Core-Collapse Supernova Simulations: Overview & Status

Christian D. Ott (Caltech) & Bronson Messer (ORNL)

Core-Collapse Supernovae: Explosions of Massive Stars $8M_{\odot} \leq M \leq 130M_{\odot}$

© Anglo-Australian Observatory

Supernova 1987A Large Magellanic Cloud Progenitor: BSG Sanduleak -69° 220a, ≈18 M_{SUN}

SN 1987A: Neutrino Detection

C. D. Ott @ SLAC, 2015/11/23

Stellar Death & Supernova Explosions

- ~10 SN/s in the Universe
- ~multiple SN/day discovered
- ~1 SN/50-100 yrs (?) in the Milky Way
- >1 SN/year within 10 Mpc
- ~20% thermonuclear SNe (Type Ia)
 -> exploding white dwarfs
- ~80% core-collapse SNe (CCSNe)
 -> exploding massive stars
- Class of energetic "stripped-envelope" explosions: Type Ic-bl ("broad lines")
- Some (>11) SNe Ic-bl associated with long gamma-ray bursts.

Chandra

G1.9+0.3 Explosion ~140 yrs ago. @ 8 kpc in Sgr

Reminder: Core Collapse Basics

Nuclear equation of state (EOS) stiffens at nuclear density.

Inner core (~0.5 M_{Sun}) -> protoneutron star core. Shock wave formed.

Outer core accretes onto shock & protoneutron star with O(1) M_{\odot}/s .

-> Shock stalls at ~100 km, must be "revived" to drive explosion.

"Postbounce" Evolution

"Postbounce" Evolution

What is the mechanism that revives the shock?

Core-Collapse Supernova Energetics

Collapse to a neutron star: ~3 x 10⁵³ erg = 300 [B]ethe gravitational energy (≈0.15 M_{Sun}c²).

-> Any explosion mechanism must tap this reservoir.

 ~10⁵¹ erg = 1 B kinetic and internal energy of the ejecta. (Extreme cases: 10 B; "hypernova")

• 99% of the energy is radiated in neutrinos on O(10)s

SN 1987A & Basics of CCSN Theory

Overview: Supernova Mechanisms

Neutrino Mechanism

- Neutrino heating; turbulent convection, standing accretion shock instability (SASI).
- Works (even in 1D) for lowest mass massive stars.
- Sensitive to (multi-D) progenitor structure.
- Inefficient ($\eta \le 10\%$); difficulty explaining $E_{explosion}$?

Magnetorotational Mechanism

Ott+13

- Magneto-centrifugal forcing, hoop stresses.
- For energetic explosions and CCSN-LGRB connection?
- Very rapid core rotation + magnetorotational instability + dynamo for large-scale field.
- Needs "special" progenitor evolution.
- Jets unstable, may fail to explode in proto-NS phase; black hole formation, GRB central engine?

Detailed Models: Ingredients

Detailed Models: Ingredients

ipi	Magneto-Hydrodynamics	> Dynamics of the stellar fluid.
ouple	General Relativity	> Gravity
illy co	Nuclear and Neutrino Physics	Nuclear EOS, nuclear reactions & v interactions.
Ъ	Boltzmann Transport Theory	> Neutrino transport.

- Additional Complication: Core-Collapse Supernovae are 3D
 - Rotation, fluid instabilities, magnetic fields, multi-D stellar structure from convective burning, etc.
- Route of Attack: Computational simulation.
- Full problem is 3 (space) + 3 (momentum space) + 1 (time) dimensional
- Approach: employ reduced dimensionality in space and momentum space.

Core-Collapse Supernova Simulations

1D (spherical symmetry)

– First simulations: 1960-70 by Colgate & White, Wilson, Arnett, Nadyozhin

- Bethe & Wilson '85: "Neutrino Mechanism"

Neutrino Mechanism: Heating

Bethe & Wilson '85; also see: Janka '01, Janka+ '07

1D Neutrino-Driven Explosions

Kitaura+ '06, Hüdepohl+ '10, Fischer+ '10, '12

Status: 1D Simulations

- Full physics 1D simulations: 2000s -> no explosions!
- Current codes: spectral transport, differences in included microphysics (->effects on v spectra). Some can simulate O(10)s.

Interaction	FullOp Opacities	ReducOp Opacities
$\nu e^- \leftrightarrow \nu' e^-$	Schinder & Shapiro (1982)	None
$ \nu e^+ \leftrightarrow \nu' e^+ \nu n \leftrightarrow \nu' n $	Reddy et al. (1998)	Bruenn (1985)
$ \begin{array}{c} \nu p \leftrightarrow \nu p \\ e^- p \leftrightarrow \nu_e n \\ e^+ p \leftrightarrow \overline{\nu_e n} \end{array} $	Reddy et al. (1998)	Bruenn (1985)
$e \cdot n \leftrightarrow \nu_e p$ $\nu A \leftrightarrow \nu A$	Bruenn (1985)	Bruenn (1985)
$\nu \alpha \leftrightarrow \nu \alpha$	Bruenn (1985)	Bruenn (1985)
$e^{-}(A,Z) \leftrightarrow \nu_{e}(A,Z-1)$	Langanke & Martínez-Pinedo (2000)	Bruenn (1985)
	Langanke et al. (2003)	
$e^-e^+ \leftrightarrow \nu \bar{\nu}$	Schinder & Shapiro (1982)	Schinder & Shapiro (1982)
$NN \leftrightarrow NN \nu \bar{\nu}$	Hannestad & Raffelt (1998)	Hannestad & Raffelt (1998)

Neutrino Opacity Summary Table

Lentz+12

Status: 1D Simulations

Code/Group	Gravity	Transport	X sections	Note	Recent Refs.			
Roberts (Caltech/MSU)	GR	GR,Mom+glob. closure	Bruenn 85 / Reddy 99	LT cooling	Roberts 2012			
Prometheus-Vertex (Garching)	Approx. GR	Approx. GR,Mom +glob. closure	Full (Lentz+12)	LT cooling	Hüdepohl+10			
CoCoNuT-Vertex (Garching/Monash)	GR	Approx. GR,Mom +glob. closure	Full		Müller +10,12,14			
Agile-Boltztran (ORNL/Basel/ Wraclaw[Fischer])	GR	GR, Boltzmann	Full (ORNL) or reduced (Fischer)	LT cooling (Fischer)	Lentz+12 Fischer+12			
Chimera	Approx. GR	Approx GR, MGFLD	Full		Bruenn +13,15,16			
Waseda/Yamada/ Sumiyoshi	GR	GR, Boltzmann or MGFLD	Bruenn 85 + NN/plasmon	LT cooling	Sumiyoshi+05 Nakazato+13			
vGR1D (O'Connor, NCSU)	GR	GR, M1	Bruenn 85 + NuLib	open source	O'Connor 15			
Fornax (Princeton)	Newt.	Newt., M1	?		Wallace+15			

+ several other codes: Pan (Basel), Just/Obergaulinger, Wilson/Mathews, Burrows/Thompson

1D Simulations: Physics Benchmarks

- Liebendörfer+05: First detailed comparison study **ORNL-Garching**.
- Results available and serve as community benchmark for new codes.

2D and 3D Core-Collapse Supernovae

- Progress driven by advances in compute power!
- First 2D (axisymmetric) simulations in the 1990s: Herant+94, Burrows+95, Janka & E. Müller 96.
- 2D simulations now fully self-consistent & from first principles. E.g.: Bruenn+13,14 (ORNL), Dolence+14 (Princeton), B. Müller+12ab (MPA Garching)
- Simulations to O(1) s after core bounce.

Standing Accretion Shock Instability (SASI)

Blondin+'03 Foglizzo+'06 Scheck+ '08 and many others

Movie by Burrows, Livne, Dessart, Ott, Murphy'06

2D Full-Physics CCSN Simulations

v-driven convection and SASI

2D Full-Physics CCSN Simulations

Differences: stiff EOS (Shen vs. LS), Newtonian, full 2D MGFLD.

Multi-Dimensional Simulations: Effects

(e.g., Hanke+13, Couch&Ott 15, Murphy+08, Murphy+13, Ott+13, Dolence+13)

Specific Entropy [k_B / baryon] (1) Lateral/azimuthal flow: 1.5 4.4 7.3 10.2 13.1 16.0 "Dwell time" in gain region increases. 2 Shock (2) New: Anisotropy of convection -> Turbulent ram pressure **Gain Region** 1 (Radice+15ab,Couch&Ott 15, ab, Couch & Off 15, 3) $F = \overline{\delta v_i \delta v_j} \stackrel{\text{e}}{=}$ Murphy+13) 0 $\delta v_i = v_i - \overline{v_i}$ onvection $R_{rr} \sim 2\{R_{\theta\theta}, R_{\phi\phi}\}$ Shock -2effective $P_{\rm turb} = \rho R_{rr}$ turbulent -2 2 n pressure x [100 km] Ott+08 25 C. D. Ott @ SLAC, 2015/11/23

Status: 2D Simulations

Code/Group	Gravity	Transport	X sections	Note	Recent Refs.			
Prometheus-Vertex (Garching)	Approx. GR	Approx. GR, Mom. +Glob. closure, <mark>RBR</mark>	Full (Lentz+12)	also 1D&3D	Hanke+13, Melson+15ab			
CoCoNuT-Vertex (Garching/Monash)	CFC GR	Approx. GR, Mom., RBR (ray-by-ray)	Full	also 1D	Müller +10,12ab,13,14			
Chimera	Approx. GR	Approx. GR, MGFLD, <mark>RBR</mark>	Full	also 1D&3D	Bruenn +13,15,16			
FLASH (MSU/NCSU)	Approx. GR	Approx. GR, M1, full 2D	Bruenn 85 + NuLib	also 1D&3D	O'Connor & Couch 15			
Fornax (Princeton)	Newt.	Newt., M1, full 2D	?	also 1D&3D	Wallace+15 (1D)			
CASTRO (Princeton/LBNL)	Newt.	Newt., MGFLD, full 2D	Bruenn 85 + NN/ plasmon		Dolence & Burrows 15			
ZEUS+IDSA (Fukuoka/Kotake/ Suwa)	Approx. GR	IDSA, RBR	simplified Bruenn 85 - inelastic	also 1D&3D	Takiwaki+12,14, Suwa+10,14			
FLASH+IDSA (Basel)	Newt.	IDSA, full 2D	Bruenn 85	also 1D&3D	Pan+15			

Ray-by-Ray vs. Multi-D Transport

- Solution of many 1D transport problems along rays. No nonradial fluxes.
- Coupling of neighboring rays through advection terms (RBR+).

- Full multi-dimensional solution.
- Radial and non-radial fluxes.

The 3D Frontier – Petascale Computing!

• Some early work: Fryer & Warren 02, 04

• Loads of new work since ~2010:

Fernandez 10, Nordhaus+10, Takiwaki+11,13, Burrows+12, Murphy+13, Dolence+13, Hanke+12,13, Kuroda+12, Ott+13, Couch 13, Takiwaki+13, Couch & Ott 13, 15, Abdikamalov+15, Couch & O'Connor 14, Lentz+15, Melson+15ab, Cardall&Budiardja 15, Radice+15

Approximations currently made:
 (1) Gravity (2) Neutrinos (3) Resolution

Ott+2013

Ott+2013 Caltech, full GR, parameterized neutrino heating -6.18 ms

Lentz+15 (ORNL), Chimera, full physics MGFLD, approx.GR

C15-3D

Time = 136.9 ms

2D & 3D Explosions!

2D vs. 3D Neutrino Luminosities

2D & 3D Explosions (or not)!

2D Simulations explode more easily

(e.g., Couch & Ott 2015, Couch 13, Couch & O'Connor 14, Hanke+13, Lentz+15, Takiwaki+14) parameterized neutrino heating

2D explodes more easily! (see also: Couch & O'Connor 14, Hanke+13)

2D vs. 3D: Turbulence

(e.g., Couch 13, Couch & O'Connor 14)

Some Facts about Supernova Turbulence

(e.g., Abdikamalov, Ott+ 15, Radice+15ab)

- Neutrino-driven convection is turbulent. $\mathcal{R}e = \frac{lu}{l} \approx 10^{17}$
- **Kolmogorov** turbulence: Kolmogorov 1941 isotropic, incompressible, stationary.
- Supernova turbulence: anisotropic (buoyancy), mildly compressible, quasi-stationary.
- Reynolds stresses (relevant for explosion!) dominated by dynamics at largest scales.

$$R_{ij} = \overline{\delta v_i \delta v_j}$$

 $E(k) \propto k^{-5/3}$

Kolmogorov Turbulence

Turbulent Cascade: 2D vs. 3D

Couch & O'Connor 14

see also: Dolence+13, Hanke+12,13, Abdikamalov+'15, Radice+15ab c. D. Ott @ SLAC, 2015/11/23

Kolmogorov Turbulence

3D: Sensitivity to Resolution

Abdikamalov+15

-> kinetic energy stuck at large scales

C. D. Ott @ SLAC, 2015/11/23

Resolution Comparison (Radice+15b)

 $d\theta$, $d\phi = 0.9^{\circ}$ semi-global simulations dr = 1.9 kmof neutrino-driven turbulence. $d\theta$, $d\phi = 1.8^{\circ}$ dr = 3.8 km(typical resolution of 3D rad-hydro sims)

 $d\theta$, $d\phi = 0.45^{\circ}$ dr = 0.9 km

 $d\theta, d\phi = 0.3^{\circ}$ dr = 0.64 km

Turbulent Kinetic Energy Spectrum

(Radice+15b)

Core-collapse supernova turbulence obeys Kolmogorov scaling!

But: Can't afford to run global simulations at necessary resolution to resolve inertial range!

How much resolution is needed?

- Must (at least) capture correct rate of kinetic energy flux from largest scales. Normalized kinetic energy flux.
- Need ~128³ zones across 1.0turbulent layer. 0.8 Roughly 2 x current high-resolution $\Pi(k)/\langle\epsilon
 angle$ 0.6 global simulations. 64^{3} 128^{3} Resolve inertial 0.4 256^{3} range: 10-20 x current 512^{3} resolution needed. 0.2PPM_HLLC 0.0 10^{0} 10^{1} 10^{2} Radice+15, local simulations k

Summary of 2D & 3D Simulations:

- Better than 1D: More efficient neutrino heating, turbulent ram pressure.
- **2D simulations** explode but can't really be trusted (unphysical turbulence, symmetry axis).

• 3D simulations:

- (1) Most not yet fully self consistent (parameterized);
- (2) Numerical bottleneck in energy cascade due to low resolution.

Status: 3D Simulations

Code/Group	Gravity	Transport	X sections	Note	Recent Refs.			
Prometheus-Vertex (Garching)	Approx. GR	Approx. GR, Mom. +Glob. closure, RBR	Full	also 1D&2D	Hanke+13, Melson+15ab			
Chimera	Approx. GR	Approx. GR, MGFLD, RBR	Full	also 1D&3D	Bruenn +13,15 <i>,</i> 16			
FLASH (MSU/NCSU)	Approx. GR	Approx. GR, M1, full 3D	Bruenn 85 + NuLib	also 1D&2D	O'Connor & Couch 15			
Fornax (Princeton)	Newt.	Newt., M1, full 3D	?	also 1D&2D	Wallace+15 (1D)			
ZEUS+IDSA (Fukuoka/Kotake/ Suwa)	Approx. GR	IDSA, RBR	simplified Bruenn 85 - inelastic	also 1D&2D	Takiwaki+12,14, Suwa+10,14			
FLASH+IDSA (Basel)	Newt.	IDSA, full 3D	Bruenn 85	also 1D&2D	Pan+15 (2D)			
FISH+IDSA (Basel)	Approx. GR	IDSA, full 3D	Bruenn 85	only 3D	Winteler+12			
ZelmaniM1 (Caltech)	full GR	GR, M1, full 3D	Bruenn 85 + NuLiB	only 3D	Roberts+16			

More Problems: Hypernovae & GRBs

- Hyper-energetic (up to >10 B) supernova explosions.
 Most: type "Ic-bl" (H, He free, broad lines <- relativistic velocities).
- ~1% of all core-collapse supernovae.
- Neutrino-driven mechanism is inefficient (~10% efficiency), cannot power hypernovae.
 SN 1998bw/
- 11 long gamma-ray burst core-collapse supernova associations.
- All GRB-SNe are of type "Ic-bl"!

What drives hypernovae and GRBs?

SN 1998bw/GRB 980425

Magnetorotational Explosions

- Differential rotation -> reservoir of free energy.
- Spin energy tapped by magnetorotational instability (MRI)?

Burrows+'07

Magnetorotational Mechanism

[LeBlanc & Wilson '70, Bisnovatyi-Kogan '70, Meier+76, Burrows+ '07, Takiwaki & Kotake '11, Winteler+ 12]

Rapid Rotation + B-field amplification

(need magnetorotational instability [MRI])

2D: Energetic "bipolar" explosions.

Results in ms-period "proto-magnetar." GRB connection?

Caveat: Need high core spin; only in very few progenitor stars?

Bu	rro	WS	+'()7

(10¹¹ G seed field)

•	N		\$		6		1		٠							æ				
•	×.		\$		κ.		٠		٠							•			•	
•	•		٠																	
•	٠		٠				•		٠											
	۰,						٠									٠			*	
•	٠		\$				٠		٠										•	
•	٠		٠		•		•		•										٠	
•	•		•		٠				٠			•				٠			*	
•	•		٠		•		•		•							٠				
-	•		•		•		•									٠				
	٠		٠		•		•					•				٠				
	•		•		٠					×		•				٠				
	٠		•		÷		÷					•							٠	
•	٠		٠		•		,					•				٠				
	٠		•				÷									٠			-	
	٠		٠		•							•				٠			-	
	٠		٠		•		2									٠			•	
-	٠		٠		•		÷					•							٠	
			٠		٠		۰.					•				٠			•	
•	•		٠				ŀ		-							٠				
	•		•		•		٠		•			•				٠			•	
	•		٠		٠		ŀ					•				٠			•	
	•		٠		•		٠					•				٠			•	
٠	٠		٠		٠		٠		•			٠				٠				
	•		1		٠		٠		•							٠			•	
٠	1		•		٠		٠		٠			•							٩	
	٠		•		٠		٠		٠			۰.	٠		15	D 1 -		201		
			•						•			٩		IVI	10	B-F	iel	d	. Ir	
	*		,				٠		٠			٩		Б	me		183	1.5	ms	
	•		•				1		٠			٩	F	lad	ius	=	50	0.0	0 kr	m

t = -3.00 ms

Mösta+ 2014 ApJL

What is happening here?

Mösta+14, ApJL

• B-field near proto-NS: $B_{tor} >> B_{z}$

Richers

- Unstable to MHD screw-pinch kink instability.
- Similar to situation in Tokamak fusion reactors!

Credit: Moser & Bellan, Caltech

Braithwaite+ '06

C. D. Ott @ SLAC, 2015/11/23

Continuing the Simulation

Implications?

SNR W49B; harboring a black hole? (Lopez+2013)

Image credit: Composite X/IR/Radio image NASA/CXC/MIT/Lopez et al./ Palomar/SF/NRAO/VLA

Summary: CCSN Simulatiosn

- 3D neutrino mechanism is the best bet for driving massive star explosions.
 Turbulence is crucial, but currently not resolved.
- 2D neutrino-driven explosions work; cannot be fully trusted.
- The 3D neutrino mechanism may need help.
- 3D magnetorotational mechanism for extreme CCSNe. 2D MHD jets broken in 3D. Final outcome unclear.

Supplemental Slides

Neutron Stars; Pulsars and Magnetars, Stellar-Mass Black Holes

C Mark A. Garlick / space-art.co.uk

Crab; HST/Chandra

C. D. Ott @ SLAC, 2015/11/23

Pulsar Birth Kicks

Guitar Nebula, NS v > ~1000 km/s Palomar, 200 inch Chatterjee & Cordes '02

Pulsar Birth Kicks

C. D. Ott @ SLAC, 2015/11/23

Protoneutron Star Mass

3D Dynamics of Magnetorotational Explosions

New, full 3D GRMHD simulations. **Mösta+ 2014**, ApJL. Initial configuration as in Takiwaki+11, 10¹² G seed field.

Octant Symmetry (no odd modes) C. D. Ott @ SLAC, 2015/11/23

Full 3D

$$\beta = \frac{P_{\text{gas}}}{P_{\text{mag}}}$$

Mösta+ 2014 ApJL

t=0ms

t=10ms

C. D. Ott @ SLAC, 2015/11/23

BLUE WATERS

"Equation of State" of Turbulent Pressure

(Radice+15a)

- Reynolds tensor: $R_{rr} pprox R_{ heta heta} + R_{\phi \phi}$ (buoyancy) $R_{ij} = \delta v_i \delta v_j$
- Specific turbulent energy: $\epsilon_{turb} = \frac{1}{2} |\delta \mathbf{v}|^2$

$$|\delta \mathbf{v}^2| = (\delta v_r)^2 + (\delta v_\theta)^2 + (\delta v_\phi)^2 \approx 2(\delta v_r)^2$$
 (buoyancy)

$$(\delta v_r)^2 \approx \frac{1}{2} |\delta \mathbf{v}|^2 = \epsilon_{\text{turb}}$$

1

Rankine-Hugoniot with turbulence:

$$P_d + \rho_d v_d^2 + \rho_d (\delta v_r)^2 = \rho_u v_u^2 \qquad \Gamma_{\rm th} \approx 4/3$$

$$(\gamma_{\rm th} - 1)\rho\epsilon_{\rm th} + \rho_d v_d^2 + \rho(\delta v_r)^2 = \rho_u v_u^2 \qquad \Gamma_{\rm turb} \approx 2$$

$$(\gamma_{\rm th} - 1)\rho\epsilon_{\rm th} + \rho_d v_d^2 + \rho\epsilon_{\rm turb} = \rho_u v_u^2$$

$$(\gamma_{\rm th} - 1)\rho\epsilon_{\rm th} + \rho_d v_d^2 + (\Gamma_{\rm turb} - 1)\rho\epsilon_{\rm turb} = \rho_u v_u^2$$

Accounting for Turbulent Ram

(Couch & Ott 2015, Murphy+13)

C. D. Ott @ SLAC, 2015/11/23