GERDA: The search for Neutrinoless Double Beta Decay

Neutrinoless Double Beta Decay

- Observable if single β decay is not allowed for some isotopes, only ββ decay
- $2\nu\beta\beta$ decay: $(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\overline{\nu}$ SM allowed & observed
- 0νββ decay: (ν=√)
 (A,Z) → (A,Z+2) +2e⁻
 if ν is Majorana particle
 & Helicity flip is needed

Neutrinoless Double Beta Decay

- Observable if single β decay is not allowed for some isotopes, only ββ decay
- $2\nu\beta\beta$ decay: $(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\overline{\nu}$ SM allowed & observed
- 0νββ decay: (ν=ν̄)
 (A,Z) → (A,Z+2) +2e⁻
 if ν is Majorana particle
 & Helicity flip is needed

Study of $0v\beta\beta$ can:

- Discover lepton number violation
- Determine nature of v(Majorana or Dirac)
 - Give information on absolute v mass→ Mass hierarchy of v

⁷⁶Ge Neutrinoless Double Beta Decay

- Observable if single β decay is not allowed for some isotopes, only $\beta\beta$ decay
- $2\nu\beta\beta$ decay: (measured $T_{1/2}\sim10^{21}$ yr) $^{76}Ge \rightarrow ^{76}Se+2e^-+2\overline{\nu}$ SM allowed & observed
- - ⇒ Use detector made of ββ emitting material:
 HPGe detectors made from enriched ⁷⁶Ge
 - \Rightarrow Experimental signature:
 - (1) A sharp peak at 2.039 MeV
 - (2) Single Site Events

Experimental Observable of 0vββ Decay

One measurement, lots of information

Experimental Challenges

There are ~ 35 candidates in nature, however ...

- Why Ge-76 detector ?
 - High detection efficiency
 - Very good energy resolution (~0.2% in ROI)
 - Intrinsically pure (important for low bkg. experiment)

(source=detector)

Why enrichment? (abundance + bkg. scale with mass)

Background Sources

- Experiments always have backgrounds that can mimic the signal
- Background sources: Cosmic rays, natural radioactivity (in the environment & shielding), ...
- To avoid backgrounds:
 - Compact shielding design
 - □ Radio pure materials close to the detector Typical activities ~ µBq/kg
 - → careful choice of materials + screening tests+ Minimizing the support structure
 - Go underground to reduce cosmic backgrounds (cosmogenic activation on detector materials, muons)
- Establish techniques able to distinguish signals from backgrounds → Use intelligent detectors

Background Sources

- Experiments always have backgrounds that can mimic the signal
- Background sources: Cosmic rays, nat radioactivity (in the environment & st
- To avoid backgrounds:
 - Compact shielding design
 - □ Radio pure materials close to the dwarning:
 - Typical activities ~ µBq/kg
 - → careful choice of materials + screening tests
 - + Minimizing the support structure
 - □ Go underground to reduce cosmic backgrounds (cosmogenic activation on detector materials, muons)
- Establish techniques able to distinguish signals from backgrounds → Use intelligent detectors

 40 K $\sim 10^{-2}$ Bg/kg

Background Sources

- Typical activities ~ µBq/kg
 - → careful choice of materials + screening tests+ Minimizing the support structure
- □ Go underground to reduce cosmic backgrounds (cosmogenic activation on detector materials, muons)
- Establish techniques able to distinguish signals from backgrounds → Use intelligent detectors

Previous 0vββ Germanium Experiments

Previous limits for ⁷⁶Ge 0vββ decay:

Heidelberg-Moscow(HdM)

[EPJ. A 12 147-154 (2001)]
$$T_{1/2}^{0\nu\beta\beta} > 1.9 \cdot 10^{25} \text{ yr (@ 90\% C.L.)}$$

$$T_{1/2}^{0\nu\beta\beta} > 1.3 \cdot 10^{25} \text{ yr (w/o PSD)}$$

International Germanium Experiment (IGEX)

[PRD. 65 092007 (2002)]
$$T_{1/2}^{0\nu\beta\beta} > 1.6 \cdot 10^{25} \text{ yr (@ 90\% C.L.)}$$

· Klapdor-Kleingrothaus et al.

[PL B586 (2004) 198]

$$T_{1/2}^{0\nu\beta\beta} = 1.19_{-0.23}^{+0.37} \cdot 10^{25} \text{ yr (@ 90\% C.L.)}$$

Current Ovßß Germanium Experiments

GERDA

- 'Bare' enrGe array in liquid argon
- Shield: high-purity liquid Argon / H₂O
- Underground: LNGS, 3500 m.w.e
- Phase I (2011-2013): 21.6 kg·yr
- Phase II (2015-):
 +~20 kg new ^{enr}BEGe detectors; +LAr readout;
 10x lower BI compare to Phase I
 Total ~35 kg ^{enr}BEGe + 7 kg ^{nat}Ge

MAJORANA DEMONSTRATOR

- Arrays of ^{enr}Ge housed in high-purity electroformed copper cryostat
- Shield: electroformed copper / lead
- Underground: SURF, 4300 m.w.e
- Initial phase(2015-): R&D demonstrator module: Total ~40 kg (30 kg enr.)
 - **→** Details in Brandon's talk

- GERmanium Detector Array
- Search for $0v\beta\beta$ decay in ^{76}Ge @ $Q_{\beta\beta}$ =2.039 MeV
- Location: Hall A, LNGS
- Overburden: 3500 m.w.e

The GERDA Collaboration

INR

GERDA Phase I Detectors

9 coax detectors

ANG1-5: from HdM experiment RG1-3: from IGEX experiment

~86% enrichment fraction

GTF112: natural Ge diode

5 Phase II BEGe detectors

GD32B-35C: new, inserted later ~88% enrichment fraction Improved performance of pulse shape discrimination

Total mass of enriched detectors: 17.6 kg

17

Phase I Data Taking: Overview

◆ Stable data taking during most of the time

- Calibration run every 1-2 week(s): for energy & PSD
- Physics run in between

◆ Phase I data taking divided into 3 sets:

- Gold-coax: 17.9 kg·yr
- Silver-coax: 1.3 kg·yr (30 days after BEGe insertion)
- *BEGe*: 2.4 kg·yr
- ♦ Total exposure for 0vββ analysis: 21.6 kg·yr

Detector Performance: Stability & Energy Resolution

- Monitor detector performance over time pulser(0.05Hz) + ²²⁸Th source
- ightharpoonup Peak position shifts: small compared to FWHM ~ 0.2% $Q_{ββ}$
- Energy resolution stable
- > Averaged FWHM of physica data @ $Q_{\beta\beta}$: coax: 4.8±0.2 keV (~0.24%)

BEGe: 3.2±0.2 keV (~0.16%)

Blinding Procedure

Background analysis window (570 keV - 7.5 MeV)

- Data blinding:
 - Events in $Q_{\beta\beta}\pm20$ keV were saved but did not enter the data analysis pipe line before all parameters were fixed
- **♦** Two steps unblinding:
 - [1] Evaluation of run parameters & bkg. model: $Q_{\beta\beta}\pm20$ keV
 - [2] Partial unblinding: Consistency check for the models Fixing of pulse shape discrimination parameters:

 $\begin{cases}
coax detectors: Q_{\beta\beta} \pm 5 \text{ keV} \\
BEGe detectors: Q_{\beta\beta} \pm 4 \text{ keV}
\end{cases}$

Energy spectra

- Background decomposition:
 - Simulate known & observed background
 - > MC spectra of different contributions fit to data (570 keV to 7.5 MeV, blinded at $Q_{\beta\beta}\pm20$ keV)

Background Model

- Close bkg. components dominate (<2cm from detectors)</p>
- Contributions at Q_{ββ}
 - Coax detectors:

No dominant source

- β/γ induced events from:
 - ²¹⁴Bi (²³⁸U) & ²⁰⁸Tl (²²⁸Th)
 - 42 K (Q = 3.5 MeV)
 - 60 Co (Q = 2.8 MeV)
- a events from:
 - surface contamination
 - confirmed by pulse shape analysis
 - degraded alphas in LAr
- BEGe detectors:

⁴²K on the n+ surface dominate

confirmed by pulse shape analysis

42K Background in GERDA

- 42Ar: Isotope of Ar, created mostly in cosmic-ray induced spallation reactions
- Decay chain:

42Ar
$$\rightarrow$$
 42K \rightarrow 42Ca
0+ 32.9 V
42Ar β- 2- 12.360 h
42 K
19K β- 0+ 42 Ca
Q_β-600 Q_β-3525.4 keV

- ⁴²K ions get attracted by detector HV
- GERDA Phase I approach:
 - ✓ Installation of mini-shroud
 - → Keep ions away from detectors

a-induced events in GERDA

- Range of α particles(4MeV-9MeV):
 34 μm 113 μm in LAr
 - 14 μm 41 μm in Ge
- Dead layer thickness of surface is different for p⁺ & n⁺ contacts

$$p^+(B) < 1 \mu m$$

 $n^+(Li) \sim 2 mm$ for coax
 $n^+(Li) \sim 1 mm$ for BEGe

a contributes to bkg. only when the decays on the p+ surface or in LAr very close (<100 μm) to p+ surface

65-80 mm

Ra-226 (
$$E_{\alpha} = 4.8 \text{ MeV}$$
,
 $T_{1/2} = 1600 \text{ y}$)

Rn-222 (E_{$$\alpha$$} = 5.5 MeV,
T_{1/2} = 3.8 d)

Po-218 (E_a = 6.0 MeV,

$$T_{1/2}$$
 = 183 s)

Pb-214 (
$$T_{1/2} = 0.45 \text{ h}$$
)

$$Bi-214 (T_{1/2} = 0.33 h)$$

Po-214 (
$$E_{\alpha} = 7.7 \text{ MeV}$$
,
 $T_{1/2} = 164 \text{ } \mu\text{s}$)

Pb-210 (
$$T_{1/2} = 22.3 \text{ y}$$
)

Bi-210 (
$$T_{1/2} = 5.01 d$$
)

Prediction of Background Model

No surprise was found & analysis was applied with no changes

Background model:

Flat background in the ROI

Expected entries around Q_{BB}:

coax: 8.6-10.3 evts

observed: 13 evts

BEGes: 2.2 evts

observed: 2 evts

- BI around Q_{ββ} (ΔE=200 keV): using interpolation of the background by a const. excluding known bkg. peaks
 - BI(coax): (1.75^{+0.26}_{-0.24})·10⁻² cts/(keV·kg·yr)
 - BI(BEGe): (3.6^{+1.3}_{-1.0}) •10⁻² cts/(keV·kg·yr)

BEGe Pulse Shape Properties

- Properties of E-field of BEGe:
 - Well pronounced weighting field near the read out electrode:
 - Uniform waveform at the end for SSE indept. of where the individual energy depositions happen
 - Pulse shape discrimination:
 Keep signal-like events & reject background-like events

A/E Pulse Shape Discrimination Method

Proxies for Signal & Background

- ▶ Develop PSD method using external ²²⁸Th source
 - → Apply A/E cut value on physics data
- Proxies:
 - DEP: Double Escape Peak (1.59 MeV) from 2.6 MeV **⇒** SSE (0vββ-like)
 - FEP: Full Energy Peak (1.62 MeV)
 - mostly Ys -> MSE SEP: Single Escape Peak (2.10 MeV)

Physics Data of GERDA Phase-I BEGe

PSD Results for the GERDA Phase-I BEGe

► A/E PSD:

Supports the GERDA bkg.

model: most of the BEGe
background is from

42K on n+ contact

- ▶ BI at $Q_{\beta\beta}$:
 - Suppression factor:
 - > 80% of bkg. events
 - Signal efficiency:

$$(92 \pm 2) \%$$

2vββ efficiency:

$$(91 \pm 5) \%$$

PSD for Phase I Coaxial Detectors

- ► PSD using Artificial Neural Network 50 rise time info (1,3,5,...99%) as input neurons
- Training with calibration data:
 - SSE Library: DEP peak of ²⁰⁸TI 2615 keV gamma at 1593 keV
 - MSE library: FEP of ²¹²Bi at 1620 keV
- BI at Q_{ββ}:
 - Suppression factor:
 ~ 45% of bkg. events
 - Signal efficiency:

$$(90^{+5}_{-9})$$
 %

2vββ efficiency:

$$(85 \pm 2) \%$$

GERDA Phase I Results

Data Set	Exposure (kg·10yr)	BI 10 ⁻² cts/(keV·kg·yr)		Expected Counts		Observed Counts	
		w/o PSD	w/ PSD	w/o PSD	w/ PSD	w/o PSD	w/ PSD
Gold	17.9	1.8	1.1	3.3	2.0	5	2
Silver	1.3	6.3	3.0	0.8	0.4	1	1
BEGe	2.4	4.2	0.5	1.0	0.1	1	0
				—			
				5.1	2.5	7	3 32

GERDA Phase I: Half-life Limits for 0vββ Decay

$$T_{1/2}^{0\nu\beta\beta} = \frac{(\ln 2)N_A}{m_{enr}N^{0\nu\beta\beta}}(M \cdot T)\epsilon$$
(background-free)

Bayes analysis:

- Flat prior on $T_{1/2}^{0\nu\beta\beta}$ in 0-10²⁴ yr
- Best fit $N^{0\nu\beta\beta} = 0$ cts
- $N^{0\nu\beta\beta}$ < 4.0 cts (90% C.I.)
- $T_{1/2}^{0\nu\beta\beta} > 1.9 \cdot 10^{25} \text{ yr (90\%C.I.)}$
- Median sensitivity for no signal (MC):

$$T_{1/2}^{0\nu\beta\beta} > 2.0 \cdot 10^{25} \text{ yr (90\%C.I.)}$$

Frequentist approach:

- Profile likelihood fit to 3 datasets with common $1/(T_{1/2}^{0\nu\beta\beta})$
- Best fit $N^{0\nu\beta\beta} = 0$ cts
- $N^{0\nu\beta\beta}$ < 3.5 cts (90% C.L.)
- $T_{1/2}^{0\nu\beta\beta} > 2.1 \cdot 10^{25} \text{ yr (90\%C.L.)}$
- Median sensitivity for no signal (MC):

$$T_{1/2}^{0\nu\beta\beta} > 2.4 \cdot 10^{25} \text{ yr (90\%C.L.)}$$

 Combined GERDA + IGEX + HdM:

$$T_{1/2}^{0\nu\beta\beta} > 3.0\cdot10^{25} \text{ yr (90\%C.L.)}$$

Result compared with Previous Claim

Hypothesis test:

$$\frac{\text{Claimed signal}}{\text{H}_1 \text{ (} T_{1/2}^{0\nu\beta\beta}\text{=}1.19\cdot10^{25}\text{ yr + bkg)}}$$
 expected signal cts: 5.9 \pm 1.4

<u>bkg. only</u>

 $H_0 (T_{1/2}^{0\nu\beta\beta} = 2.1 \cdot 10^{25} \text{ yr})$

expected bkg cts: 2.0±0.3 observed cts: 3

GERDA Only

- Frequentist p-value $P(N^{0\nu\beta\beta} = 0 | H_1) = 0.01$
- Bayes factor $P(H_1)/P(H_0) = 2.4 \cdot 10^{-2}$

<u>Combined GERDA + IGEX + HdM</u>

Bayes factor P(H₁)/P(H₀) = 2.0·10⁻⁴

long standing claim disfavored!!

GERDA Phase-II Goal & Sensitivity

► GERDA Phase-II:

- Improve limit on $T_{1/2}^{0\nu\beta\beta}$
- Detector: +20 kg enrBEGe detectors
- Design goal: BI=10⁻³ Cts/(keV·kg·yr)
 + exposure: 100 kg·yr
- Expected sensitivity: ~1.4-10²⁶ yr

GERDA Phase-II Approach

Scintillation fibers

and SiPM readout

- Size of array increased to 7 strings
- LAr instrumentation surrounding the array

LAr scintillation light veto :

- PMT arrays on top and bottom
- Si-PMTs coupled to wavelength-shifter fibers
- LAr veto test in LArGe: A suppression factor of >1000 @ $Q_{\beta\beta}$ after all cuts for the ²²⁸Th measurement

36

GERDA Phase-II Approach

 30 new Phase II BEGe detectors have been characterized
 & currently stored in LNGS

- Reduction of bkg. sources close to detectors:
 - Significant amount of copper and PTFE replaced by intrinsically radio-pure silicon
 - Reduce material for holders & use cleaner signal and HV cables
 - ⁴²K Background mitigation:
 Cu mini-shroud replaced by Nylon mini-shroud made from Borexino material

GERDA Phase-II Approach

 30 new Phase II BEGe detectors have been characterized
 & currently stored in LNGS

- Reduction of bkg. sources close to detectors:
 - Significant amount of copper and PTFE replaced by intrinsically radio-pure silicon
 - Reduce material for holders & use cleaner signal and HV cables
 - ⁴²K Background mitigation:
 Cu mini-shroud replaced by Nylon mini-shroud made from Borexino material

LAr Light Instrumentation

LAr light instrumentation was successfully installed in GERDA!

First Commissioning Tests

- Spectrum taken in the Phase II commissioning run
- ▶ Suppression factor: >400 after all cuts @ $Q_{\beta\beta}$ measured by using ²²⁸Th source

40

Summary & Outlook

GERDA Phase I design goals reached:

- Exposure of 21.6 kg-yr
- BI at Q_{ββ} after PSD : ~10⁻² cts/(kg·keV·yr)
- No observation for 0vββ signal
 Long standing claim strongly disfavored
- New limit on $0v\beta\beta$ half-life in Ge: $T_{1/2}^{0v\beta\beta} > 2.1 \cdot 10^{25}$ yr (90% C.L.)
- GERDA+IGEX+HdM (Ge): $T_{1/2}^{0\nu\beta\beta}>3.0\cdot10^{25}$ yr (90% C.L.)

Toward GERDA Phase II:

- New detectors available: +20kg, characterized → available
- Major upgrade of infrastructure: lock system, calibration system, glove box → finished
- Liquid Argon instrumentation → installed
- First results of bkg. suppression by LAr veto are promising
- Integration tests on going: new contacting, electronics
- Background target 10⁻³ cts/(kg-keV-yr)
- Explore 0vββ half-life in the range of 10²⁶ yr

⁷⁶Ge Double Beta Decay

Bethe-Weizaecker formula:

$$M(Z, A=const.) \sim a Z + b Z + \delta_{p}$$

$$\delta_{P}$$
, pair energy term $\int \delta_{P} > 0$: odd/odd nuclei $\delta_{P} < 0$: even/even nuclei

The DBD exists due to nuclear pairing interaction that favors energetically the even-even isobars over the odd-odd ones.

Nuclear Matrix Element

[arXiv: 1109.5515]

2vββ Isotopes

•	i
Q(MeV)	Abund.(%)
4.271	0.187
2.040	7.8
2.995	9.2
3.350	2.8
3.034	9.6
2.013	11.8
2.802	7.5
2.228	5.64
2.533	34.5
2.479	8.9
3.367	5.6
	4.271 2.040 2.995 3.350 3.034 2.013 2.802 2.228 2.533 2.479

Claim

Klapdor-Kleingrothaus et al., NIM A 522 (2004), PLB 586 (2004):

- 71.7 kg year Bgd 0.17 / (kg yr keV)
- 28.75 ± 6.87 events (bgd:~60)
- Claim: 4.2σ evidence for 0vββ
- reported T_{1/2}^{0v} = 1.19 x10²⁵ yr

N.B. Half-life $T_{1/2}^{ov} = 2.23 \times 10^{25} \text{ yr } T_{1/} \text{after PSD}$ analysis (Mod. Phys. Lett. A 21, 1547 (2006).) is not considered because:

- reported half-life can be reconstructed only (Ref. 1) with ε_{psd} = 1 (previous similar analysis ε_{psd} ≈ 0.6)
 ε_{fep} = 1 (also in NIM A 522, PLB 586 (2004)
- ε_{fep} = 1 (also in NIM A 522, PLB 586 (2004)
 (GERDA value for same detectors: ε_{fep} = 0.9)

Ref: B. Schwingenheuer in Ann. Phys. 525, 269 (2013)

0vββ experiments

						The nar	ne of the g		
	Mass		Bkg.	ΔE			—	$T_{1/2}^{0v}$	m_{etaeta}
Exp.	[kg]	f_A	$\left[\frac{10^{-3} \text{cnts}}{\text{keV-kg-yr}}\right]$	[keV]	Eff.	Enrich.	$f_A \cdot \epsilon \cdot \eta \cdot \sqrt{\frac{N}{B \cdot A}}$	$\frac{M}{\Delta E}$ 10^{25} yr	meV
Past experiments	;								
Hd-Moscow	11	0.35	120	7	1	0.86	1	1.9	170-530
Cuoricino	41	1	170	16	0.9	0.28	1	0.4	210-500
NEMO-3	6.9	2.1	1.2	400	0.06	0.9	0.3	0.1	310-900
Running experim	ents								
EXO-200	100	0.55	1.5	100	0.55	0.81	6	4.2	75-170
KamlZen	12800	0.55	0.05	250	0.31	0.023	4	2.6	90-220
KamlZen2	12800	0.55	0.01	250	0.31	0.06	22	15	40-90
GERDA-I	15	0.35	20	8	0.8	0.86	2	3.9	120-370
GERDA-II	35	0.35	1	6	0.85	0.88	20	18	60-170
Experiments und	er construction								
MajorDem.	30	0.35	1	6	0.9	0.9	20	17	60-170
CUORE	750	1	10	12	0.9	0.27	19	7.5	50-110
SNO+	780000	1.5	0.0002	230	0.33	5.6E-5	3	0.8	100-240
NEXT	100	0.55	0.8	25	0.25	0.9	9	5.2	70-160
Proposed experiments									
S.NEMO	100	1.1	0.1	200	0.2	0.9	14	6.9	55-140
Lucifer	100	1.1	1	10	0.9	0.5	50	19	33-85

Ref: Bernhard Schwingenheuer, Ann. Phys. (Berlin) 525, No. 4, 269-280 (2013)

Background Decomposition & Model

- Background Models:
 - Minimum model: Use min. amount of sources to describe measured spectrum
 - Maximum model: Add more plausible sources (knowledge from screening measurements, activation history, etc.)

2vββ Half-life

Updated 2νββ results:

• $T_{1/2}^{2\nu\beta\beta}$ = (1.93±0.01)·10²¹ yr [arXiv: 1501.02345, submitted to EPJC]

BEGe Pulse Shape Properties

- Properties of E-field of BEGe:
 - Well pronounced weighting field near the read out electrode:
 - Uniform waveform at the end for SSE indept. of where the individual energy depositions happen

A/E PSD Normalization

GERDA Phase I: Half-life Limits for 0νββ Decay

$$T_{1/2}^{0\nu\beta\beta} = \frac{(\ln 2)N_A}{m_{enr}N^{0\nu\beta\beta}}(M \cdot T)\epsilon$$
(background-free)
$$\epsilon = f_{76}f_{av}\epsilon_{FEP}\epsilon_{PSD}$$

$$\epsilon = f_{76}f_{av}\varepsilon_{FEP}\varepsilon_{PSD}$$

 N_{Δ} : Avogadro's const.

 $M \cdot T$: Exposure (detector mass \times live time)

 m_{enr} : Molar mass of the enriched material

 $N^{0\nu\beta\beta}$: Number of 0νββ signal

 f_{76} : ⁷⁶Ge atoms fraction

 f_{av} : Active volume fraction

 ε_{FFP} : efficiency for total energy deposited in active volume

 ε_{PSD} : Signal acceptance efficiency after PSD cut

Data Set	f ₇₆	f av	$oldsymbol{arepsilon}_{FEP}$	$oldsymbol{arepsilon}_{PSD}$
Gold	0.86	0.87	0.92	0.90
Silver	0.86	0.87	0.92	0.90
BEGe	0.88	0.92	0.90	0.92

Comparison with 136Xe Experiments

Ge combined limit: <m_{0νββ}> < 0.2 - 0.4 eV [PRL 111, 122503 (2013)]

- GERDA provides model-indept. test of the signal claim
- ▶ Comparison with ¹³⁶Xe experiments:
 - Assuming leading mechanism is exchange of light Majorana v
 - Model dependent matrix element computations
 - The most conservative exclusion using smallest NME ratio:

 $M_{0v}(^{136}Xe)/M_{0v}(^{76}Ge) \approx 0.4$ [PRD 88, 091301 (2013)]

Experiment	Isotope	P(H1)/P(H0)
GERDA	⁷⁶ Ge	0.024
GERDA+ HdM+IGEX	⁷⁶ Ge	0.0002
KamLAND- Zen	¹³⁶ Xe	0.40
EXO-200	¹³⁶ Xe	0.23
GERDA+KLZ +EXO	⁷⁶ Ge + ¹³⁶ Xe	0.002 53

Disentangle IH/NH

Potential Backgrounds

- Backgrounds NOT considered for the BKG model:
 - ✓ **BI from n & \mu:** ~10⁻⁵, 10⁻⁴ cts/keV·kg·yr

√ 76Ge:

Physical process	Signature
Neutron capture	E _Y = 470, 861, 4008, 4192 keV
²⁰⁶ Pb (excited by inelastic n scattering)	E _Y = 898, 1705, 3062 keV
⁵⁶ Co (T _{1/2} =77 d)	E _Y = 1771, 2598, 3253 keV

- ✓ BI from cryostat & water tank: < 10⁻⁴ cts/keV·kg·yr
- √ ³⁹Ar beta decay(<600 keV):
 </p>

To avoid uncertainties due to n+ DL thickness & theoretical shape of beta decay spectrum

Background Model: MC Lists

source	location	simulation	events simulated
²¹⁰ Po ²²⁶ Ra chain	p ⁺ surface p ⁺ surface	single det., $d_{dl_{p^+}}$ single det., $d_{dl_{p^+}}$	10^9 10^9
²²² Rn chain	LAr in bore hole	single det., $d_{dl_{p^+}}$	10^{9}
²¹⁴ Bi and	n ⁺ surface	single det.	108
$^{214}{\rm Pb}$	mini-shroud	array	10^{9}
	detector assembly	array	10 ⁸
	p ⁺ surface	single det.	10^{6}
	radon shroud	array	$\frac{10^9}{10^6}$
	LAr close to p ⁺ surface	single det.	10-
$^{208}\mathrm{Tl}$ and	detector assembly	array	10^{8}
$^{212}{\rm Bi}$	radon shroud	array	10^{9}
	heat exchanger	array	10^{10}
$^{228}\mathrm{Ac}$	detector assembly	array	10^{8}
	radon shroud	array	10^{9}
10			
^{42}K	homogeneous in LAr	array	10^{9}
	n ⁺ surface	single det.	10^{8}
	p ⁺ surface	single det.	10^{6}
$^{60}\mathrm{Co}$	detectors	array	$2.2 \cdot 10^{7}$
	detector assembly	array	10^{7}
$2\nu\beta\beta$	detectors	array	$2.2 \cdot 10^7$
$^{40}\mathrm{K}$	detector assembly	array	108

MC spectra for different bkg contributions at different source locations

Alpha spectrum for different DLs

Time Distribution of Alpha Events

- Ra-226 ($E_{\alpha} = 4.8 \text{ MeV}$, $T_{1/2} = 1600 \text{ y}$)
- Rn-222 (E_{α} = 5.5 MeV, T_{1/2} = 3.8 d)
- Po-218 (E_{α} = 6.0 MeV, T_{1/2} = 183 s)
- Pb-214 ($T_{1/2} = 0.45 \text{ h}$)
- Bi-214 ($T_{1/2} = 0.33 \text{ h}$)
- Po-214 (E_{α} = 7.7 MeV, T₁₀ = 164 µs)

Pb-210 (
$$T_{1/2} = 22.3 \text{ y}$$
)

Bi-210 (
$$T_{1/2} = 5.01 d$$
)

Po-210 (E_a = 5.3 MeV,

$$T_{1/2}$$
 = 138.4 d)

Pb-206 (stable)

²¹⁰Po contamination of the surface of some of the detectors

 Alphas are mainly from ²¹⁰Po, confirmed by the time distribution

Background Index

	COLD	GOLD .	CILLY 1
	GOLD- $coax$	GOLD- nat	SUM-bege
	BI in central reg	gion around $Q_{\beta\beta}$ (10 10^{-3} cts/(k	keV for coaxial, 8 keV for BEGe g keV yr)
interpolation	17.5 [15.1,20.1]	30.4 [23.7,38.4]	36.1 [26.4,49.3]
minimum	18.5 [17.6,19.3]	29.6 [27.1,32.7]	38.1 [37.5,38.7]
\max imum	21.9 [20.7, 23.8]	37.1 [32.2,39.2]	
	backgroun 30 keV	d counts in the prev 40 keV	iously blinded energy region 32 keV
data	13	5	2
minimum	8.6 [8.2,9.1]	3.5 [3.2, 3.8]	2.2 [2.1, 2.2]
maximum	10.3 [9.7,11.1]	4.2[3.8,4.6]	