Neutrino Quantum Kinetic Equations: the Collision Term

Talk presented by Daniel N. Blaschke

Los Alamos National Laboratory, Theory Division, T2
collaborators on this topic: V. Cirigliano, G. Fuller

NATIONAL LABORATORY
LA-UR-15-25028
UNCLASSIFIED
Santa Fe, 16 July 2015

Overview

> Motivation:
> Background:

Collision terms: Results of work in progress

Motivation

Good description of neutrino interactions

e Neutrino interactions impact abundance of heavy elements in neutrino driven winds in supernovae, BH accretion-discs, neutron-star mergers

- Needed for complete description of neutrino transport in early universe, core collapse supernovae and compact mergers

- Quantum Kinetic Equations (QKE): evolution of ensemble of neutrinos in hot dense media
- Closed Time Path formalism for nonequilibrium QFT

Why QKE?

- Account for kinetic, flavor and spin degrees of freedom: study interaction of all flavors of neutrinos with electrons, protons, neutrons
- More detailed than mean field approach
- Anisotropic regions: spin-flip yields
- Neutrino-antineutrino transformation for Majorana neutrinos
- Active-sterile transformation for Dirac neutrino
- QKEs depend on absolute mass scale

Further details: \quad Cirigliano, Fuller, Vlasenko, Phys.Lett. B747 (2015) 27; Serreau, Volpe, PRD 90 (2014) 125040

UNCLASSIFIED

Background

Effective interactions

Assume neutrino energy below electroweak scale ($\ll 100 \mathrm{GeV}$), effective Lagrangians after integrating out W, Z :

$$
\begin{aligned}
& \mathcal{L}_{\nu \nu}=-\frac{G_{F}}{\sqrt{2}} \bar{\nu} \gamma_{\mu} P_{L} \nu \bar{\nu} \gamma^{\mu} P_{L}(\nu, \\
& \mathcal{L}_{\nu e}=-2 \sqrt{2} G_{F}\left(\bar{\nu} \gamma_{\mu} P_{L} \underline{Y_{e L}} \nu \bar{e} \gamma^{\mu} P_{L} e+\bar{\nu} \gamma_{\mu} P_{L} \underline{Y_{e R} \nu} \bar{e} \gamma^{\mu} P_{R} e\right) \\
& \mathcal{L}_{\nu N}=-\sqrt{2} G_{F} \sum_{N=p, n} \bar{\nu} \gamma_{\mu} P_{L} \nu \bar{N} \gamma^{\mu}\left(\underline{\left(C_{V}^{(N)}-C_{A}^{(N)} \gamma_{5}\right)} N,\right. \\
& \mathcal{L}_{C C}=-\sqrt{2} G_{F} \bar{e} \gamma_{\mu} P_{L} \nu_{e} \bar{p} \gamma^{\mu}\left(1-\underline{g_{A} \gamma_{5}}\right) n+\text { h.c. } \\
& P_{L, R}=\left(I \mp \gamma_{5}\right) / 2, \quad\left(\nu=\left(\begin{array}{c}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right) .\right.
\end{aligned}
$$

Effective interactions

... with electron couplings

$$
\begin{aligned}
& Y_{e L}=\operatorname{diag}\left(\frac{1}{2}+\sin ^{2} \theta_{W},-\frac{1}{2}+\sin ^{2} \theta_{W},-\frac{1}{2}+\sin ^{2} \theta_{W}\right) \\
& Y_{e R}=\sin ^{2} \theta_{W} \times I
\end{aligned}
$$

Nucleon couplings:

$$
\begin{aligned}
C_{V}^{(p)} & =\frac{1}{2}-2 \sin ^{2} \theta_{W}, & C_{V}^{(n)} & =-\frac{1}{2}, \\
C_{A}^{(p)} & =\frac{g_{A}}{2}, & C_{A}^{(n)} & =-\frac{g_{A}}{2},
\end{aligned} \quad g_{A} \sim 1.27
$$

Neutrinos in hot/dense medium

ensemble of neutrinos described by incoherent mixture of states
neutrinos

$$
\begin{aligned}
\left\langle a_{j, h^{\prime}}^{\dagger}\left(\vec{k}^{\prime}\right) a_{i, h}(\vec{k})\right\rangle & \propto \delta^{(3)}\left(\vec{k}-\overrightarrow{k^{\prime}}\right) f_{h h^{\prime}}^{i j}(\vec{k}) \\
\left\langle b_{j, h^{\prime}}^{\dagger}\left(\vec{k}^{\prime}\right) b_{i, h}(\vec{k})\right\rangle & \propto \delta^{(3)}\left(\vec{k}-\overrightarrow{k^{\prime}}\right) \bar{f}_{h h^{\prime}}^{i j}(\vec{k})
\end{aligned}
$$

antineutrinos
$2 n_{f} \times 2 n_{f}$ matrix structure: Dirac case, need F and \bar{F}

$$
\begin{aligned}
F & =\left(\begin{array}{cc}
f_{L L} & f_{L, R} \\
f_{R, L} & f_{R R}
\end{array}\right) \\
\bar{F} & =\left(\begin{array}{cc}
\bar{f}_{R R} & \bar{f}_{R, L} \\
\bar{f}_{L, R} & \bar{f}_{L L}
\end{array}\right)
\end{aligned}
$$

Majorana case: $\quad F=\left(\begin{array}{cc}f & \phi \\ \phi^{\dagger} & \bar{f}^{T}\end{array}\right)$
active-sterile coherence

$$
F=\left(\begin{array}{cc}
f & \varnothing \phi \\
\phi^{\dagger} & \bar{f}^{T}
\end{array}\right)
$$

neutrino-antineutrino coherence

Closed Time Path (CTP) formalism

2-point function:

$\begin{aligned} \text { statistical fct / occupation \#: } & F(x, y) & =\frac{1}{2}\langle[\Psi(x), \bar{\Psi}(y)]\rangle \\ \text { spectral function: } & \rho(x, y) & =i\langle\{\Psi(x), \bar{\Psi}(y)\}\rangle\end{aligned}$
Wigner transform: $\quad F(X, k)=\int d^{4} r e^{i k r} F\left(X+\frac{1}{2} r, X-\frac{1}{2} r\right)$

Introduction to CTP: see e.g. Calzetta, Hu, PRD 37 (1988) 2878

Power counting / approximations

Assume neutrino masses, mass-splitting, matter potentials (induced by forward scattering), and external gradients are much smaller than neutrino energy:

$$
\begin{aligned}
& m_{\nu} / E \sim \Delta m_{\nu} / E \sim \Sigma_{\text {forward }} / E \sim \partial_{X} / E \sim O(\epsilon) \\
& \Sigma_{\text {inelastic }} / E \sim O\left(\epsilon^{2}\right)
\end{aligned}
$$

i.e. assume physical quantities vary slowly on the scale of the neutrino de Broglie wavelength

QKEs include second order effects $\mathrm{O}\left(\epsilon^{2}\right)$
details: Vlasenko, Fuller, Cirigliano, PRD 89 (2014) 105004

Projections

For ultra-relativistic neutrinos, it is useful to express all Lorentz tensors in terms of a basis formed by two light-like four-vectors and two transverse four-vectors

$$
\begin{array}{cll}
\hat{\kappa}^{\mu}(p)=\left(\operatorname{sgn}\left(p^{0}\right), \hat{p}\right), & \frac{\hat{\kappa}^{\prime \mu}(p)=\left(\operatorname{sgn}\left(p^{0}\right),-\hat{p}\right),}{\hat{\kappa} \cdot \hat{\kappa}^{\prime}=2=-\hat{x}^{+} \cdot \hat{x}^{-}} & \underline{\hat{x}_{1,2}(p)}
\end{array}
$$

The four independent spinor components of the Wigner Transform of the neutrino statistical two-point function are:

$$
\begin{aligned}
F_{L, R} & =\frac{1}{4} \operatorname{Tr}\left(\gamma_{\mu} P_{L, R} F(p, x)\right) \hat{\kappa}^{\mu} \\
\Phi^{(\dagger)} & =\mp \frac{i}{16} \operatorname{Tr}\left(\sigma_{\mu \nu} P_{L / R} F(p, x)\right)\left(\hat{\kappa} \wedge \hat{x}^{ \pm}\right)^{\mu \nu} e^{ \pm i \varphi}
\end{aligned}
$$

These can be collected in a $2 n_{f} \times 2 n_{f}$ matrix.

UNCLASSIFIED

Quantum Kinetic Equations (QKE)

Spin flip sensitive to absolute mass scale!
details: Vlasenko, Fuller, Cirigliano, PRD 89 (2014) 105004; Cirigliano, Fuller, Vlasenko, Phys.Lett. B747 (2015) 27;
Vlasenko, Fuller, Cirigliano, arXiv:1406.6724

Collision term

$$
\begin{aligned}
\mathcal{C}= & \frac{1}{2}\left\{\Pi^{+}, F\right\}-\frac{1}{2}\left\{\Pi^{-}, I-F\right\} \\
\Pi^{ \pm} & =\left(\begin{array}{cc}
\Pi_{R}^{\kappa \pm} & 2 P^{ \pm} \\
2 P^{ \pm \dagger} & \Pi_{L}^{\kappa \pm}
\end{array}\right) \\
F & =\left(\begin{array}{cc}
f & \phi \\
\phi^{\dagger} & f^{T}
\end{array}\right)
\end{aligned} \begin{aligned}
& \text { (occupation \# in diagonal, } \\
& \text { coherence in off-diagonal) }
\end{aligned}
$$

The collision term has a non-diagonal matrix structure in both flavor and spin space.

Results

DNB, V. Cirigliano, in preparation

Contributions to the collision term

- Neutrino-nucleon scattering processes
e Neutrino absorption and emission (charged-current processes)
only left topology
- Neutrino-electron processes
- Neutrino-neutrino processes

UNCLASSIFIED

Example: NN-scattering

$$
\begin{aligned}
\Pi_{a b}^{ \pm}(k)= & -2 G_{F}^{2} \int \frac{d^{4} q_{1} d^{4} q_{2} d^{4} q_{3}}{(2 \pi)^{8}} \delta^{(4)}\left(k-q_{3}-q_{1}+q_{2}\right) \\
& \times \sum_{N=n, p}\left\{\gamma_{\mu}\left(P_{L}-P_{R}\right) G_{a b}^{(\nu) \pm}\left(q_{3}\right) \gamma_{\nu}\left(P_{L}-P_{R}\right)\right. \\
& \left.\times \operatorname{Tr}\left[\Gamma_{N}^{\nu} G^{(N) \mp}\left(q_{2}\right) \Gamma_{N}^{\mu} G^{(N) \pm}\left(q_{1}\right)\right]\right\} \\
G^{(N)+}(p)= & 2 \pi \delta\left(p^{2}-m_{N}^{2}\right)\left(p p+m_{N}\right)\left[\theta\left(p^{0}\right)(1-f(\vec{p}))-\theta\left(-p^{0}\right) \bar{f}(-\vec{p})\right]
\end{aligned}
$$

Neglect neutrino mass in these expressions because the collision term is already second order $\mathrm{O}\left(\epsilon^{2}\right)$

12 integrals and 7 delta functions

General expressions: amplitudes

Lorentz projections:

$$
\begin{aligned}
& \Pi^{ \pm}(k)=\left(\begin{array}{cc}
\Pi_{R}^{\kappa \pm}(k) & 2 P^{ \pm}(k) \\
2 P^{ \pm \dagger}(k) & \Pi_{L}^{\kappa \pm}(k)
\end{array}\right) \\
& =\frac{1}{2} \int d^{4} q_{3}\left(\begin{array}{cc}
\frac{\left|A_{-}\left(q_{3}, k\right)\right|^{2}}{}\left(\bar{G}_{V}^{L}\right)^{ \pm}\left(q_{3}\right) & A_{-}^{\dagger}\left(q_{3}, k\right) A_{+}\left(q_{3}, k\right) \Phi^{ \pm}\left(q_{3}\right) \\
\underline{A_{+}^{\dagger}\left(q_{3}, k\right) A_{-}\left(q_{3}, k\right)} \Phi^{ \pm \dagger}\left(q_{3}\right) & \left|A_{+}\left(q_{3}, k\right)\right|^{2}\left(\bar{G}_{V}^{R}\right)^{ \pm}\left(q_{3}\right)
\end{array}\right)
\end{aligned}
$$

- Can be written in terms of (square modulus of) amplitudes
- Generalizes earlier studies

Limit of $\mathrm{k} \sim \mathrm{q}_{3}$: compares to old results of L . Stodolski PRD 36 (1987) 2273

General expressions

$$
\Pi=\frac{1}{2}\left(\begin{array}{ll}
\underline{\left|A_{-}\right|^{2}} \bar{G}_{V}^{L} & A_{-}^{\dagger} A_{+} \Phi \\
{\underline{A_{+}} A_{-}} \Phi^{\dagger} & \left|A_{+}\right|^{2} \bar{G}_{V}^{R}
\end{array}\right)
$$

Majorana neutrinos:

$$
\begin{gathered}
P_{L / R} \psi(x)=\int \frac{d^{3} p}{2 E(2 \pi)^{3}}\left(u(p, \mp) a(p, \mp) e^{-i p x}+v(p, \pm) a^{\dagger}(p, \pm) e^{i p x}\right) \\
A=A_{+}+A_{-}, \quad A_{ \pm}(q, p)= \pm \bar{u}(q, \pm) \gamma^{\mu} u(p, \pm) N_{\mu} \\
u(p, \pm) \bar{u}(p, \pm)=\not p P_{L / R}, \quad u(p, \pm) \bar{u}(p, \mp)= \pm \frac{i}{4} E e^{ \pm i \varphi}\left(\hat{\kappa} \wedge \hat{x}^{ \pm}\right)_{\mu \nu} \sigma^{\mu \nu}
\end{gathered}
$$

Neutrino-neutrino interactions

© "Wedges" appear also in the diagonal because of the neutrino "target"

- Always appear together with off-diagonal statistical fcts ϕ
- Up to four (instead of two) wedges can appear in the off-diagonal (drop out upon integrating the azimuthal angles in the special geometric cases we consider later)
- Will be interesting to plug collision-terms into QKEs numerically, but will need simplifying assumptions to be feasible

Approximations for supernovae

- Assuming spherical symmetry (in position space; "bulb model"), isotropic emittance of neutrinos, and time independence: all statistical functions (being Wigner transforms) depend only on

$$
|\vec{k}|, \quad \theta_{k}, \quad|\vec{x}|
$$

- Therefore can explicitly integrate over all φ_{k}
- Initially, have a total number of 9 integrals and 4 delta functions; integrating the azimuthal angles (in k-space) leaves us with 6 integrals and 3 delta functions.

Example: NN-scattering

$$
\begin{gathered}
\mathcal{C}=\left(\begin{array}{cc}
C & C_{\phi} \\
C_{\phi}^{\dagger} & \bar{C}^{T}
\end{array}\right) \quad \text { neglecting anti-nucleons: } \\
C=-G_{F}^{2} \int \frac{r_{1}^{3} r_{2}^{3} r_{3}^{3} d r_{1-3} d\left(\operatorname{cs}_{1-3}\right)}{4(2 \pi)^{4} E_{1} E_{2} E_{3}} \delta\left(E_{k}-E_{3}-E_{1}+E_{2}\right) \delta\left(r_{k}-r_{3}-r_{1}+r_{2}\right) \\
\times\left(\delta\left(\operatorname{cs}_{k}-\operatorname{cs}_{3}-\operatorname{cs}_{1}+\operatorname{cs}_{2}\right)\right. \\
\\
\times\left(\left(C_{V}-C_{A}\right)^{2}\left(\frac{E_{1}}{r_{1}}-\operatorname{cs}_{3} \operatorname{cs}_{1}\right)\left(\frac{E_{2}}{r_{2}}-\operatorname{cs}_{k} \operatorname{cs}_{2}\right)-\frac{m_{N}^{2}}{r_{1} r_{2}}\left(C_{V}^{2}-C_{A}^{2}\right)\left(1-\operatorname{cs}_{k} \operatorname{cs}_{3}\right)\right. \\
\\
\left.+\left(C_{V}+C_{A}\right)^{2}\left(\frac{E_{2}}{r_{2}}-\operatorname{css}_{3} \operatorname{cs}_{2}\right)\left(\frac{E_{1}}{r_{1}}-\operatorname{cs}_{k} \operatorname{cs}_{1}\right)\right) \frac{E_{3}}{r_{3}} \\
+ \\
\left.8\left(C_{V}^{2}+C_{A}^{2}\right) \cos ^{2}\left(\frac{\theta_{k}}{2}\right) \cos ^{2}\left(\frac{\theta_{3}}{2}\right) \sin ^{2}\left(\frac{\theta_{1}}{2}\right) \sin ^{2}\left(\frac{\theta_{2}}{2}\right)\left(\left(f_{N, 2}-f_{N, 1}\right) \phi_{3} \phi^{\dagger}+\text { h.c. }\right)\right]
\end{gathered}
$$

3-dim. Integrals left

Approximations for the early universe

- Assume all statistical functions depend only on the absolute values of the momenta (not their angles), spin coherence disappears.
e Therefore can explicitly integrate over all angles (e.g. following techniques of Dolgov, Hansen \& Semikoz 1997).
- Initially, have a total number of 9 integrals and 4 delta functions; integrating all angles (in k-space) leaves us with 3 integrals and 1 delta function.
- Represents multi-flavor generalization of previous work.

Example: neutrino-neutrino processes

spin coherence disappears in early universe, therefore:

$$
\begin{aligned}
& C=- \frac{G_{F}^{2}}{E_{k}^{2}} \int \frac{d E_{1} d E_{2} d E_{3}}{2 \pi^{3}}\left(\left(E_{1} E_{3} D_{2}\left(E_{1}, E_{3} ; E_{2}, E_{k}\right)+\underline{D_{3}\left(E_{1}, E_{2}, E_{3}, E_{k}\right.}\right)\right. \\
&+E_{2} E_{k} \underline{D_{2}\left(E_{2}, E_{k} ; E_{1}, E_{3}\right)}+E_{1} E_{2} E_{3} E_{k} \underline{\left.D_{1}\left(E_{1}, E_{2}, E_{3}, E_{k}\right)\right) \times} \\
& \times\left(\delta\left(E_{k}-E_{3}-E_{1}+E_{2}\right)\left\{\left(\operatorname{tr}\left(\left(1-f_{1}\right) f_{2}\right)+\left(1-f_{1}\right) f_{2}\right)\left(1-f_{3}\right), f\right\}\right. \\
&+\delta\left(E_{k}-E_{3}+E_{1}-E_{2}\right)\left\{\left(\operatorname{tr}\left(\bar{f}_{1}\left(1-\bar{f}_{2}\right)\right)+\bar{f}_{1}\left(1-\bar{f}_{2}\right)\right)\left(1-f_{3}\right), f\right\} \\
&\left.+\delta\left(E_{k}+E_{3}-E_{1}-E_{2}\right)\left\{\left(\operatorname{tr}\left(\left(1-f_{1}\right)\left(1-\bar{f}_{2}\right)\right)+\left(1-f_{1}\right)\left(1-\bar{f}_{2}\right)\right) \bar{f}_{3}, f\right\}\right) \\
&-f \leftrightarrow(1-f)
\end{aligned}
$$

where \underline{D}_{i} are polynomials in E_{i} (Dolgov, Hansen, Semikoz 1997)

Conclusion and Outlook

\checkmark Introduced and motivated the concept of QKEs
\checkmark Presented results for collision terms in the Majorana case
\checkmark Remaining integrals should be solvable numerically
\checkmark To do: generalize to Dirac neutrinos
unclassified

References

1. D. N. Blaschke, V. Cirigliano, et al., in preparation
2. V. Cirigliano, G. Fuller, A. Vlasenko, Phys.Lett. B747 (2015) 27
3. A. Vlasenko, G. Fuller, V. Cirigliano, PRD 89 (2014) 105004
4. A. Vlasenko, G. Fuller, V. Cirigliano, arXiv:1406.6724

UNCLASSIFIED

