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• serious issues to confront in the precision era of lepton-nucleon 
scattering data

• addressing these issues will be critical to discovery potential of the 
accelerator neutrino program

Regardless of the existence of the “proton radius puzzle”:

The applications, the problems, and the theoretical tools are 
central to HEP

Figure3:DiagramscontributingtomatchingforchargedWIMPs.Wavylinesarephotons,zigzag

linesareW
±bosons,andtheinclusionofdiagramswhereinternalphotonlinesarereplacedbyZ

0

bosonlinesisimplied.

chargedWIMPannihilation,theprocesshasatreelevelcontribution.Includingthetreevertexwith

counterterms,togetherwiththeloopdiagramsofFig.3,
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signal process at LBNEe-p scattering

rE: discrepancies ~8% , large compared to LNBE requirements in a 

Solving the simpler e-p problem prerequisite to more challenging 
neutrino processes 
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Some facts about the Rydberg constant puzzle (a.k.a. 
proton radius puzzle) 

1) It has generated a lot of 
attention and controversy

2) The most mundane resolution necessitates:
• 5σ shift in fundamental Rydberg constant
• discarding or revising decades of results in 
e-p scattering and hydrogen spectroscopy
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Some facts about the Rydberg constant puzzle (a.k.a. 
proton radius puzzle) 

1) It has generated a lot of 
attention and controversy

2) The most mundane resolution necessitates:
• 5σ shift in fundamental Rydberg constant
• discarding or revising decades of results in 
e-p scattering and hydrogen spectroscopy

3) Systematic effects in electron-proton 
scattering impact neutrino-nucleus scattering, 
at a level large compared to precision 
requirements for oscillation measurements

This is HEP’s problem:
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4

To give an idea of numerics, recall

|z| ≪ 1 ⇒ Form factors ~linear in appropriate variable 

⇒ need normalization and slope

electric charge form factor:

axial form factor:

Q

gA

r2E

r2A

Determinations of rE differ by as much as 8%.  
“World average” rA quoted with uncertainty ≲2%

Talk by A. Meyer tomorrow: model-independent 
analysis of deuterium, lattice QCD



Recall hydrogen spectrum: 

Disentangle 2 unknowns, R∞ and rE, using well-measured 1S-2S 
hydrogen transition and 

En ⇠ R1
n2

+
r2E
n3

hcR1 =
mec2↵2

2
⇡ 13.6 eV proton charge radius
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5σ discrepancy in Rydberg constant from (1+2) versus (3)
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0.85 0.9 0.95

A1 analysis of Mainz data 
(default: 8 parameter cubic 
spline fit)

this talk:  new extraction of proton charge and magnetic 
radii from electron scattering data
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preliminaries
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What is the proton charge radius?

recall scattering from extended classical charge distribution: 

Figure3:DiagramscontributingtomatchingforchargedWIMPs.Wavylinesarephotons,zigzag

linesareW
±bosons,andtheinclusionofdiagramswhereinternalphotonlinesarereplacedbyZ

0

bosonlinesisimplied.

chargedWIMPannihilation,theprocesshasatreelevelcontribution.Includingthetreevertexwith

counterterms,togetherwiththeloopdiagramsofFig.3,
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Focus first on rE and the Mainz dataset, addressing in succession:

After fixing procedures, present final results for rE and rM, for 
Mainz and world datasets

- Form factor shape

- Radiative corrections

- Uncorrelated systematic errors

- Correlated systematic errors

Consider separately two datasets

- “Mainz”: high statistics 2010 Mainz A1 collaboration data (1422 
datapoints)

- “world”: global cross section and polarization data excluding Mainz 
(406 datapoints below Q2=1GeV2)

9



form factor shape
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Radius defined as slope.  Requires data over finite Q2 range

maximum Q2 [GeV2]
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[sensitivity studies based on bounded z expansion fit]
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Radius defined as slope.  Requires data over finite Q2 range

maximum Q2 [GeV2]
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world data

size of rE 

anomaly 
(hydrogen)

convergence radius for 
simple Taylor expansion

Mainz data

[sensitivity studies based on bounded z expansion fit]

11



Unfortunately, for the proton form factors, a simple Taylor expansion 
has finite (small) radius of convergence

Fortunately, the analytic structure of amplitudes allows us to “resum” by 
change of variables into expansion covering the entire physical region 

z(t, tcut, t0) =
⇥

tcut � t�
⇥

tcut � t0⇥
tcut � t +

⇥
tcut � t0

point mapping to z=0
(scheme choice)

4mπ2 (isoscalar channel)

4m2
⇡

GE(q
2) =

X

k

ak[z(q
2)]k

fit for undetermined order 
unity coefficients ɑk
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0.85 0.9 0.95
rE [fm]

z expansion (our analysis)

A1 analysis of Mainz data

Require form factors to lie within QCD-constrained class of 
curves:  larger (7σ) discrepancy with μ-Hydrogen !
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Besides 7σ discrepancy with μH, now 3σ tension with H,  3σ with A1 
analysis of same dataset.

Also: tension between fit to entire dataset and fit to data subsets

⇒ Revisit theoretical and experimental systematics
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FIG. 1: Extracted electric (top panel) and magnetic (bot-
tom panel) radii as a function of kinematic cut Q

2

max

on
momentum transfer for the 1422 point A1 MAMI dataset,
using the z expansion with t

0

= 0, Gaussian priors with
|ak|max

= |bk|max

/µp = 5, k

max

= 12. One-� error bands
are statistical only.

Table IV and Fig. 20 of Ref. [8]. We have compared our
results to the output from the example fitting code pro-
vided as part of the Supplemental Material for Ref. [8],
finding agreement with the results of this code. For ex-
ample in the case of the polynomial of degree 10, the
results of the example fitting code agree with our results
in Table II, both having a minimum �

2 of 1561.6, lower
than the value 1563 quoted in Table IV of Ref. [8]. 14

B. Bounded z expansion fits

Let us proceed to consider the implications of the
bounded z expansion. Here we retain the identical
dataset as employed in Table II. For the default fit we
take t

0

= 0, k

max

= 12, and a Gaussian bound of
|ak|max

= |bk|max

/µp = 5. The value k

max

= 12 is
large enough that the result does not change if k

max

is
increased further.

14 More precisely, the fitting code returned a �2 of 1561.60 and
rM = 0.797 fm. Evaluating our �2 function with the correspond-
ing parameters yielded an identical 1561.60. Using the same
initialization conditions as the example fitting code, our mini-
mization code independently returned a minimum �2 of 1561.58
and rM = 0.794 fm, as displayed in Table II.

TABLE III: Results from the fits in Fig. 1 for three values of
Q

2

max

. N� is the number of cross section points with Q

2 below
Q

2

max

and N

norm

is the number of normalization parameters
appearing in the data subset.

Q

2

max

[GeV2] rE [fm] rM [fm] �

2

min

N� N

norm

0.05 0.873(18) 1.071(114) 479.4 483 13
0.5 0.905(10) 0.749(28) 1404.7 1285 29
1 0.920(9) 0.743(25) 1605.5 1422 31

The results for this fit are displayed in Fig. 1 as a
function of Q

2

max

. The extracted radii and �

2 values are
provided for three Q

2

max

values in Table III. The quoted
uncertainty includes only the statistical-type uncertain-
ties, i.e., counting statistics and uncorrelated systematic
uncertainties that are represented by rescaling of the sta-
tistical errors in the A1 dataset. The uncertainty is ob-
tained by varying the radius around the best fit value,
refitting the data while allowing all dataset normaliza-
tions to float, to map out the �

2 contour as a function of
radius. The contours are typically symmetric and very
nearly parabolic, and in the tables we quote the average
of the change in radius that yields ��

2 = 1 on the high
and low side of the central value. Note that the primary
A1 analysis of the Mainz data, identical except for the
choice of fitting function, yielded [8] rE = 0.879(5)

stat

fm
and rM = 0.777(13)

stat

fm, including only statistical un-
certainties for comparison with our bounded z expansion
results in Table III.

C. Discussion

Let us remark on three aspects of the fits summarized
in Table III. First, we remark that the bounded z ex-
pansion fit to the entire 1422 point dataset (Q2

max

=
1 GeV2) yields an electric radius significantly larger than
the Mainz A1 extraction [8]. Having analyzed identi-
cal datasets, this di↵erence arises solely from requiring
the form factors to lie within the class allowed by the
bounded z expansion. The di↵erence, 0.041 fm, is large
compared to the Mainz estimated systematic uncertainty.
The magnetic radii exhibit a smaller di↵erence, with our
result 0.034 fm below the Mainz extracted value.

Second, the extracted radii have significant dependence
on Q

2

max

. For example, rE = 0.873(18)
stat

fm with
Q

2

max

= 0.05 GeV2 versus rE = 0.920(9)
stat

fm with
Q

2

max

= 1 GeV2. The di↵erence, 0.047 fm, is again
large compared to the quoted uncertainties. Further-
more, there is a non-negligible variation of the rE central
value as Q

2

max

is increased above 0.5 GeV2, even though
the region below 0.5 GeV2 includes more than 90% of
the data points, and (as illustrated below in Fig. 10) the
data above 0.5 GeV2 does not significantly impact the
radius uncertainty. In fits with unbounded parameters,
it is not surprising that the extracted radius is sensitive
to higher-Q2 data, because the radius may change to pro-

μ-Hydrogen (CREMA)

central value, +/- 1σ stat. only

14



systematics:
radiative corrections
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Figure 1: Virtual radiative corrections through first order in ↵. for point particle (top particle line)
scattering on a composite particle (bottom particle line). Wavefunction renormalization contributions
are not shown explicitly.
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i , for which the simple convexity theorem following from (14) no longer applies. It may
be interesting to pursue more general “physical convexity” theorems involving multiple probability
sums and correlated errors.redone selected fits with a global search strategy to verify that a true
minimum has been found by the inductive search that assumes convexity.

3.4 Deficiencies in other parameterizations

We remark that several parameterizations of the proton form factors in common use rely on flawed
theoretical assumptions. A simple Taylor expansion in q

2 [11] is valid only for momentum transfers
below pion production threshold q

2  4m

2

⇡ ⇡ 0.08 GeV2. Convergence of a sequence of Padé approx-
imants, implemented either directly as a ratio of polynomials [16], or as a continued fraction [17],
requires positivity of the spectral function in the dispersive representations of the form factors, a
property which is not satisfied. 6

4 Radiative corrections

We will present fits employing variations of a default radiative correction model. Possible deficiencies
in this model are treated at the same level as experimental systematic errors. Let us review the
description of the cross section including first order radiative corrections. The relevant amplitudes
are depicted in Figs. 1 and 2.

6That it cannot be satisfied is readily seen from the asymptotic behavior Q�2 for the form factor represented by
such a spectral function.
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imants, implemented either directly as a ratio of polynomials [16], or as a continued fraction [17],
requires positivity of the spectral function in the dispersive representations of the form factors, a
property which is not satisfied. 6

4 Radiative corrections

We will present fits employing variations of a default radiative correction model. Possible deficiencies
in this model are treated at the same level as experimental systematic errors. Let us review the
description of the cross section including first order radiative corrections. The relevant amplitudes
are depicted in Figs. 1 and 2.

6That it cannot be satisfied is readily seen from the asymptotic behavior Q�2 for the form factor represented by
such a spectral function.

5

p

k

p

0

k

0

(a) (b) (c)

(d)

Figure 1: Virtual radiative corrections through first order in ↵. for point particle (top particle line)
scattering on a composite particle (bottom particle line). Wavefunction renormalization contributions
are not shown explicitly.

A

2

i ! A

2

i +B

2

i , for which the simple convexity theorem following from (14) no longer applies. It may
be interesting to pursue more general “physical convexity” theorems involving multiple probability
sums and correlated errors.redone selected fits with a global search strategy to verify that a true
minimum has been found by the inductive search that assumes convexity.

3.4 Deficiencies in other parameterizations

We remark that several parameterizations of the proton form factors in common use rely on flawed
theoretical assumptions. A simple Taylor expansion in q

2 [11] is valid only for momentum transfers
below pion production threshold q

2  4m

2

⇡ ⇡ 0.08 GeV2. Convergence of a sequence of Padé approx-
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(a) (b)

Figure 2: First order real radiative corrections for electron scattering on proton. In (a) crosses denote
possible attachments of the radiated photon.

4.1 Single photon exchange

Let us rigorously define the charge radius of a composite fermion such as the proton as an observable
(in particular, IR finite) quantity in the presence of radiative corrections. To begin, consider the
amplitude for one exchanged photon,

M

1

= �4⇡↵

q

2

1

1 � ⇧̂(q2)
ū

(e)(k0)�(e)µ(k0
, k)u(e)(k)ū(p)(p0)�(p)

µ (p0, p)u(p)(p) , (15)

where ↵ = 7.297 ⇥ 10�3 is the fine structure constant. Applying onshell renormalization conditions
we write

�(e)(k0
, k) = �

µ
F

(e)
1

(q2, �) +
i

2me
�

µ⌫(k0 � k)⌫F
(e)
2

(q2, �) ,

�(p)(p0, p) = �

µ
F

(p)
1

(q2, �) +
i

2mp
�

µ⌫(p0 � p)⌫F
(p)
2

(q2, �) , (16)

where the form factors are normalized as (at q

2 = 0 we may take the IR finite � = 0 limit) F

(e)
1

(0) =

F

(p)
1

(0) ⌘ 1, F

(e)
2

(0) ⌘ ae ⇡ ↵/(2⇡) and F

(p)
2

(0) ⌘ ap = 1.793, where ap = µp � 1 denotes the
anomalous magnetic moment. The onshell form factors are necessarily infrared divergent at nonzero
momentum transfer, as deduced by the cancellation with bremstrahlung emission. In terms of a
photon mass, let us introduce conventional “reduced” form factors which are finite including first
order radiative corrections in the � ! 0 limit:

F

(e)
i (q2, �) ⌘ F̃

(e)
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where
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Figure 2: First order real radiative corrections for electron scattering on proton. In (a) crosses denote
possible attachments of the radiated photon.

4.1 Single photon exchange

Let us rigorously define the charge radius of a composite fermion such as the proton as an observable
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In order to isolate the proton vertex defining form factors and radius

must subtract off radiative corrections that are part of the experimental 
measurement:

Through one-loop order, only essential difficulty is with Two-Photon 
Exchange: beyond present technology to compute from first 
principles, insufficient data to fully constrain
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Consider a range of one-loop Two-Photon Exchange (TPE) 
corrections

Take Blunden et al. hadronic model as default

Model dependence in TPE, but appears small for rE
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FIG. 5: Extracted electric (top panel) and magnetic (bot-
tom panel) radii as a function of kinematic cut Q2

max

on mo-
mentum transfer for several TPE models, as discussed in
the text: no correction (red, dotted); Feshbach correction
(black, solid); SIFF dipole (green, dot-dashed); SIFF sum of
monopoles (blue, dashed). There is a negligible di↵erence be-
tween the SIFF choices of dipole and sum of monopoles. Fits
are to the 1422 point A1 MAMI dataset, using the z expansion
with t

0

= 0, Gaussian priors with |ak|max

= |bk|max

/µp = 5,
k

max

= 12.

TABLE IV: Change in the extracted charge and magnetic
radii for three di↵erent TPE corrections, relative to the Fes-
hbach correction applied in the Mainz analysis. Results are
for the fit with Q

2

max

= 0.05, 0.5, 1GeV2 in Fig. 5.

Q

2

max

[GeV2] model �rE [fm] �rM [fm]
0.05 Feshbach ⌘ 0 ⌘ 0

SIFF dipole �0.004 +0.022
SIFF Blunden �0.004 +0.025

No TPE �0.023 �0.028
0.5 Feshbach ⌘ 0 ⌘ 0

SIFF dipole �0.003 +0.036
SIFF Blunden �0.002 +0.034

No TPE �0.017 �0.026
1 Feshbach ⌘ 0 ⌘ 0

SIFF dipole �0.003 +0.038
SIFF Blunden �0.002 +0.037

No TPE �0.016 �0.026

proton structure. The exact result for arbitrary kinemat-
ics for a point-like proton [36] yields a correction that
grows with Q

2, approximately doubling the correction
between Q

2 = 0 and 1 GeV2. However, calculations us-
ing either hadronic [33] or partonic [35] models to account
for proton structure indicate that the correction does not

grow with increasing Q

2 but instead becomes smaller and
then changes sign. This is the behavior required to ex-
plain the di↵erence between Rosenbluth and polarization
measurements of µpGE/GM for the proton [22], and has
been recently confirmed for Q

2 ⇡ 1–1.5 GeV2 by com-
parisons of positron and electron scattering from the pro-
ton [72, 73].

There is a significant di↵erence in the charge radius be-
tween the case of no TPE corrections and either the Fes-
hbach or SIFF corrections. However, there is a relatively
small di↵erence between Feshbach and SIFF, suggesting
that the infinite proton mass limit provides a significant
part of the correction for rE . For the magnetic radius,
there is a large di↵erence between all three approaches.
For both the charge and magnetic radii, there is little
sensitivity to the choice of form factors included in the
SIFF calculation. We collect in Table IV the deviations
of the extracted radius using di↵erent models in place of
the Feshbach correction. In all subsequent fits we em-
ploy the SIFF ansatz, using for definiteness the sum of
monopoles in Table I as our default TPE model. The
uncertainty associated with TPE corrections will be in-
corporated into the evaluation of correlated systematic
uncertainties in Sec. VI D

B. Uncorrelated systematic uncertainties

1. Rescaling studies

To estimate the uncorrelated systematic uncertainties,
the A1 collaboration performed a fit to the entire 1422
point dataset using a default form factor model (an 8-
parameter cubic spline model for each of GE and GM ).
The data were then grouped according to the beam en-
ergy and the spectrometer used in the measurement. For
each data group, the uncorrelated systematic uncertain-
ties were taken from examination of the distribution of
the di↵erences between measured and fit cross sections,
scaled by the uncertainty from counting statistics. (If the
counting statistics fully represented the uncorrelated un-
certainties, then this should be a Gaussian distribution
with unit width.) This distribution was fit with a Gaus-
sian, whose width was then taken as the scaling factor
applied to the counting statistics to determine the com-
bined statistical and systematic uncorrelated uncertain-
ties. The scaling factors obtained in this way vary from
1.070 to 2.283, as given in the Supplemental Material of
Ref. [8].

This rescaling procedure is meant to yield a reduced
�

2 close to unity when the data is compared to the orig-
inal fit. However, because the Gaussian fit may under-
estimate the impact of outliers and the scaling of the
uncertainties changes the relative weighting of the di↵er-
ent datasets, the fit to the dataset with updated uncer-
tainties yields a reduced �

2 somewhat larger than unity:
�

2

red

⇡ 1.15 for the entire dataset. This suggests that the
quoted systematics are somewhat underestimated.

μ-Hydrogen (CREMA)

Feshbach (A1 default)

SIFF dipole

SIFF Blunden

None

PRC 72, 034612
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z expansion
A1 analysis

+ hadronic TPE

Return later to log-enhanced higher-order effects

μ-
H

yd
ro

ge
n 

(C
R

EM
A

)

H
yd

ro
ge

n 
(C

O
D

AT
A

)

18



systematics: 
uncorrelated errors

19



- perform initial fit to entire dataset
- for each beam/spectrometer data 
subset, rescale statistical errors to 
account for systematics

Potential concerns: 
- inferred systematic can be extremely small  
(as low as 0.05%)

- repeated measurements at identical kinematics drive 
systematic uncertainties to zero

(data-fit)/stat.error

rescaling factor

In the A1 dataset, kinematically uncorrelated systematic errors 
are deduced by examining subset fluctuations around initial fit

Address these concerns:
- combine (“rebin”) data taken at identical kinematics

- include constant systematic error independent of statistics 
(0.3-0.4% based on confidence level analysis)
 details: backup slide
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0.85 0.9 0.95
rE [fm]

z expansion
A1 analysis (spline fit)

+ hadronic TPE
rebin, + uncorr. syst.
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Same fit to rebinned dataset:
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systematics: 
correlated errors
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In the A1 dataset, correlated systematic errors are estimated by 
considering modifications to each data subset:

d� ! (1 + �)d�

where δ depends on kinematics.  e.g.: 

We performed a more general analysis with a variety of functional 
forms and different subset groupings.  

Observations: 
- especially for rM, significant cancellation between effects of 
corrections applied to different spectrometers 

- take 0.4% angular correction (vs. A1’s 0.2%) applied uniformly to 
beam/spectrometer groupings as consistent with known uncertainties

� / ✓ � ✓
min

✓
max

� ✓
min

�rM = 0.016 (spec.A)� 0.008 (spec.B) + 0.002 (specC) = 0.010 fm

�rM = 0.016 (spec.A) + 0.008 (spec.B) + 0.002 (specC) = 0.026 fm

details: backup slide
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0.85 0.9 0.95
rE [fm]

z expansion
A1 analysis (spline fit)

+ hadronic TPE
rebin, + 0.3% uncorr. syst.
+ 0.4% corr. syst.

larger systematic shift 
would require:

μ-
H

yd
ro

ge
n 

(C
R

EM
A

)

H
yd

ro
ge

n 
(C

O
D

AT
A

)

Same fit, including correlated systematic error:

- greater than 0.4% variation over subsets

- more extreme functional form

- conspiracy between shifts applied to different subsets
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Large logarithms spoil QED perturbation theory when Q2~GeV2 

(electrons really like to radiate)
+

|F (q2)|2 ! |F (q2)|2
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1� ↵

⇡
log
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m2
e

log

E2

(�E)

2
+ . . .

◆}
⇡ 0.5

What could such a shift look like? 

A standard ansatz sums leading logarithms by exponentiating 1st order: 

|F (q2)|2
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Yennie, Frautschi, Suura, 1961
Captures leading logarithms when 

Q ⇠ E , �E ⇠ me

As consistency check, should find the same result for resumming:
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±bosons,andtheinclusionofdiagramswhereinternalphotonlinesarereplacedbyZ
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chargedWIMPannihilation,theprocesshasatreelevelcontribution.Includingthetreevertexwith

counterterms,togetherwiththeloopdiagramsofFig.3,
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FIG. 9: Illustrative fit with modified radiative corrections
given by Eq. (41) using �E = 10MeV. Lower and upper
dashed blue lines correspond to the plus sign and minus sign
in Eq. (41), respectively. Fits are for the 657 point rebinned
A1 MAMI dataset with 0.3–0.4% uncorrelated systematic un-
certainties using the z expansion with t

0

= 0, Gaussian priors
with |ak|max

= |bk|max

/µp = 5, k
max

= 12. Black solid lines
reproduce the curves in Fig. 6. For orientation, the dash-
dotted red line indicates the muonic hydrogen value for rE .

are fixed by infrared divergences whose form is dictated
by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
sis is outside the scope of the present paper, but to illus-
trate the potential impact, let us consider in place of the
ansatz that makes the replacement (31) in Eq. (29), the
following expressions:
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These expressions agree with the known corrections
through one-loop order, and resum the leading loga-
rithms to all orders in perturbation theory when there
is only one large ratio of scales.

Fig. 9 illustrates the impact of applying the correction
on the right hand side of Eq. (41) in place of the ansatz

(31). For definiteness, the plot takes �E = 10MeV.
As indicated in the figure, the shifts in the radii under
this correction are a factor ⇠ 2–3 larger than those al-
lowed in Table IX, which considered corrections vary-
ing by 0.5% over beam-energy/spectrometer combina-
tions. The variation of the correction (41) over beam-
energy/spectrometer combinations (i.e., the magnitude
of a in Eq. (35)) ranges between 0.9% and 2.6%, with an
average 1.5%.

D. Final radius extractions

Q

2

max

[GeV2]

�
r
[f
m

]

FIG. 10: Statistical error on rE (bottom, red squares) and rM

(top, blue circles) as a function of Q2
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. Solid symbols are
for the 1422 point A1 MAMI dataset, and open symbols are
for the world cross section and polarization dataset. Fits use
the z expansion with t

0

= 0, Gaussian priors with |ak|max

=
|bk|max

/µp = 5, k
max

= 12.

A global analysis combining Mainz and other world
data will artificially favor the Mainz data, as the un-
certainties associated with each cross section measure-
ment include only a small part of the total uncertainty.
Thus, we provide best fit values separately for our anal-
yses of Mainz and world data. To determine an opti-
mal Q

2

max

, Fig. 10 illustrates the statistical uncertainty
on rE and rM found using our default fit both to the
1422 point Mainz dataset and to the world dataset. For
the Mainz data, the uncertainty is minimized by tak-
ing Q

2

max

& 0.5 GeV2, with negligible improvement be-
yond this point. In order to maximize the statistical
power of the data, while minimizing potential system-
atic e↵ects in higher Q

2 data, we take for definiteness
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/µp = 5, k
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reproduce the curves in Fig. 6. For orientation, the dash-
dotted red line indicates the muonic hydrogen value for rE .

are fixed by infrared divergences whose form is dictated
by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
sis is outside the scope of the present paper, but to illus-
trate the potential impact, let us consider in place of the
ansatz that makes the replacement (31) in Eq. (29), the
following expressions:
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These expressions agree with the known corrections
through one-loop order, and resum the leading loga-
rithms to all orders in perturbation theory when there
is only one large ratio of scales.

Fig. 9 illustrates the impact of applying the correction
on the right hand side of Eq. (41) in place of the ansatz

(31). For definiteness, the plot takes �E = 10MeV.
As indicated in the figure, the shifts in the radii under
this correction are a factor ⇠ 2–3 larger than those al-
lowed in Table IX, which considered corrections vary-
ing by 0.5% over beam-energy/spectrometer combina-
tions. The variation of the correction (41) over beam-
energy/spectrometer combinations (i.e., the magnitude
of a in Eq. (35)) ranges between 0.9% and 2.6%, with an
average 1.5%.
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data will artificially favor the Mainz data, as the un-
certainties associated with each cross section measure-
ment include only a small part of the total uncertainty.
Thus, we provide best fit values separately for our anal-
yses of Mainz and world data. To determine an opti-
mal Q

2

max

, Fig. 10 illustrates the statistical uncertainty
on rE and rM found using our default fit both to the
1422 point Mainz dataset and to the world dataset. For
the Mainz data, the uncertainty is minimized by tak-
ing Q

2
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& 0.5 GeV2, with negligible improvement be-
yond this point. In order to maximize the statistical
power of the data, while minimizing potential system-
atic e↵ects in higher Q

2 data, we take for definiteness

Default fit: exponentiate complete 
one loop radiative corrections

Exponentiate log2 (Q2/me2)

More detailed analysis of subleading radiative corrections required and in 
progress.   Will present results using standard radiative correction models. 
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FIG. 9: Illustrative fit with modified radiative corrections
given by Eq. (41) using �E = 10MeV. Lower and upper
dashed blue lines correspond to the plus sign and minus sign
in Eq. (41), respectively. Fits are for the 657 point rebinned
A1 MAMI dataset with 0.3–0.4% uncorrelated systematic un-
certainties using the z expansion with t

0

= 0, Gaussian priors
with |ak|max

= |bk|max

/µp = 5, k
max

= 12. Black solid lines
reproduce the curves in Fig. 6. For orientation, the dash-
dotted red line indicates the muonic hydrogen value for rE .

are fixed by infrared divergences whose form is dictated
by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
sis is outside the scope of the present paper, but to illus-
trate the potential impact, let us consider in place of the
ansatz that makes the replacement (31) in Eq. (29), the
following expressions:
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These expressions agree with the known corrections
through one-loop order, and resum the leading loga-
rithms to all orders in perturbation theory when there
is only one large ratio of scales.

Fig. 9 illustrates the impact of applying the correction
on the right hand side of Eq. (41) in place of the ansatz

(31). For definiteness, the plot takes �E = 10MeV.
As indicated in the figure, the shifts in the radii under
this correction are a factor ⇠ 2–3 larger than those al-
lowed in Table IX, which considered corrections vary-
ing by 0.5% over beam-energy/spectrometer combina-
tions. The variation of the correction (41) over beam-
energy/spectrometer combinations (i.e., the magnitude
of a in Eq. (35)) ranges between 0.9% and 2.6%, with an
average 1.5%.

D. Final radius extractions

Q

2

max

[GeV2]

�
r
[f
m

]

FIG. 10: Statistical error on rE (bottom, red squares) and rM

(top, blue circles) as a function of Q2

max

. Solid symbols are
for the 1422 point A1 MAMI dataset, and open symbols are
for the world cross section and polarization dataset. Fits use
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A global analysis combining Mainz and other world
data will artificially favor the Mainz data, as the un-
certainties associated with each cross section measure-
ment include only a small part of the total uncertainty.
Thus, we provide best fit values separately for our anal-
yses of Mainz and world data. To determine an opti-
mal Q

2

max

, Fig. 10 illustrates the statistical uncertainty
on rE and rM found using our default fit both to the
1422 point Mainz dataset and to the world dataset. For
the Mainz data, the uncertainty is minimized by tak-
ing Q

2

max

& 0.5 GeV2, with negligible improvement be-
yond this point. In order to maximize the statistical
power of the data, while minimizing potential system-
atic e↵ects in higher Q

2 data, we take for definiteness
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Performed the most comprehensive analysis of global electron-proton 
scattering data

rE summary

rM summary

Employing standard models for radiative corrections, and 
reasonable experimental systematics: Mainz and world values 
consistent.  Combination is 4σ from muonic hydrogen 

Mainz and world values differ by 2.5σ.   
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Implications:

Tension in low- and high-Q2 data may point to underestimated 
systematic.   Identified naively subheading radiative corrections as a 
concern. 

The same issues facing electron-proton scattering are critical for the 
HEP accelerator neutrino program. 

most mundane resolution involves 5σ shift in Rydberg, and discarding/
revising large body of results in both electron scattering and hydrogen 
spectroscopy.  
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TABLE V: Number of datapoints, reduced �

2, and confi-
dence level for each combination of spectrometer (A, B or
C) and beam energy (in MeV) of the rebinned A1 MAMI
dataset. Columns 4 and 5 (columns 6 and 7) give the results
after the inclusion of a uniform 0.25% uncorrelated system-
atic, and after the inclusion of the final 0.3–0.4% uncorrelated
systematic, respectively. See text for details.

spec. beam N� �

2

red

CL (%) �

2

red

CL (%)
A 180 29 0.59 96.1 0.46 99.4

315 23 0.54 96.4 0.44 99.1
450 25 1.52 4.8 1.00 46.7
585 28 1.54 3.4 1.03 42.8
720 29 1.05 39.9 0.87 66.4
855 21 0.92 56.8 0.77 76.0

B 180 61 0.85 79.8 0.65 98.3
315 46 1.05 38.5 0.76 88.5
450 68 0.90 71.7 0.67 98.2
585 60 0.61 99.2 0.50 99.96
720 57 1.29 6.9 0.97 53.7
855 66 1.88 0.002 1.15 19.6

C 180 24 0.88 63.3 0.68 88.0
315 24 1.16 27.2 0.78 76.8
450 25 1.53 4.3 1.08 35.9
585 18 0.83 66.3 0.65 86.4
720 32 1.11 30.2 0.90 62.3
855 21 0.79 73.7 0.62 90.5

tainty of approximately 0.3%. We then examined the
�

2 contribution from each of the 18 energy-spectrometer
combinations to see if any of them had anomalously large
or small �

2

red

values. While the spread of �

2

red

values was
significant, many datasets have a relatively small number
of points, and the only set which was an extreme outlier
was the data from spectrometer B at E

beam

= 855 MeV.
We chose to increase the systematic uncertainty on this
dataset to 0.4%, while keeping 0.3% for all other datasets.
The reduced �

2 and confidence levels for each data sub-
set are displayed in Table V. The total �

2 is 520.4 for
657 points, which might suggest that 0.3% is a slight
overestimate of the uncorrelated systematic, but it is a
small e↵ect, with a 0.25% correction yielding a reduced
�

2 above one by a similar amount.

Table VI shows the radius fit results for the rebinned
Mainz data with the statistical scaling factors from the
original analysis replaced by the constant 0.3% system-
atic uncertainty (0.4% for spectrometer B at 855 MeV
beam energy).

This procedure introduces enough uncertainty to ac-
count for random scatter of the points around the best fit
curve. However, any errors that are correlated between
multiple points will bias the fit, and will not be fully
reflected in this procedure, making the resulting uncer-
tainty estimate more of a lower limit. While the impact
of correlated uncertainties will be examined separately,
these rely on specific models for kinematic dependences
of any additional errors. The inclusion of an even larger
uncorrelated uncertainty would allow the data to account

TABLE VI: Results for fitting of the 657 point rebinned A1
MAMI dataset with 0.3–0.4% uncorrelated systematic uncer-
tainties at three values of Q2

max

using the z expansion with
t

0

= 0, Gaussian priors with |ak|max

= |bk|max

/µp = 5,
k

max

= 12. N� is the number of cross section points with
Q

2

< Q

2

max

and N

norm

is the number of normalization pa-
rameters appearing in the data subset.

Q

2

max

[GeV2] rE [fm] rM [fm] �

2

min

N� N

norm

0.05 0.856(27) 1.11(14) 110.5 176 13
0.5 0.895(14) 0.777(34) 442.0 568 29
1 0.908(13) 0.767(33) 520.4 657 31

for a range of correlated errors, but the reduced �

2 would
end up significantly smaller than unity. For illustration,
Table VII shows the results where we apply a 0.5% un-
correlated systematic uncertainty to every data point,
instead of the 0.3–0.4% uncertainties in the previous fit.

TABLE VII: Same as Table VI, but with 0.5% uncorrelated
systematic uncertainty.

Q

2

max

[GeV2] rE [fm] rM [fm] �

2

min

N� N

norm

0.05 0.861(35) 1.05(18) 48.7 176 13
0.5 0.891(18) 0.768(43) 211.5 568 29
1 0.901(17) 0.758(42) 250.3 657 31

D. Correlated systematic uncertainties

We now consider systematic errors that do not scale
with statistical errors, but which are also correlated
across data points. We begin by examining the proce-
dure of Ref. [8].

In the A1 MAMI dataset, each cross section is accom-
panied by two factors to account for systematic uncer-
tainties. The first is due to the bremsstrahlung energy
cut and is estimated by varying the cut. The second is
meant to account for e�ciency changes, normalization
drifts, variations in spectrometer acceptance, and back-
ground misestimations. This second class of systemat-
ics is treated by implementing a linear deviation of the
scattering angle when evaluating the impact on the form
factor fit and radius extraction. The complete dataset
is refit after multiplying or dividing the individual cross
section ratios by the corresponding factor for either the
energy cut or correlated systematic error, and the largest
di↵erence (from multiplying and dividing) is taken as the
uncertainty. The total systematic uncertainty is then ob-
tained by summing in quadrature:

�r

syst

=
p

(�r

Ecut

)2 + (�r

corr

)2 . (34)

The stated cross section uncertainties associated with
the variation in energy cut are small, with an RMS varia-
tion of 0.08%. These mainly introduce additional scatter

- one set of points (Ebeam=315 MeV, θ=30.01°) inconsistent with 
statistical scatter.   Excluded. 

- 657 independent cross section measurements (from original 1422)

Mainz data rebinning
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TABLE V: Number of datapoints, reduced �

2, and confi-
dence level for each combination of spectrometer (A, B or
C) and beam energy (in MeV) of the rebinned A1 MAMI
dataset. Columns 4 and 5 (columns 6 and 7) give the results
after the inclusion of a uniform 0.25% uncorrelated system-
atic, and after the inclusion of the final 0.3–0.4% uncorrelated
systematic, respectively. See text for details.

spec. beam N� �

2

red

CL (%) �

2

red

CL (%)
A 180 29 0.59 96.1 0.46 99.4

315 23 0.54 96.4 0.44 99.1
450 25 1.52 4.8 1.00 46.7
585 28 1.54 3.4 1.03 42.8
720 29 1.05 39.9 0.87 66.4
855 21 0.92 56.8 0.77 76.0

B 180 61 0.85 79.8 0.65 98.3
315 46 1.05 38.5 0.76 88.5
450 68 0.90 71.7 0.67 98.2
585 60 0.61 99.2 0.50 99.96
720 57 1.29 6.9 0.97 53.7
855 66 1.88 0.002 1.15 19.6

C 180 24 0.88 63.3 0.68 88.0
315 24 1.16 27.2 0.78 76.8
450 25 1.53 4.3 1.08 35.9
585 18 0.83 66.3 0.65 86.4
720 32 1.11 30.2 0.90 62.3
855 21 0.79 73.7 0.62 90.5

tainty of approximately 0.3%. We then examined the
�

2 contribution from each of the 18 energy-spectrometer
combinations to see if any of them had anomalously large
or small �

2

red

values. While the spread of �

2

red

values was
significant, many datasets have a relatively small number
of points, and the only set which was an extreme outlier
was the data from spectrometer B at E

beam

= 855 MeV.
We chose to increase the systematic uncertainty on this
dataset to 0.4%, while keeping 0.3% for all other datasets.
The reduced �

2 and confidence levels for each data sub-
set are displayed in Table V. The total �

2 is 520.4 for
657 points, which might suggest that 0.3% is a slight
overestimate of the uncorrelated systematic, but it is a
small e↵ect, with a 0.25% correction yielding a reduced
�

2 above one by a similar amount.

Table VI shows the radius fit results for the rebinned
Mainz data with the statistical scaling factors from the
original analysis replaced by the constant 0.3% system-
atic uncertainty (0.4% for spectrometer B at 855 MeV
beam energy).

This procedure introduces enough uncertainty to ac-
count for random scatter of the points around the best fit
curve. However, any errors that are correlated between
multiple points will bias the fit, and will not be fully
reflected in this procedure, making the resulting uncer-
tainty estimate more of a lower limit. While the impact
of correlated uncertainties will be examined separately,
these rely on specific models for kinematic dependences
of any additional errors. The inclusion of an even larger
uncorrelated uncertainty would allow the data to account

TABLE VI: Results for fitting of the 657 point rebinned A1
MAMI dataset with 0.3–0.4% uncorrelated systematic uncer-
tainties at three values of Q2

max

using the z expansion with
t

0

= 0, Gaussian priors with |ak|max

= |bk|max

/µp = 5,
k

max

= 12. N� is the number of cross section points with
Q

2

< Q

2

max

and N

norm

is the number of normalization pa-
rameters appearing in the data subset.

Q

2

max

[GeV2] rE [fm] rM [fm] �

2

min

N� N

norm

0.05 0.856(27) 1.11(14) 110.5 176 13
0.5 0.895(14) 0.777(34) 442.0 568 29
1 0.908(13) 0.767(33) 520.4 657 31

for a range of correlated errors, but the reduced �

2 would
end up significantly smaller than unity. For illustration,
Table VII shows the results where we apply a 0.5% un-
correlated systematic uncertainty to every data point,
instead of the 0.3–0.4% uncertainties in the previous fit.

TABLE VII: Same as Table VI, but with 0.5% uncorrelated
systematic uncertainty.

Q

2

max

[GeV2] rE [fm] rM [fm] �

2

min

N� N

norm

0.05 0.861(35) 1.05(18) 48.7 176 13
0.5 0.891(18) 0.768(43) 211.5 568 29
1 0.901(17) 0.758(42) 250.3 657 31

D. Correlated systematic uncertainties

We now consider systematic errors that do not scale
with statistical errors, but which are also correlated
across data points. We begin by examining the proce-
dure of Ref. [8].

In the A1 MAMI dataset, each cross section is accom-
panied by two factors to account for systematic uncer-
tainties. The first is due to the bremsstrahlung energy
cut and is estimated by varying the cut. The second is
meant to account for e�ciency changes, normalization
drifts, variations in spectrometer acceptance, and back-
ground misestimations. This second class of systemat-
ics is treated by implementing a linear deviation of the
scattering angle when evaluating the impact on the form
factor fit and radius extraction. The complete dataset
is refit after multiplying or dividing the individual cross
section ratios by the corresponding factor for either the
energy cut or correlated systematic error, and the largest
di↵erence (from multiplying and dividing) is taken as the
uncertainty. The total systematic uncertainty is then ob-
tained by summing in quadrature:

�r

syst

=
p

(�r

Ecut

)2 + (�r

corr

)2 . (34)

The stated cross section uncertainties associated with
the variation in energy cut are small, with an RMS varia-
tion of 0.08%. These mainly introduce additional scatter

- one set of points (Ebeam=315 MeV, θ=30.01°) inconsistent with 
statistical scatter.   Excluded. 

- 657 independent cross section measurements (from original 1422)

Constant 0.25% 
uncorrelated systematic

Outlier

Mainz data rebinning
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TABLE V: Number of datapoints, reduced �

2, and confi-
dence level for each combination of spectrometer (A, B or
C) and beam energy (in MeV) of the rebinned A1 MAMI
dataset. Columns 4 and 5 (columns 6 and 7) give the results
after the inclusion of a uniform 0.25% uncorrelated system-
atic, and after the inclusion of the final 0.3–0.4% uncorrelated
systematic, respectively. See text for details.

spec. beam N� �

2

red

CL (%) �

2

red

CL (%)
A 180 29 0.59 96.1 0.46 99.4

315 23 0.54 96.4 0.44 99.1
450 25 1.52 4.8 1.00 46.7
585 28 1.54 3.4 1.03 42.8
720 29 1.05 39.9 0.87 66.4
855 21 0.92 56.8 0.77 76.0

B 180 61 0.85 79.8 0.65 98.3
315 46 1.05 38.5 0.76 88.5
450 68 0.90 71.7 0.67 98.2
585 60 0.61 99.2 0.50 99.96
720 57 1.29 6.9 0.97 53.7
855 66 1.88 0.002 1.15 19.6

C 180 24 0.88 63.3 0.68 88.0
315 24 1.16 27.2 0.78 76.8
450 25 1.53 4.3 1.08 35.9
585 18 0.83 66.3 0.65 86.4
720 32 1.11 30.2 0.90 62.3
855 21 0.79 73.7 0.62 90.5

tainty of approximately 0.3%. We then examined the
�

2 contribution from each of the 18 energy-spectrometer
combinations to see if any of them had anomalously large
or small �

2

red

values. While the spread of �

2

red

values was
significant, many datasets have a relatively small number
of points, and the only set which was an extreme outlier
was the data from spectrometer B at E

beam

= 855 MeV.
We chose to increase the systematic uncertainty on this
dataset to 0.4%, while keeping 0.3% for all other datasets.
The reduced �

2 and confidence levels for each data sub-
set are displayed in Table V. The total �

2 is 520.4 for
657 points, which might suggest that 0.3% is a slight
overestimate of the uncorrelated systematic, but it is a
small e↵ect, with a 0.25% correction yielding a reduced
�

2 above one by a similar amount.

Table VI shows the radius fit results for the rebinned
Mainz data with the statistical scaling factors from the
original analysis replaced by the constant 0.3% system-
atic uncertainty (0.4% for spectrometer B at 855 MeV
beam energy).

This procedure introduces enough uncertainty to ac-
count for random scatter of the points around the best fit
curve. However, any errors that are correlated between
multiple points will bias the fit, and will not be fully
reflected in this procedure, making the resulting uncer-
tainty estimate more of a lower limit. While the impact
of correlated uncertainties will be examined separately,
these rely on specific models for kinematic dependences
of any additional errors. The inclusion of an even larger
uncorrelated uncertainty would allow the data to account

TABLE VI: Results for fitting of the 657 point rebinned A1
MAMI dataset with 0.3–0.4% uncorrelated systematic uncer-
tainties at three values of Q2

max

using the z expansion with
t

0

= 0, Gaussian priors with |ak|max

= |bk|max

/µp = 5,
k

max

= 12. N� is the number of cross section points with
Q

2

< Q

2

max

and N

norm

is the number of normalization pa-
rameters appearing in the data subset.

Q

2

max

[GeV2] rE [fm] rM [fm] �

2

min

N� N

norm

0.05 0.856(27) 1.11(14) 110.5 176 13
0.5 0.895(14) 0.777(34) 442.0 568 29
1 0.908(13) 0.767(33) 520.4 657 31

for a range of correlated errors, but the reduced �

2 would
end up significantly smaller than unity. For illustration,
Table VII shows the results where we apply a 0.5% un-
correlated systematic uncertainty to every data point,
instead of the 0.3–0.4% uncertainties in the previous fit.

TABLE VII: Same as Table VI, but with 0.5% uncorrelated
systematic uncertainty.

Q

2

max

[GeV2] rE [fm] rM [fm] �

2

min

N� N

norm

0.05 0.861(35) 1.05(18) 48.7 176 13
0.5 0.891(18) 0.768(43) 211.5 568 29
1 0.901(17) 0.758(42) 250.3 657 31

D. Correlated systematic uncertainties

We now consider systematic errors that do not scale
with statistical errors, but which are also correlated
across data points. We begin by examining the proce-
dure of Ref. [8].

In the A1 MAMI dataset, each cross section is accom-
panied by two factors to account for systematic uncer-
tainties. The first is due to the bremsstrahlung energy
cut and is estimated by varying the cut. The second is
meant to account for e�ciency changes, normalization
drifts, variations in spectrometer acceptance, and back-
ground misestimations. This second class of systemat-
ics is treated by implementing a linear deviation of the
scattering angle when evaluating the impact on the form
factor fit and radius extraction. The complete dataset
is refit after multiplying or dividing the individual cross
section ratios by the corresponding factor for either the
energy cut or correlated systematic error, and the largest
di↵erence (from multiplying and dividing) is taken as the
uncertainty. The total systematic uncertainty is then ob-
tained by summing in quadrature:

�r

syst

=
p

(�r

Ecut

)2 + (�r

corr

)2 . (34)

The stated cross section uncertainties associated with
the variation in energy cut are small, with an RMS varia-
tion of 0.08%. These mainly introduce additional scatter

- one set of points (Ebeam=315 MeV, θ=30.01°) inconsistent with 
statistical scatter.   Excluded. 

- 657 independent cross section measurements (from original 1422)

Constant 0.3% 
uncorrelated systematic

Constant 0.4% 
uncorrelated systematic

Mainz data rebinning
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TABLE VIII: Results for changes in the radii under increases
(upper value for each Q

2

max

) or decreases (lower value) in the
energy loss cut. Fits are for the 657 point rebinned A1 MAMI
dataset with 0.3–0.4% uncorrelated systematic uncertainties
at three values of Q2

max

using the z expansion with t

0

= 0,
Gaussian priors with |ak|max

= |bk|max

/µp = 5, k
max

= 12.

Q

2

max

[GeV2] �rE [fm] �rM [fm]
0.05 �0.001 +0.023

�0.005 0.000
0.5 +0.003 +0.003

�0.003 +0.003
1 +0.003 +0.009

�0.002 0.000

into the cross sections, but have little impact on the ra-
dius central values. For the entire dataset, this translates
to an uncertainty in rE of 0.003 fm and in rM of 0.009 fm.
Explicit results are given in Table VIII.

In the A1 analysis, the remaining correlated system-
atic is assumed to depend linearly on scattering angle
(cf. Eq. (35) below, with x = ✓), with a variation of ap-
proximately 0.2% between minimum and maximum an-
gle for each energy-spectrometer combination, except the
855 MeV data with spectrometer C (covering large an-
gles), for which the variation is approximately 0.5%. 18

We perform a more comprehensive study of correlated
systematics below.

E. Other correlated systematic e↵ects

The correlated systematics mentioned above could rep-
resent either experimental or theoretical uncertainties.
For example, they could be associated with radiative cor-
rections (beyond the energy cuto↵ variation), background
subtraction [13], potential o↵sets in the absolute beam
energy or angle calibration, etc. The impact of such un-
certainties on the cross section is di�cult to constrain
below the 0.5% level, but because of the floating normal-
ization of the di↵erent datasets, these correlated system-
atic uncertainties only need to account for the variation
within a specific normalization subgroup.

While some sources of correlated corrections may be
well approximated by a correction that is linear in the
scattering angle over a single energy-spectrometer set-
ting, this is not the only possible kinematic dependence,
and e↵ects may be relevant over larger or smaller subsets
of data, or may be more important for one spectrometer.
Thus, we examine the impact of di↵erent prescriptions
for applying the correlated systematics. We take a 0.5%
variation in the systematic correction, but vary the func-
tional form used to go from the minimum to maximum

18 These values are deduced from the appropriate column of the
tabulated dataset in the Supplemental Material of Ref. [8]

TABLE IX: Results for changes in the radii under multipli-
cation (top sign) or division (bottom sign) by a linear per-
turbation as in Eq. (35) for each beam energy/spectrometer
combination, with x = Q

2, 1/Q2, ✓ or 1/✓. Fits are for
the 657 point rebinned A1 MAMI dataset with 0.3–0.4% un-
correlated systematic uncertainties at three values of Q

2

max

using the z expansion with t

0

= 0, Gaussian priors with
|ak|max

= |bk|max

/µp = 5, k
max

= 12.

x Q

2

max

[GeV2] �rE [fm] �rM [fm]
Q

2 0.05 ⌥0.017 ±0.021
0.5 ⌥0.016 ⌥0.022
1 ⌥0.015 ⌥0.026

1/Q2 0.05 ±0.041 ⌥0.046
0.5 ±0.025 ±0.016
1 ±0.023 ±0.021

✓ 0.05 ⌥0.022 ±0.027
0.5 ⌥0.018 ⌥0.021
1 ⌥0.017 ⌥0.025

1/✓ 0.05 ±0.036 ⌥0.039
0.5 ±0.024 ±0.018
1 ±0.021 ±0.022

kinematic setting within data subsets, and we vary how
the full experiment is broken down. For the latter, we ex-
amine three cases: 0.5% variation over the range of angles
for each spectrometer-energy combination (as done in the
A1 analysis, with 18 separate angular ranges), 0.5% vari-
ation over the full kinematic range for each spectrometer
(with 3 separate ranges), and 0.5% variation for each of
the 34 normalization subgroups.

We examine 8 di↵erent approaches to varying the kine-
matic dependence of the systematic correction over a
given data subset. We multiply and divide the cross sec-
tions and uncertainties by the factor

1 + �

corr

= 1 + a

x � x

min

x

max

� x

min

, (35)

where a = 0.005 and x is a kinematic variable. We take
the variable x to be proportional or inversely proportional
to ✓, Q

2, or E

0, or to be proportional to " or 1/ sin4(✓/2).
Note that for a given energy, the correction goes from
zero at one extreme of the angular range for the data
subset to 0.5% at the other extreme: these di↵erent cor-
rections only modify the interpolation to intermediate
angles. These illustrative functional forms can be moti-
vated from specific sources, including kinematic o↵sets,
rate-dependent e↵ects or simplified models of radiative
corrections. However, the exact magnitude and precise
functional form cannot be fully determined without fur-
ther input.

Taking the correction to be linear in scattering angle,
x = ✓, and applied to each of the 18 energy-spectrometer
combinations, we find an uncertainty in the radii from
fits to the entire dataset of �rE = 0.017 fm, �rM =
0.025 fm. These are roughly 2.5 times larger than the
values quoted in the Mainz analysis, due mainly to the
increase from their ⇠0.2% to our 0.5%. Other functional

In the A1 analysis, correlated systematic errors are estimated by 
considering modifications to each data subset:

d� ! (1 + �)d�

where δ depends on kinematics

Since the normalizations of individual data subsets are free 
parameters, only variations in δ over subsets relevant.     Simple 
ansatz: 

A1 analysis: 

- a≈0.2%, equal in sign and magnitude for all beam/
spectrometer subsets

- x=θ

Mainz correlated systematics

37



We performed a more general analysis with different functional 
forms and different subset groupings, 

- x=θ, 1/θ, Q2, 1/Q2, E´, 1/E´, ε, sin4(θ/2)

- data groupings: beam/spectrometer (18 subsets) 
spectrometer (3 subsets); normalization (34 subsets) 

Observations: 
- especially for rM, significant cancellation between 
corrections applied to three spectrometers when a=constant 

- take results for x=θ, a=0.4%, applied to beam/spectrometer 
groupings as “minimum” consistent with known uncertainties
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Experimental landscape: hydrogen

Proton Puzzle         Mainz           June 3, 2014            Eric Hessels  York University  Toronto  Canada                12 

Comparing muonic hydrogen to the individual 
measurements makes the conflict seem not as big: 
all but one agree with µp to within 2 s.d.  

We need more measurements in hydrogen  

Hydrogen 

● no straightforward systematic explanation identified, but ~5σ deviation 
results from summing many ~2σ effects

plot courtesy E. Hessels, proton radius workshop 2014
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Experimental landscape: historical e-p extractions
Proton Radius Puzzle 57
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Figure 1: Proton radius determinations over time. Electronic measurements seem

to settle around rp=0.88 fm, whereas the muonic hydrogen value [1,2] is at 0.84 fm.

Values are (from left to right): Orsay [10], Stanford [11], Saskatoon [12, 13],

Mainz [14] (all in blue) are early electron scattering measurements. Recent new

scattering measurements are from MAMI [4] and Jlab [15]. The green and cyan

points denote various reanalyses of the world electron scattering data [16–21]. The

red symbols originate from laser spectroscopy of atomic hydrogen and advances

in hydrogen QED theory (see [3] and references therein). The green and red

points in the year 2003 denote the reanalysis of the world electron scattering

data [19] and the world data from hydrogen and deuterium spectroscopy which

have determined the value of rp in the CODATA adjustments [3, 22] since the

2002 edition.

From Pohl et al., Ann.Rev.Nucl.Part.Sci. 63, 175
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