Analysis of Netflix Data
(Independent Study)

Abhishek Gupta, Abhijeet Mohapatra
under Prof. Jeffrey Ullman
Stanford University

June 8, 2009

1 Introduction

Today Recommendation systems [6] have become indispensable because of the sheer overload of infor-
mation made available to a user from web-services(Netflix, IMDB, Amazon, Yelp and many others). Re-
commendation systems are a well studied research area. In the following work, we present our study on the
Netflix Challenge [3]. The Netflix Challenge can be summarized in the following way : Given a movie m,
predict the rating of a particular user u, given a list of user-movie ratings which may not contain the u;m
pair. The performance of all such approaches is measured using the RMSE (root mean-squared error) of the
submitted ratings from the actual ratings. Currently, the best system has an RMSE of 0.8585 [4]. In our
attempt, we tried a a variety of enhancements to the approach that we followed in CS345a class project. Our
previous approach initially seemed like a very promising apporach since we obtained an RMSE of 0.8312 for
close to 70% of the validation set data. Unfortunately, none of our variants lead to an RMSE value below
the required value of 0.85626.

Section 2 gives some background on our approach last quarter by summmarizing our results for last
quarter. Section 3 contains a detailed description of our current approach with Section 3.2 focussing on the
two variants of collaborative filtering that we experimented with. Finally, Section 4 contains design choices
that motivated us to choose parameters, error analysis and our final results.

2 Background

Last quarter, we implemented a hybrid approach for Netflix Challenge.Summary of the results is as
follows :

TAB. 1 — Last quarter approach : Results on probe set

Description RMSE | Number of user-movie pairs
The global rating of movies 1.0537 1408395
Content Based Approach based on genres, director | 0.6955 172641
Collaborative filtering 0.9602 992681
The weighted sum of the 3 ratings above 0.8339 121722

However, there were certain pitfalls in this approach and that eventually lead to the current approach.
(section 3)

3 Our Aproach

Last quarter, we applied a hybrid aproach but failed to identify classes of users exhibiting special behaviour
for e.g. users who rate movies consistently, movies that are globally acknowledged good or bad. Instead, we
focussed on the aggregated statistics. Therefore, we turned our focus towards an integrated approach, where
our aim is to identify classes of special users and movies and devise heuristics to explain their behaviour.
Further, we had not taken into account the variation of an user’s ratings within a genre, which we feel could
improve the quality of results from the collaborative filtering approach.

In the sections below, we describe how different ratings are assigned to different classes of users.

3.1 Special Classes of users

These are the easy cases where we can predict the user’s ratings with a high degree of accuracy.
1. New Users : [{m|(u,m,r) € Training-Set}| < dpey = u € New-Users

2. Consistent Users : [{m|(u,m,r) € Training-Set}| > dconsistent A O(u,m,r)(u.1) < 8 = u €

Consistent-Users.

Oconsistent

3. Genre-Consistent Users : [{m|({u, g}, m,r) € Training-Set}| > genre_consistent \O({u,g},m,r) ({t, g}.7) <
00 genreconsistent — U € Genre-Consistent Users.

Here o stands for standard deviation. We remove these classes of users from the training set and build a
Pruned Training Set. We apply collaborative filtering to this Pruned Training Set. For the cases, in which
we don’t have much data to build a comprehensive user profile or find a sufficiently similar set of users, we
use global rating of the movie to predict ratings. Global rating is defined as,

Global Rating(m) = V(u, m,r) € Training-set, AV G(rating)

We also tried incorporating IMDB [2] data into the global rating of a movie. RMSE values with only
Netflix data came out to be better than the RMSE values when we incroporated IMDB data.

3.1.1 New User

To predict ratings for a NewUser u for a movie m, we tried the following two approaches
1. Predicted rating(u, m) = Global Rating(m)

2. Predicted rating(u, m) = (Global Rating(m) + U ser Average(u))/2
where UserAverage(m) = V¥(m, r) € Training-set for a user u, AVG(rating)

The latter approach yielded poor results on the validation set. Therefore, we used the former approach in
our final evluation. The exact value of the threshold is present in (section 4.1).

3.1.2 Consistent Users

We take the s, .;.00n, Sufficiently small. Our intention in doing so is to use the mean rating of this user
for predicting ratings for the user. We have empirically verfied using the probe set that using this heuristic
actually yields good results. The exact value of the threshold and a brief discussion on it is present in (section
4.2).

3.1.3 Genre-Consistent Users

To predict ratings of a movie m for such a user u € Genre-Consistent Users,
1. Obtain Genre(m) = the set of genres of movie m

2. Obtain the ratings(u,g) where g € Genre(m)

3. Predict rating AVG,(ratings(u, g))

3.2 Collaborative Filtering

It is generally the case in social networks(Facebook, Twitter etc.) that users tend to show common
patterns of behavior as their friends and acquantaince’s. This applies even to the domain of movie ratings,
since the number of users are far greater than the number of movies, we expect users to have common movies
and furthermore, exhibit similar responses to movies. Therefore, we would like to cluster similar users and
study the behaviour of these clusters with respect to movie ratings.

Since the number of possible neighbors of an user can be large, Locality Sensitive hashing [4] seemed an
obvious choice for clustering. Genres are the ideal choice of signatures since they are highly representative of
the content of a movie. To build movie profile we have used IMDB [2] data. IMDB data contains 28 distinct
genres so we define a user as a feature vector of 28 features where each feature corresponds to a distinct
genre and is representative of a user’s behaviour towards that genre. Two users are considered similar based
on the closeness of the distance between their repspective dimensions.

In the following study, we have experimented with two clustering techniques

1. Fuclidean LSH : For every user, each feature point is represented as user’s average rating for the corr
esponding genre. We use L2-norm as a distance measure. To compute similar neighbours we have used
E2LSH [1] implementation of LSH [7]. If a user has not seen any movie of a genre, we assign a constant
rating of 3 out of 5 for that genre assuming neutral behavior.

2. k-NN Clustering : Feature corresponding to a user u and genre g is represented the interval i.e.
(Hu,g — Ou.gs Hu,g + Ou,g) and the distance is computed using the following scheme.

Algorithm 3.1: DISTANCEBETWEENTWOUSERS(user, users)

common_genre_list «— FindCommonGenres(usery,users)
jaccard_distance < 0

g <+ common_genre_list

while g # NULL

4o {jaccarddist — jaccard.dist + 1 — N{(Butig—0ut:gsHutigtoulig), (Hu2:g—0u2:g:Mu2:gF0u2:g)}

U{(;Lul;g—O’ul;g7Mu1:g+0'u1:g)a (Mu?:g_o'uQ:g;N/u2:9+0'u2:g)}
g < g.next
num_ef fective_dim «— size(common_genre_list)

jaccard_distance - -
return (—num,effectwe,dim x v/num_ef fective_dim)

For the first approach we directly used the LSH implementation. The LSH implementation requires two
paramters as inputs. The first being the radius threshold within which it finds the nearest neighbours. The
second being the number of neighbours that it reports within the hyper-sphere of radius r given as the
input. Although LSH algorithm is independent of the distance measure but E2LSH package uses Eucllidean
distance as a distance measure.

For the second approach, we could not use the default LSH implementation as it only considers features as
values and does not handle features as intervals. Further, even by modifying the distance function we would
run into the problem that the LSH implementation that we were using was implemented to probabilistically
compute neighbours for an Eucliden distance measure and not for a Jacccard distance measure. Using
this implementation for a non-eucliedean distance, would miss out a large fraction of good neighbours. We
empirically established this fact before moving on to the Basic K-Nearest neighbour (O(n*logk)) algorithm.

4 Results

4.1 New Users

We used 0ye0_threshota Of 10. By using the latter method, as described in section 3.1.1, we get an RMSE
of 1.09. Our RMSE improves to 1.0537 when we use the former method. Around 3% of our probe set contains

New Users.

4.2 Consistent Users

We chose dconsistent as 10. We initially set 5., ;.10 10 0.3 and got an RMSE of 0.7612 for thse users on
the probe set. We then tried higher thresholds to find consistent users. A threshold of 0.35 or higher gave
an RMSE close to 0.84 for the validation set. We eventually settled for a threshold of 0.3. For a threshold of
0.35 or higher we were doing worse than collaborative filtering for these users.

For users consistent within a genre we used dgenre_consistent Of 5. There are 2% of users who give give
consistent rating for atleast one genre.

4.3 Locality Sensistive Hashing

Even with exact neighbours, our results did not improve much as compared to our first approach in which
we were not considering interval of ratings for every genre. This lead us to do some further data analysis.
We observed that around 1.5K users were such that the standard deviation of their ratings was less than
or equal to 0.3 and almost all the rest of the users had a standard deviation almost the same i.e. between
0.8 to 1.1. With this new insight, we concluded that since most users in the pruned training set have more
or less similar standard deviation of ratings so it might not be worthwhile to consider them as intervals of
ratings within every genre and that only considering their mean ratings for every genre migt be just as good
a measure.

TAB. 2 — LSH results on probe set

Sl No. Data Set RMSE number of user-movie pairs
1 Training Set - Consistent Users 0.992197 1048274
2 Training Set - New Users 0.987475922 1033740

TAB. 3 — Overall Results on qual set with 28 features
Sl No. | Number of neighbours | Radius threshold | RMSE on Test Set
1 250 2.3 1.03
2 500 2.6 1.0282

TAB. 4 — LSH for pruned training set on Probe Set

Actual Rating | RMSE | number of user-movie pairs
1 2.3137 40208
2 1.4143 95748
3 0.7450 273000
4 0.6213 359142
5 1.0875 261646
Overall 0.9886 1029744

RMSE for ratings > 3 is 0.8191 and it is predicted for 87% of the pruned training set. RMSE for ratings
> 2 is 0.8941 and it is predicted for 97% of the pruned training set. We can see that the user-movie pairs
with an actual rating of 1 severely affect our overall RMSE.

Our final results came out to be even poorer than the cinematch’s score of 0.9515. We suspect that this
might be due to the following reasons :

1. We were performing rather poorly on the probe set for movies which were rated 1 by the users. But
for all other movies in the probe set our RMSE was close to 0.88. In our next section, we describe in
detail about this curious case of ones.

2. While fine tuning our method on the probe set we were able to compute neighbours for a larger
fraction of the probe set but when we used the same thresholds for the qual set we were able to
compute neighbours for close to 70% of the data only. On increasing the threshold to 2.6 we were able
to compute neighbours for 79% of the data. We have finally increased the threshold to 3.0 and are
awaiting the results. For the probe set for which we can neither predict ratings via consistent users
within a genre, nor by new users and nor by LSH, we simply take the average of users rating and
movie’s global rating.

4.4 Curious Case of ones

After running our final setup we got an RMSE of 0.8923 on the probe set for all user-movie pairs except
for the user-movie pairs which had an actual rating of 1. We found out that 73211 (around 5%) user-movie
pairs in the probe set were rated as all 1s. Some of the interesting statistics about such user-movie pairs is
described below :

1. Number of unique users within this user-movie set is 9205.
2. Number of unique movies within this user-movie set is 61358.

3. Percentage of user-movie pairs with actual rating as 1 but with the global rating of the movie > 3.0
is around 81% of total user-movie pairs with 1s, whereas percentage of user-movie pairs with actual
rating as 1 but with the global rating of the movie < 1.85 is 0.25%. This seems to suggest that a large
fraction of these movies are such that they are not in general rated ones by most users.

4. Number of unique users with an average rating < 1.5 is only 158 and the number of user-movie pairs
corresponding to these users is only 0.61% of all such use-movie pairs. This seems to suggest that a
lot of the users within the above mentioned 73211 user-movie pairs are such that they don’t normally
give ones but there is something about these movies which made them give rating 1 to these movies.

Even up till now, we have not been able to identify why these movies are rated as ones even though
average rating the movies of over 81% of these user-movie pairs are over 3.What is even more surprising is
that most user’s who rate them as ones are in general not the kind who give ones to these movies. Another
noteworthy point is that even though the fraction of such user-movie pairs is actually very small but they
affect the overall ratings greatly.

Further, there was a user who has rated around 16560 movies. if a user watched roughly 9 movies per
day continuously for 5 years then and only then can the user watch 16560 movies. Since, we only have data
for user’s ratings given in 5 consecutive years, this clearly suggests that the user has simply rated a lot of
the movies and has not actually watched them. There were 12 other users who have rated more than 8000
movies. We considered users with average rating < 2.5 and predicted for them by taking the average of
their average rating and movies’ average rating. We got an RMSE of 1.36 for 8800 user-movie pairs in the
validation set. Earlier, we were getting an RMSE > 2 for these set of users. Our main effort here was to
somehow get an RMSE close to 1.3 for these sets of users for these sets of movies. [5]

5

Future Work

Références

1]
2]
3]
[4]
[5]
(6]

(@)

6

[7]

E2lsh. http://www.mit.edu/~andoni/LSH/.

Imdb. http://www.imdb.com/.

Netflix challenge. http://www.netflixprize.com/.

Netflix leaderboard. http://www.netflixprize.com//leaderboard.
Netflix prize. http://en.wikipedia.org/wiki/Netflix_Prize.

Gediminas Adomavicius and Er Tuzhilin. Toward the next generation of recommender systems : A survey
of the state-of-the-art and possible extensions. IEEFE Transactions on Knowledge and Data Engineering,
17, 2005.

Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high dimensions via hashing. In
VLDB, 1999.

