For the NOvA Collaboration

Joao Coelho

OUTLINE

- > Neutrino Oscillations
- > NuMI Beam
- » Bi-probability plot
- > NOvA Experiment
- > Numu Disappearance
- > Nue Appearance
- > What to expect

In general: n(n-1)/2 angles and (n-1)(n-2)/2 phases

 $\mathcal{A}_{\mu e} = \sum_{j} U_{\mu j} e^{i m_j \tau_j} U_{ej}^*$

- Flip $CP \implies$ Flip T (CPT theorem)
- Triangle is not symmetric (CP violation)

NEUTRINO OSCILLATION

□ $v_{\alpha} \rightarrow v_{\alpha}$ is T invariant, so it must be CP invariant (CPT theorem) □ Also, only even orders in $\Delta \equiv \Delta m^2 L/E$

 v_{μ} Disappearance

v_e Appearance

 $\mathcal{P}(\nu_{\mu} \to \nu_{e}) \approx \sin^{2} \theta_{23} \sin^{2} (2\theta_{13}) \sin^{2} \Delta_{\mu e}$ $\pm \tilde{J} \sin \delta \sin \Delta_{21} \sin^{2} \Delta_{\mu e} + \mathcal{O}(\Delta_{21})^{2}$

CP violation (sin δ term) Breaks θ_{23} symmetry Different effective Δm^2

GOING THROUGH THE EARTH

- Earth is transparent to neutrinos
- It has a neutrino "refractive index"
- Main effect is change in θ_{13}

$$A \equiv \frac{\sqrt{2}G_F n_e}{\Delta m_{32}^2/2E} \sim \frac{E}{11.5 \text{ GeV}}$$
$$\tan(2\tilde{\theta}_{13}) \equiv \frac{\sin(2\theta_{13})}{\cos(2\theta_{13}) - A}$$

- Depends on sign of Δm^2_{32}
- Different signs for v and \overline{v}
- Apparent CP violation

THE NUMI BEAM

RAMPING UP

- Capable of 700 kW
- Currently at ~470 kW
- Full power by mid 2016
- 6.4 x 10²⁰ PoT delivered

BASELINE

OFF-AXIS

WWWWWWWWWWWWWWWWWWW

NUE APPEARANCE

NOVA

NOVA

DETECTORS COMPLETE Joao Coelho 13 July 2015

DETECTORS COMPLETE Joao Coelho 13 July 2015

DETECTORS COMPLETE Joao Coelho 13 July 2015

FAR DETECTOR Joao Coelho 13 July 2015

FD DATA

FD DATA

13 July 2015

FD DATA

NEAR DETECTOR

ND DATA

NUMU DISAPPEARANCE

NOVA TOPOLOGIES

NC REJECTION

COSMIC REJECTION

Selection	ν_{μ} -CC Signal	NC Background	Cosmics
No Cuts	127	380	19.1 M
Containment	109	195	120 k
NC Rejection	86	5	44 k
Cosmics Rejection	75	4	1

- Track information used in BDT
- Achieve a 19M : 1 rejection ratio

• Numbers based on 1 nominal year (6 x 10²⁰ PoT x 14 kt)

NUMU DISAPPEARANCE

NUMU DISAPPEARANCE

13 July 2015

NUE APPEARANCE

NOVA TOPOLOGIES

FINDING NUE'S

Library Event Matching

- Compare hit distribution with a library of MC simulated events
- Perform multivariate analysis on properties of best matches to event

Likelihood v_e Identifier

- Compare LogL of energy deposition with different particle assumptions
- Perform multivariate analysis on LogL differences and shower properties

COSMIC REJECTION

Cosmic Background*	LID	LEM	
No Cuts	15 M	15 M	*Base
Containment	0.6 M	1 M	d on S
Cosmics Rejection	5 k	6 k	% live
Preselection	40	60	-seco
PID	0.3	0.3	nds

- Cosmic rejection essential
- Similar performance from both selection methods
- •Achieve a 50M : 1 rejection ratio

HOM WANAS

- Far detector predictions are corrected using near detector data
- Predictions are scaled to a full detector exposure equivalent to approx. 1/2 nominal year, representative of expected first results
- The oscillation model assumed no matter effect and:
 - $\delta_{CP} = 0$
 - $\sin^2 2\theta_{13} = 0.095$

PRELIMINARY

	Osc. v _e -CC	Total Bkg.	ν_{μ} -CC	NC	Beam v _e -CC	Cosmics
LEM	4.7	1.5	0.07	0.5	0.5	0.4
LID	4.4	1.3	0.07	0.4	0.4	0.4

WHAT TO EXPECT

THE TENSION

WHAT WE KNOW

WHAT WE'LL FIND OUT

DISCLAIMER: NO OFFICIAL NOVA DATA OR SIMULATION USED IN THESE PLOTS.

What if NOvA seesevents?

- Average expectation
- Lower than T2K
- **No clear answer** on mass ordering, but still prefer maximal CP violation due to T2K

Normal Ordering Inverted Ordering

WHAT WE'LL FIND OUT

DISCLAIMER: NO OFFICIAL NOVA DATA OR SIMULATION USED IN THESE PLOTS.

What if NOvA sees9 events?

- Higher than expected
- Similar to T2K
- Some tension with standard oscillation
- Improved sensitivity to mass ordering, θ_{23} octant and CP violation

WHAT WE'LL FIND OUT

DISCLAIMER: NO OFFICIAL NOVA DATA OR SIMULATION USED IN THESE PLOTS.

What if NOvA sees3 events?

- Lower than expected
- Opposite of T2K
- Relatively strong
 tension with standard
 oscillation picture

THE END GOAL

NOVA ♥ T2K

SUMMARY

• NOvA will be releasing exciting first results in the upcoming weeks

• About half a nominal year of full detector equivalent data already collected (~3 x 10²⁰ PoT)

- Predict anywhere from 3 to 9 candidate v_e events depending on exact oscillation parameters

- Will NOvA prefer MINOS or T2K?
- Place your bets!

BACKUP SLIDES

NON-STANDARD INTERACTIONS

NON-STANDARD INTERACTIONS

