
e o depends on nuclear models/nuclear target at near/far

e ¢ depends on beam angular distribution
— near/far detector sample different energy distributions
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Why Do We Still Need Better Theory?

Neutrino physics uses near detector/far detector paradigm,
measures number distribution:

NCCQE,near(EV) _ ¢near(EV) UCCQE(EV) €near
NCCQE,far(EI/) d)far(EV) UCCQE(EI/) Efar

More Problems:

e o is modified by nuclear and radiative corrections

o Effects of corrections removed by studying modification of N
with Monte Carlo

e Monte Carlo uses o as input
e o calculated by measuring N

Degenerate uncertainties N —- MC —» o — N
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Why Do We Still Need Better Theory?

Neutrino physics uses near detector/far detector paradigm,
measures number distribution:

NCCQE,near(EV) _ ¢near(Eu) UCCQE(EZ/) €near
NCCQE,far(EZ/) Qbfar(EV) UCCQE(EZ/) €far

Even More Problems:

e Model for o constructed from single-nucleon cross section

e single-nucleon cross section constrained by assuming a model
for o

Degenerate uncertainties o4 — oy — 04
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Nuclear Effects

Nuclear effects not well understood Yp K
— Models which are best for one measurement
are worst for another p
Need to break Fa/nuclear model entanglement
A A

(assumed mp = 0.99 GeV, reference hyperlinks online)

NuWro Model RFG RFG+ | assorted
(x%/DOF) [GENIE] | TEM | others
leptonic(rate) 3.5 2.4 2.8-3.7
leptonic(shape) 4.1 1.7 2.1-38
hadronic(rate) | 1.7[1.2] | 3.9 1.9-3.7
hadronic(shape) | 3.3[1.8] 5.8 3.6-4.8



http://arxiv.org/abs/1305.2243
http://arxiv.org/abs/1305.2243
http://arxiv.org/abs/1409.4497
http://arxiv.org/abs/1409.4497

Discrepancies in the Axial-Vector Form Factor
Most analyses assume the “Dipole form factor”:
1

(1-5)
ma
Dipole is an ansatz:
unmotivated in interesting energy range
— uncontrolled systematics and underestimated uncertainties
Essential to replace ansatz with
model-independent parameterization

FAP°"(d°) = ga
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MiniBooNE Collab., PHYS REV D, 81, 092005 (2010)


http://journals.aps.org/prd/abstract/10.1103/PhysRevD.81.092005
http://journals.aps.org/prd/abstract/10.1103/PhysRevD.81.092005
http://journals.aps.org/prd/abstract/10.1103/PhysRevD.81.092005

z-Expansion
The z-Expansion (Bhattacharya, Hill, Paz arXiv:1108.0423
[hep-ph]) is a conformal mapping which takes the kinematically
allowed region (t < 0) to within z = £1
— For reference, later plots will have |zn.x| = 0.28

t:q2:—Q2 tC:9m721-

WVt t—ytc—to

z(t; to, tc)

Vit —t+ A/t — 1o

z-Expansion implemented in GENIE, to be released-soon [autumn]

6
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http://arxiv.org/abs/1108.0423
http://arxiv.org/abs/1108.0423
http://genie-mc.org

Advantages of z-Expansion

z-Expansion is a model-independent description of the axial form
factor
e Motivated by analyticity arguments

e Provides a prescription for introducing more parameters as
data improves

e Allows quantification of systematic errors

From meson (baryon) semileptonic decays, only a few expansion
coefficients necessary to accurately represent data
e Coefficient falloff required by perturbative QCD

e For general analysis, see Hill [arXiv:hep-ph/0606023]

e For recent |V,p| determination, see Fermilab/MILC
[arXiv:1503.07839]

e For recent |Vp|/|Vep| determination, see LHCb
[arXiv:1504.01568]
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http://arxiv.org/abs/hep-ph/0606023
http://arxiv.org/abs/1503.07839
http://arxiv.org/abs/1503.07839
http://arxiv.org/abs/1504.01568
http://arxiv.org/abs/1504.01568

Evaluation of Fits

Process:
e Fit to increasing kmax until adding new parameters no longer
contributes appreciably to error/shape (z* small)

What to Expect:
e Errors monotonically increase with more parameters
e Higher order coefficients alter fit less than lower order
e Can cut off at finite kmax with marginal impact to fit
e Data indicates how many parameters should be used
e Truncation error is a systematic
o Coefficients O(1), decreasing amplitude as k increases

e Expect shape to fit data, no other requirements on shape
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Deuterium Fitting

with Richard Hill, Rik Gran, Minerba Betancourt

Fitting done on deuterium bubble chamber data
(controlled nuclear effects)

Three datasets (reference hyperlinks online):
e ANL 1982: 1737 events, 0.5GeV [peak]

e BNL 1981: 1138 events, 1.6 GeV [average]
e FNAL 1983: 362 events, 20 GeV [peak], 27 GeV [average]
PRELIMINARY shape-only fits to QE differential cross section data

Results propagated to single nucleon QE total cross section

Gaussian priors used on z-Expansion coefficients:
if (k <5) ok =05, else o =25/k

Sum rule applied to ensure Fa ~ 1/Q* as Q% — oo
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http://journals.aps.org/prd/abstract/10.1103/PhysRevD.26.537
http://journals.aps.org/prd/abstract/10.1103/PhysRevD.23.2499
http://journals.aps.org/prd/abstract/10.1103/PhysRevD.28.436

Deuterium Fitting Results

PRELIMINARY - ANL 1982 QE Diff xsec

Ao Dipole:
,do2 x2/DOF | 55.3/39
ma 0.96(5)
200 { % — N=4z-Expansion z—E2xpansion:
— Best Fit Dipole m,=0.96 x°/DOF | 54.5/36
150 — ANL 1982 N 2-43J_r8:£
100 a2 0.66" 755
a3 ~7.1873:89
30 a4 4.267348
0.0 2.0 25 3.0 lGev]
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Deuterium Fitting Results

PRELIMINARY - BNL 1981 QE Diff xsec

Ao Dipole:

Q> x?/DOF | 53.3/36
140 ma 1.01(5)
120 — N=4 z—Expansion z-Expansion:

100 { — Best Fit Dipole my=1.01 x%/DOF | 53.9/33
— BNL 1981

% a1 2.301313

" a 0.8871%2

40 as —6.557307

20 a4 3.0573%5

$ 2 2

0.0 0.5 1.0 1.5 2.0 2.5 302 [Gev]
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Deuterium Fitting Results

PRELIMINARY - FNAL 1983 QE Diff xsec

do Dipole:
aQ? x?/DOF | 15.9/21
30 ma 1.21(12)
N=4 z-Expansion z-Expansion:
60 — Best Fit Dipole my=1.21 x2/DOF 15.3/18
— FNAL 1983
a1 1.957919
40 { a —1.32+181
+3.67
2 as 0.0373¢7
as ~0.11132°
0

0 0*[GeV?|
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Deuterium Fitting Results

* Quoted NOMAD/MiniBooNE & are £0ocarbon
e Experiments use different definitions of CCQE

¢ Dipole guide lines (dashed) are nucleon-level cross section
PRELIMINARY — ANL 1982 QE Cross Section
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Deuterium Fitting Results

PRELIMINARY — BNL 1981 QE Cross Section
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Deuterium Fitting Results

PRELIMINARY - FNAL 1983 QE Cross Section
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Deuterium Fitting Results

ANL 1982 Total QE Cross Section
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Deuterium Fitting Results

BNL 1981 Total QE Cross Section
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Deuterium Fitting Results

FNAL 1983 Total QE Cross Section
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Deuterium Fitting Results

N=2 z—Expansion QE Cross Section
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Deuterium Fitting Results

N=4 z—Expansion QE Cross Section
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Deuterium Fitting Results

N=6 z—Expansion QE Cross Section

o x107% [em?]

14 e T~
12 /

10

———r——r———

— Dipolemy=135 — ANL 1982 — FNAL 1983
-~ Dipole my=1.03 BNL 1981

0 E, [GeV]
0.5 1.0 5.0 10.0 50.0 100.0

21/31



Implications for MINERVA
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Fit to BNL N=3
(Figure made by M. Betancourt) 2 /31



Take Home Messages
° X2/DOF approximately the same for z-expansion and dipole

e FNAL: truncation error negligible for N > 4

ANL/BNL: truncation error small by N = 4, negligible for
N>6

ANL/BNL: Large a3, deuterium effects?

Given choice of priors, errors on total cross section larger than
dipole by 1.5-2 times

Total cross sections from z-expansion fits consistent to within
lo

Still to come:
e More detailed deuterium corrections
e Radiative corrections

e Study of effects on MINERvA observables
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Lattice QCD in Neutrino Physics

LQCD can play important role in breaking degeneracy

023 0
2
= )
g :
3 2
5
@~ O ~data lattice QCD 5 erdata
W (L

R

Nucleon-level /Nucleus-level effects entangled
Measurements of observables are model-dependent
LQCD acts as disruptive techology to break the cycle
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Lattice F4 Calculation

ga = Fa(g? = 0) is a historically difficult calculation
(world best 10-20% too small)

What makes it hard:
e Baryons(!)

e Finite size effects

Chiral extrapolation

Explicit Chiral symmetry breaking - for some formalisms

Excited state contamination
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Lattice F4 Calculation

Will use MILC's 24141 flavor gauge ensembles
What we bring to the table:

e High computation speed — Statistics

Large lattices — Control finite size effects

Physical quark masses — Avoid chiral extrapolation

Exact chiral symmetry — Obtain absolute normalization

Variational method —
Mitigate excited state contamination
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https://inspirehep.net/record/1208113

Outlook

Deuterium Fitting/GENIE:
e Finish fitting/writeup - next few months
o Write correlated reweighting for GENIE
e Coordinate GENIE code release with publication release

Lattice:

Code testing/development - this/next month
Production - soon after

ga calculation - Spring/Summer 2016
F(g?) calculation - Fall/Winter 2016

Further (more challenging) lattice QCD calculations:
o N — v\
e N-A transition currents
o N — wlN'

Vg/\/ — L
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Conclusions

Neutrino physics is subject to
underestimated and model-dependent systematics
— To reduce systematics from modeling,
need to understand nuclear physics
— To understand nuclear physics, need to understand
nucleon-level cross sections from an ab initio calculation

e z-Expansion removes model assumptions and permits better
understanding of systematic errors

e hydrogen (deuterium) targets have [almost] no nuclear effects

e LQCD offers a way to access nucleon form factors directly
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Error Budgets

Source of MINOS T2ZK  LBNE Comments
L i A e Ve Ve
Beam Flux 3%/0.3% 2.9% 2% MINOS is normalization only.
after N/F LBNE normalization and shape
extrapolation highly correlated between 1, /v,
Detector effects
Energy scale T%13.5% included (2%)  Included in LENE v, sample
() above uncertainty only in three-flavor fit.
MINOS dominated by hadronic scale.
Absolute energy  5.7%/2.7% 3.4% 2% Totally active LArTPC with calibration
scale (12.) includes and test beam data lowers uncertainty.
all FD
effects
Fiducial 2.4%12.4% 1% 1% Larger detectors = smaller uncertainty.
volume
Neutrino interaction modeling
Simulation 2.7%/2.7% 7.5% ~ 2%  Hadronization models are hetter
includes: constrained in the LBNE LArTPC.
hadronization N/F cancellation larger in MINOS/LBNE.
cross sections X-section uncertainties larger at T2K energies.
nuclear models Spectral analysis in LBNE provides
extra constraint.
Total 57% 88% 3.6 % Uncorrelated i, uncertainty in

full LBNE three-flavor fit = 1-2%.

LBNE Experiment
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http://arxiv.org/abs/1307.7335
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