An Accelerator-Produced, Sub-GeV Dark Matter Search with the MiniBooNE Neutrino Detector

Robert Cooper

http://neutrino.indiana.edu/rlcooper

Outline

- The Evidence for Dark Matter
- A Model for Sub-GeV Dark Matter
- The MiniBooNE Detector and Its Sensitivity
- Dark Matter Beams and Neutrino Contamination
- Current Analysis and Preliminary Results
- Upcoming work and conclusions

THE EVIDENCE FOR DARK MATTER

Historical Postulation of Dark Matter

- Fritz Zwicky applied virial theorem to Coma cluster¹
- Visible matter can not explain rotational velocities of the cluster
- Order 100 times more matter unseen
 → Dark Matter

¹F. Zwicky, *Helv. Phys. Acta* **6** (1933) 110.

Modern Validations: Galaxy Rotation

 Rotational velocity a distance r from center is

 $v = \sqrt{\frac{GM(r)}{r}}$

where *M*(*r*) is contained mass

- Visible mass implies a falling rotational velocity, *but*...
- Rotational velocity appears flat

¹T. S. van Albada et al., *Astrophysical Journal* **295** (1985) 305.

Modern Validations: CMB

- Precision cosmic microwave background temperature anisotropy measurements
- COBE, WMAP, Planck satellites
- Planck collaboration uses multiparameter fit to extract dark energy, dark matter, etc. of universe¹

¹Planck Collaboration: P. A. R. Ade et al., *A&A Preprint* (2013)

Modern Validations: Large Structure

- Numerical N-body simulations require dark matter model¹
- Bottom-up scenarios favored from vanilla cold dark matter models (in favor of top-down from hot dark matter)

¹http://cosmicweb.uchicago.edu/filaments.html

Modern Validations: Gravity Lensing

- Weak gravitational lensing can map mass distribution
- Chandra X-Ray observatory mapped Bullet Cluster
- Strong evidence for dark matter rather than modified gravitation

¹Images from Wikipedia

What We Know About Dark Matter

- - Freezes-out relic abundance
 - Energy density today $\rho_{DM} = n_{DM} M_{DM} \approx 0.3 \text{ GeV/cm}^3$
 - Local galactic velocity
 v ≈ 220 km/s (~10⁻³c)

¹Image from P. Gondolo, arXiv:astro-ph/0403064 [astro-ph]

Possible Models For Dark Matter?

<u>Neutrinos</u>

- They exist
- Not enough mass and relativistic → hot dark matter
- Prefers top-down structure
- Sterile neutrinos have other cosmological constraints
 → possible cold dark matter

¹G. Bertone et al., *Phys. Rept.* **405** (2005) 279. arXiv:hep-ph/0404175 [hep-ph]

Possible Models For Dark Matter?

<u>Neutrinos</u>

- They exist
- Not enough mass and relativistic → hot dark matter
- Prefers top-down structure
- Sterile neutrinos have other cosmological constraints
 → possible cold dark matter

¹G. Bertone et al., *Phys. Rept.* **405** (2005) 279. arXiv:hep-ph/0404175 [hep-ph]

Possible Models For Dark Matter?

<u>Axions</u>

 Introduced to solve strong-CP problem, but have low mass < 0.01 eV

Supersymmetry Candidates

- Neutralino
- Sneutrino
- Axino...

<u>Etc...</u>

¹G. Bertone et al., *Phys. Rept.* **405** (2005) 279. arXiv:hep-ph/0404175 [hep-ph]

How To Look For Dark Matter

Collider Production

- Can cover most of mass range
- Signal is lack of a signal (Missing *E_T*)

Annihilation

- Energetic particle / antiparticle signals
- Also gamma rays (e.g., 511 keV)

Scattering

- Galactic halo DM scatters in detector
- Very low energy deposits

Where Are We With Direct Searches?

"WIMP Miracle"

- Electroweak scale masses (~100 GeV) and cross sections (10⁻³⁸ cm²) give correct relic abundances
- Conflicting claims, mostly ruled out phase space
- A rich dark sector easily bypasses "miracle"

¹G. L. Baudis, *Phys. Dark Univ.* **4** (2014) 50. arXiv:1408.4371 [astro-ph]

Why Not Sub-GeV Dark Matter?

- Lee-Weinberg bound: $M_{\chi} > O(1 \text{ GeV})$ presumes weak annihilation rate $\sim M_{\chi}^2 / M_Z^4$ which is too low
- New forces and force carriers \rightarrow viable light thermal relic
 - 1. Mediate SM interactions to a dark sector
 - 2. Open up annihilation channels circumventing L-W bound

¹C. Boehm & P. Fayet, Nucl. Phys. B683 (2004) 219. arXiv:hep-ph/0305261 [hep-ph]

R.L. Cooper -- INFO15

Minimal Vector Portal Model

- Postulated to solve excess 511 keV γs from central galaxy bulge → extends more familiar dark photon concept
- U(1) vector mediator kinematically mixed
- Requires 4 parameters: $m_{\chi}, m_V, \kappa, g'$

¹C. Boehm & P. Fayet, *Nucl. Phys.* **B683** (2004) 219. arXiv:hep-ph/0305261 [hep-ph] C. Boehm et al., *Phys. Rev. Lett.* **92** (2004) 101301. arXiv:astro-ph/0309686 [astro-ph]

Dark Matter Beam and Detector

¹B. Batell et al., *Phys. Rev. Lett.* **113** (2014) 171802. arXiv:1406.2698 [hep-ph]. P. deNiverville et al., *Phys. Rev.* **D84** (2011) 075020. arXiv:1107.4580 [hep-ph].

Our Primary Sensitivity

• To create a "beam" of dark matter traveling 500 m in dirt, require invisible decays

$$m_V > 2m_\chi$$

 Want final state of V decays to prefer pairs of χs

 $V \to \chi \chi^\dagger$

• SM final state suppression

- Minimal vector portal model initially motivated run
- Not the only viable model (e.g. leptophobic dark matter)

R.L. Cooper -- INFO15

¹B. Battell et al., *Phys. Rev.* **D90** (2014) 115014. arXiv:1405.7049 [hep-ph].

MINIBOONE DETECTOR

The MiniBooNE Detector

- 12 m spherical detector with 800 tons pure mineral oil (CH₂)
- Cherenkov response with some scintillation from trace fluors
- Inner signal region 1280× 8" PMTs Outer veto region 240× 8" PMTs (10% photocathode coverage)

Detector is very well characterized

¹A.A. Aguilar-Arevalo et al., *Nucl. Instrum. Meth.* **A599** (2009) 28. arXiv:0806.4201 [hep-ex].

The MiniBooNE Detector

- Run for over 10 years
- 11 oscillation papers
- 14 cross section and flux papers
- Relevant to this work
 NC elastic v-mode (6.7×10²⁰ POT)
 NC elastic v-mode (11.5×10²⁰ POT)

• 19 Ph.D. Theses

¹See our website for a list of all publications. http://www-boone.fnal.gov/

Particle IDentification

Nucleon PID

- Slow scintillation, very little Cherenkov
- Poorer energy resolution p - 20%, n – 30%

Electron PID

- Mostly Cherenkov but shape is important
 - e/μ fuzzy/sharp ring
 - $\pi^0 2$ rings \rightarrow degeneracy
- *e*_χ collision forward
 peaked → another cut

Previous Beam Dump / Fixed Target Experiments – Proton Beams

Experiment	Location	approx. Date	Amount of Beam (10 ²⁰ POT)	Beam Energy (GeV)	Target Mat.	Ref.
CHARM	CERN	1983	0.024	400	Cu	[16]
PS191	CERN	1984	0.086	19.2	Be	[17, 18]
E605	Fermilab	1986	$4 imes 10^{-7}$	800	Cu	[19]
SINDRUM	SIN,PSI					
u-Cal I	IHEP Serpukhov	1989	0.0171	70	Fe	[20–22]
LSND	LANSCE	1994-1995 1996-1998	813 882	0.798	H20, Cu W,Cu	[23]
NOMAD	CERN	1996-1998	0.41	450	Be	[18, 24]
WASA	COSY	2010		0.550	LH2	[25]
HADES	GSI	2011	0.32 pA*t	3.5	LH2,No,Ar+KCI	[26]
		2003-2008	6.27		Be	[27]
MiniBooNE	Fermilab	2005-2012	11.3	8.9	Be	[28]
		2013-2014	1.86		Steel	[29]

¹Table by R.T. Thornton, Indiana University Nuclear Physics Seminar, Nov. 21, 2014

Dark Matter Exclusion Plots

Vector Portal Exclusion Plots

¹A.A. Aguilar-Arevalo et al., *Phys. Rev.* **D82** (2010) 092005. arXiv:1007.4730 [hep-ex]. ²A.A. Aguilar-Arevalo et al., *Phys. Rev.* **D91** (2014) 012004. arXiv:1309.7257 [hep-ex].

 Consider nucleon elastic scattering

With Detector Efficiency

Same as v NC elastic
 → MUST SUPPRESS v

¹A.A. Aguilar-Arevalo et al., *Phys. Rev.* **D82** (2010) 092005. arXiv:1007.4730 [hep-ex]. ²A.A. Aguilar-Arevalo et al., *Phys. Rev.* **D91** (2014) 012004. arXiv:1309.7257 [hep-ex].

 Consider nucleon elastic scattering

With Detector Efficiency

¹A.A. Aguilar-Arevalo et al., *Phys. Rev.* **D82** (2010) 092005. arXiv:1007.4730 [hep-ex]. ²A.A. Aguilar-Arevalo et al., *Phys. Rev.* **D91** (2014) 012004. arXiv:1309.7257 [hep-ex].

 Consider nucleon elastic scattering

With Detector Efficiency

Same as v NC elastic
 → MUST SUPPRESS v

¹A.A. Aguilar-Arevalo et al., *Phys. Rev.* **D82** (2010) 092005. arXiv:1007.4730 [hep-ex]. ²A.A. Aguilar-Arevalo et al., *Phys. Rev.* **D91** (2014) 012004. arXiv:1309.7257 [hep-ex].

DARK MATTER FROM BNB

The Booster Neutrino Beamline (BNB)

- 8.9 GeV Booster protons to BNB ۲ endstation (or Main Injector)
- At BNB, protons strike Be target ۲ (1.8 radiation lengths)
- Typical operation: 2×10²⁰ protons on target (POT) per year

Facility

The Booster Neutrino Beamline (BNB)

- 8.9 GeV Booster protons to BNB endstation (or Main Injector)
- At BNB, protons strike Be target (1.8 radiation lengths)

Accelerator Neutrino Production

In MiniBooNE this works because pion production target is small

Pions escape and can decay in flight

How To Suppress v and Produce χ

- ν_μ from π⁺ → don't let "escape" into air, absorb them in material
- χ from π^0 , η : short lifetimes ($\tau \sim 10^{-16}$ s) \rightarrow decays before absorption in material

- Bypass Be target, hit steel
 beam stop
- π^0 production in Fe and Be similar

 Neutrino-mode horn-on for on-target MC

Off-Target Flux

 flux-weighted MC suppression ~40
 → CCQE data ~50

Better beamline MC

 Neutrino-mode horn-on for on-target MC

On- to Off- Ratio

 flux-weighted MC suppression ~40
 → CCQE data ~50

Better beamline MC

MiniBooNE Neutrino Suppression

Neutrino-mode horn-on • **CCQE E**, reconstructed for on-target MC **Reconstructed Neutrino Energy** hd Entries 996 837.3 Mean Counts Counts RMS 337.2 flux-weighted MC ٠ suppression ~40 140 \rightarrow CCQE data ~50 120 100 80 W^{\pm} 60 n 40 ^{12}C Х 20 Better beamline MC 0₀ 500 1000 1500 2000 2500

¹A.A. Aguilar-Arevalo et al., *Phys. Rev.* **D79** (2009) 072002. arXiv:0806.1449 [hep-ex]

E^{QE} (MeV)

Beampipe Survey with FRED

FRED: Finding Radiation Evidence in the Decay pipe

Visual and magnetic field survey

•

DATA ANALYSIS

Event Selection Cuts

- 1 Track (single recoil) in beam timing window
- Event is centralized contained
 - No activity in veto
 - Fiducialized inner tank
- Signal above hits and visible energy threshold
- PID: Nucleon or electron

Dark Matter Propagation Time

- χ is massive so travels the 500 m slower than $c (m\chi = 120 \text{ MeV}, E = 1.5 \text{ GeV} \rightarrow 6 \text{ ns delay})$
- Beam 81 RF bunches
- Can correlate events to a particular bunch δt ~ 1.5 ns Cherenkov (eχ) δt ~ 4.2 ns Scintillation (Nχ)
- Provides more sensitivity to dark matter parameter space

Preliminary Results (3.19×10¹⁹ POT)

- Total 1.86×10²⁰ POT in 10 month run
- Semi-blind: open analysis of 17% of data
- Beam unrelated biggest contribution (measured in strobe)
- Anticipate ~10% systematic uncertainty

Preliminary Results (3.19×10¹⁹ POT)

- Total 1.86×10²⁰ POT in 10 month run
- Semi-blind: open analysis of 17% of data
- Beam unrelated biggest contribution (measured in strobe)
- Anticipate ~10% systematic uncertainty

UPCOMING WORK AND CONCLUSIONS

Conclusions

- MiniBooNE has collected 1.86×10²⁰ POT in beam-off-target configuration to search for sub-GeV dark matter
- Beam-off-target suppresses neutrino backgrounds
 → beam uncorrelated backgrounds dominant
- First of its kind, proton beam dump to a large neutrino detector → an extremely well characterized detector!
- N-DM analysis will be completed soon → e-DM and inelastic π⁰ channels are underway

Thank You!

A Proposal to Search for Dark Matter with MiniBooNE

Submitted to the FNAL PAC Dec 16, 2013 $\,$

The MiniBooNE Collaboration

R. Dharmapalan, & I. Stancu University of Alabama, Tuscaloosa, AL 35487

R. A. Johnson, & D.A. Wickremasinghe University of Cincinnati, Cincinnati, OH 45221

R. Carr, G. Karagiorgi, & M. H. Shaevitz Columbia University; New York, NY 10027

M. Backfish, B.C. Brown, F.G. Garcia, R. Ford, T. Kobilarcik, W. Marsh C. D. Moore, D. Perevalov, C. Polly, A.D. Russell, & W. Wester Fermi National Accelerator Laboratory, Batavia, IL 60510

> J. Grange, & H. Ray University of Florida, Gainesville, FL 32611

R. Cooper, R. Tayloe, & R. Thornton Indiana University, Bloomington, IN 47405

G. T. Garvey, A. Green, W. Huelsnitz, W. Ketchum, Q. Liu, W. C. Louis, G. B. Mills, J. Mirabal, Z. Pavlovic, C. Taylor, R. Van de Water, & D. H. White Los Alamos National Laboratory, Los Alamos, NM 87545

> B. P. Roe University of Michigan, Ann Arbor, MI 48109

A. A. Aguilar-Arevalo, & I. L. de Icaza Astiz Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, D.F. México

> P. Nienaber Saint Mary's University of Minnesota, Winona, MN 55987

T. Katori Queen Mary University of London, London, E1 4NS, UK

> C. Mariani Virginia Tech, Blacksburg, VA, 24061

The Theory Collaboration

B. Batell University of Chicago, Chicago, IL, 60637

The Theory Collaboration (Continued)

P. deNiverville, M. Pospelov, & A. Ritz University of Victoria, Victoria, BC, V8P 5C2

D. McKeen University of Washington, Seattle, WA, 98195

¹A.A. Aguilar-Arevalo et al. arXiv:1211.2258 [hep-ex]

R.L. Cooper -- INFO15

BACKUPS

Previous Beam Dump / Fixed Target Experiments – Electron Beams

Experiment	Location	approx. Date	Amount of Beam (10 ²⁰ EOT)	Beam Energy (GeV)	Target Mat.	Ref.
E137	SLAC	1980-1982	1.87	20	AI	[6, 8, 9]
E141	SLAC	1986	$2 imes 10^{-5}$	9	W	[8, 10]
KEK-PF	KEK	1986	$1.67 imes 10^{-3}$	2.5	Fe,PB,Plastic	[11]
LAL 86/25	Orsay	1986	\sim 9.6 $ imes$ 10 $^{-5}$	1.5	W	[12]
E774	Fermilab	1991	$0.52 imes 10^{-10}$	275	W	[8, 13]
A1	MAMI	2011	90 µA*t	0.855	Ta	[14]
APEX	JLAB	2011	150 µA*t	2.260	Ta	[15]

¹Table by R.T. Thornton, Indiana University Nuclear Physics Seminar, Nov. 21, 2014

Current Limits

<u>Invisible</u>

- $m_V > 2m_\chi$
- Final state V decays prefer to go to pairs of χ s $V \rightarrow \chi \chi^{\dagger}$
- SM final states suppressed
- We need these for χ beams

¹B. Battell et al., *Phys. Rev. Lett.* **113** (2014) 171802. arXiv:1406.2698 [hep-ph].

Current Limits

<u>Visible</u>

- $m_V < 2m_\chi$
- Final state V decays are visible SM model particles, e.g.,

$$V \to \ell^- \ell^+ \to \gamma \gamma$$

• Can't produce a pair of χ s

¹J. Blümlein & J. Brunner, *Phys. Lett.* **B4** (2014) 320. arXiv:1311.3870 [hep-ph].

Energy Spectrum Reconstruction

• Previous neutrino running important for spectrum reconstruction

¹A.A. Aguilar-Arevalo et al., *Phys. Rev.* **D82** (2010) 092005. arXiv:1007.4730 [hep-ex]. A.A. Aguilar-Arevalo et al., *Phys. Rev.* **DXX** (2015) XXXXX. arXiv:1309.7257[hep-ex].

Energy Spectrum Reconstruction

• CCQE is a "standard candle" to fix new cross sections against

¹A.A. Aguilar-Arevalo et al., *Phys. Rev.* **D82** (2010) 092005. arXiv:1007.4730 [hep-ex]. A.A. Aguilar-Arevalo et al., *Phys. Rev.* **D91** (2015) 012004. arXiv:1309.7257[hep-ex].