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ABSTRACT
Run-length encoding is a popular compression scheme which is
used extensively to compress the attribute values in column stores.
Out of order insertion of tuples potentially degrades the compres-
sion achieved using run-length encoding and consequently, the per-
formance of reads. The in-place insertions, deletions and updates
of tuples into a column store relation with n tuples take O(n) time.
The linear cost is typically avoided by amortizing the cost of up-
dates in batches. However, the relation is decompressed and sub-
sequently re-compressed after applying a batch of updates. This
leads to added time time complexity. We propose a novel index-
ing scheme called count indexes that supports O(log n) in-place
insertions, deletions, updates and look ups on a run-length encoded
sequence with n runs. We also show that count indexes efficiently
update a batch of tuples requiring almost a constant time per up-
dated tuple. Additionally, we show that count indexes are optimal.
We extend count indexes to support O(log n) updates on bitmapped
sequences with n values and adapt them to block-based stores.

Categories and Subject Descriptors
H.2.2 [Database Management]: Physical Design; H.3.1 [Information
Storage and Retrieval]: Content Analysis and Indexing

General Terms
Algorithms, Theory, Performance

Keywords
column store, run-length encoding, incremental maintenance, in-
place updates, indexing

1. INTRODUCTION
Since Stonebraker et al’s seminal paper [20] in 2005, column

stores have become the preferred platform for data warehousing
and analytics. A case study in [16] shows that present enterprise
systems are best served by column stores. Although column stores
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have recently received increased attention, the concept of decom-
posed storage [5] dates back to the 1980s. [1] presents an excel-
lent overview of the column store technology starting from the de-
composed storage model [5]. Column stores support fast reads of
data by vertically partitioning a relation and efficiently compress-
ing attribute value using techniques such as run-length encoding
and bitmap-encoding. The performance of the reads depends on the
compression achieved. It has been shown in [17] that the compres-
sion schemes such as run-length encoding and bitmap encoding are
sensitive to the ordering of tuples. Hence, out of order insertions of
the tuples potentially degrade the compression achieved and con-
sequently, the performance of the reads. Therefore in order to in-
crementally maintain relations while achieving good compression,
column stores require the support for efficient in-place or offset-
based inserts, deletes and updates of the tuples.

On an average, the time taken to insert or delete a tuple at a given
offset is linear in the number of the tuples of a relation. This is
because, in addition to the updated tuple, the storage keys or iden-
tifiers of the successive tuples have to be updated as well. In this
paper, we consider the problem of efficiently supporting in-place
insertions, deletions and updates of tuples in column stores. Previ-
ous work in [3, 13, 15, 20] have proposed different techniques to
amortize the cost of applying updates to a column store relation in
batches. The central theme underlying these techniques (which are
discussed in Section 4) is to buffer the updates in a differential store
and later merge the updates with a read-optimized store using a ta-
ble scan. Although such a differential update mechanism amortizes
the time to apply updates in bulk, it does not avoid the linear cost
of a table scan. In addition, the tuples in the read-optimized store
are decompressed and subsequently re-compressed after applying
the updates. This requires additional time. We show that we can
support in-place inserts, deletes and updates of tuples in a column
store relation in time that is sub-linear in the number of tuples and
thus avoid a linear scan of the tuples. In this paper, we study the
problem of efficiently updating run-length encoded attributes and
extend our solution to bitmapped attributes.

Updating run-length encoded attributes: Tuples of a relation
in a column store are ordered by sort keys and every attribute is
stored separately as a sequence of values. These sequences are
either run-length encoded or bitmap encoded. The bitmapped at-
tributes are subsequently run-legth encoded to save space. The
run-length encoding scheme compresses successive repetitions of
values or runs in a sequence. A run of a value v can be succinctly
represented either as a (v, n) or a (v, o) pair, where n is the run-
length and o is the offset of the last (or the first) occurrence of v
in the run. For presentation purposes, we shall call the former rep-
resentation of runs as count-based and the latter representation as
offset-based. We illustrate the two representation schemes using



the following example.

Example 1.1. Consider the sequence of values a, a, b, b, b, a, a,
a, b, b. If we use the count-based representation of runs to encode
this sequence we would get (a, 2), (b, 3), (a, 3), (b, 2). Instead, if
we use the offset-based representation of runs, the sequence would
be encoded as (a, 2), (b, 5), (a, 8), (b, 10).

Each representation scheme has its advantages and disadvan-
tages. Since the offsets of the runs increase monotonically, the val-
ues in the offset-based representation can be efficiently looked up
using augmented Binary Search Trees [2, 10, 12] in time that is log-
arithmic in the number of the runs. However, if a run is inserted or
deleted, the offset of every successive run must be updated as well.
Hence, the time taken to update a run-length encoded sequence is
linear in the number of runs using the offset-based representation.

In contrast to the offset-based representation, a run can be in-
serted or deleted using the count-based representation of a run-
length encoded sequence in constant time if the offset of updated
run is known. However, in order to look up a value at a given off-
set, the offset of the preceding run must be computed as well. Since
the run-lengths are not monotonic in general, the variants of binary
trees cannot be used to efficiently look up the value at a given off-
set. Hence, the time to look-up a value in a run-length encoded
sequence is linear in the number of runs using the count-based rep-
resentation.

Thus choosing between the offset-based and the count-based rep-
resentation of runs trades-off the time taken to look up and to up-
date runs of values in a sequence. We summarize this trade-off
in Table 1. In this paper, we show that we can leverage auxiliary
data structures along with an appropriate choice of a representation
scheme to optimize this trade-off. Prior work [4, 6, 8, 9, 11, 14,
19, 21, 22] on spatio-temporal aggregation for range queries has
studied the problem of incrementally maintaining the partial sums
for an array. However, the proposed data structures are not dy-
namic. For instance, operations such as the in-place insertions and
the deletions of new array values are not supported. We distinguish
count indexes from the prior work on incrementally maintaining
spatio-temporal aggregates in Section 4.

Table 1: Trade-off between the look up and update complexity
for run-length encoded sequences

n = number of the runs in the sequence

Representation Scheme Cost of operation
Look up Update

Count-based O(n) O(1)
Offset-based O(log n) O(n)

Contributions: We consider the problem of efficiently updating
run-length encoded attributes as a first step towards efficiently up-
dating column stores. We propose a novel indexing scheme called
count indexes (in Section 2) that supports offset-based look ups as
well as updates in a run-length encoded sequence with n runs in
O(log n) time. Thus, count indexes efficiently trade-off the time
to look up a value in a sequence with the time taken to update the
sequence. We generalize count indexes (in Section 3) to efficiently
update bitmap encoded columns. Our contributions in this paper
can be summarized as follows:

1. In Section 2.1, we describe a procedure to efficiently create
count indexes on a sequence with n runs in O(n) time.

2. In Sections 2.2 and 2.3, we show that count indexes support
offset-based look ups and in-place insertion, deletion and up-
date of runs in O(log n) time. We also show that a sequence
of k runs can be inserted into a count index on n runs in
O(k + log n) time, thus lowering the time complexity of up-
dating a batch of tuples using the techniques proposed in [3,
13, 15, 20].

3. In Section 2.4 we show that the problem of incrementally
maintaining a run-lenth encoded sequence with n runs re-
quires Ω(log n) time. Hence our technique of incremen-
tally maintaining run-length encoded attributes using count
indexes is optimal.

4. In Section 3, we extend count indexes to support O(log n)
updates on bitmap encoded sequences of size O(n). We also
adapt count indexes to block-based stores and present the
corresponding algorithms for inserting and deleting runs.

2. COUNT INDEXES
In Section 1, we observed that choosing a particular represen-

tation scheme to run-length encode a sequence trades-off the time
taken to look-up and to update a value at a supplied offset. In this
section, we present a novel indexing scheme called count indexes
that optimizes this trade-off. We define a count index as follows.

Definition 2.1. A count index is a binary tree on a sequence of
integers. The integers are stored in the leaf nodes. Every interior
node in the count index stores the sum of its children’s values. Thus
the root of the count index stores the total sum of integers in the
sequence.
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Figure 1: Count index on the sequence a, a, b, b, b, a, a, a, b, b

Given a run-length encoded sequence with n runs, we can look up or update runs of values at
specified offsets using count indexes in O(log n) time. In the remainder of this section we discuss
algorithms for index creation, look up and maintenance.

2.1 Index Creation

As discussed above, a count index is a binary tree on a sequence of integers. Every node in a count
index stores the the sum of the values of its children. To construct a count index on a sequence of n
integers, we divide the integers into groups of two. If n is odd, we create a group for the last count.
We then compute the sum of the counts of the integers in each of the !n

2 " groups and recursively
build the count index on these !n

2 " sums. The detailed algorithm is presented in Figure 2. The
pointers to the parent, left and the right children of a node are stored in parent, lchild and rchild
respectively.

3.1 Index Creation

Consider an attribute with n runs. The n 〈value, count〉 pairs constitute the

leaves of the count index. Each node in the count index consists of two fields:

its count (ctr) and the counts of its children (lctr and rctr). For leaf nodes,

lctr = rctr = ctr. If a node has only one child, count of its other child is set

to 0. We describe below an algorithm to create a count index over n counts

represented as leaves [ci].

Algorithm 1 Creating a count index over n counts

CreateIndex ([ci], n)

if n = 1 then
return ci

else
for i = 1 to n − 1 do

j ← i+1
2

dj.parent ← dj

dj.lchild ← ci dj.rchild ← ci+1

dj.count = ci.count + ci+1.count
ci.parent = ci+1.parent ← dj

i ← i + 2
end for
if n ≡ 0 (mod 2) then

return CreateIndex ([di],
n
2
)

else
dj.parent ← dj

dj.count = ci.count
dj.lchild ← ci dj.rchild ← NULL
ci.parent ← dj

return CreateIndex ([di],
n+1

2
)

end if
end if

The algorithm proceeds by dividing the n leaves into groups of two. If

7

Figure 2: Algorithm to create a count index on a sequence of n integers

Time Complexity: In the first pass, we divide n integers into groups of two and compute the
sum of the integers in each group. This takes n units of time. Similarly, the second pass takes !n

2 "

4

Figure 1: Count index on the sequence a, a, b, b, b, a, a, a, b, b

Figure 1 shows a count index on the sequence given in Exam-
ple 1.1. While the count index is constructed on the run lengths
only, we display the values (a and b) as well for presentation pur-
poses. The root node in Figure 1 stores the number of values in the
sequence (= 10).

Given a run-length encoded sequence with n runs, we can look
up or update runs of values at specified offsets using count indexes
in O(log n) time. In the remainder of this section we discuss the
algorithms for index creation, look up and maintenance.

2.1 Index Creation
As discussed above, a count index is a binary tree on a sequence

of integers. Every node in a count index stores the the sum of the
values of its children. To construct a count index on a sequence of
n integers, we divide the integers into groups of two. If n is odd,
we create a group for the last count. We then sum the counts of the
integers in each of the dn

2
e groups and recursively build the count

index on these dn
2
e sums. The detailed algorithm is presented in

Figure 2. The pointers to the parent, the left and the right children
of a node are stored in parent, lchild and rchild respectively.
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Figure 2: Algorithm to create a count index on a sequence of n
integers [ci]

Time Complexity: In the first pass, we divide the n integers into
groups of two and compute the sum of the integers in each group.
This takes n units of time. Similarly, the second pass takes dn

2
e

units of time, the third pass takes dn
4
e units of time and so on. The

algorithm terminates after log n passes. The time complexity of the
index creation algorithm is therefore O(n + n

2
+ n

4
+ . . . + 1) =

O(2× n) = O(n).
In Section 1, we observed that choosing one representation of

a run-length encoded sequence over the other trades-off the time
taken to update the sequence with the time taken to look up values
at the supplied offsets. In the remainder of the section, we show
that count indexes optimize this trade-off by supporting O(log n)
offset based look ups and updates on a sequence with n runs.

2.2 Index Look Up
The run lengths in a run-length encoded sequence are not mono-

tonic in general. Therefore we cannot directly perform a binary
search on the run lengths to look up the leaf node corresponding to
a given offset. However, if we start at the root of the count index,
we can determine which of its children contains the leaf node cor-
responding to the given offset in constant time. Suppose we want
to look up the value at offset p. Let the counts of the left child and
the right child of the root be lv and rv respectively. If p ≤ lv , the
value at the offset p is located in the left child of the root. Other-
wise, the value at the offset p is located in the right child. The left
or the right child of the root can be looked up in a similar manner.
The look up procedure terminates when we arrive at the leaf which
corresponds to the supplied offset. Thus the look up procedure ter-
minates in time that is proportional to the height of the count index.
The detailed algorithm for looking up values in a count index is
presented in Figure 3.

To illustrate how the look-up algorithm works, let us revisit the
count index (Figure 1) on the sequence given in Example 1.1. Sup-
pose we want to look up the value at the 8th position from the start
of the sequence. We look up the counts of the left and right children
of the root of the count index. The count of the left child (= 5) is
less than 8. Therefore, we look up the value at the offset 3 (= 8 - 5)
in the right child (say r) of the root. Since the count of the left child

units of time, the third pass takes !n
4 " units of time and so on. The algorithm terminates after log

n passes. The time complexity of the index creation algorithm is therefore O(n+ n
2 + n

4 + . . .+1) =
O(2 × n) = O(n).

In Section 1, we observed that choosing one representation of a run-length encoded sequence
over the other trades off the time taken to update the sequence with the time taken to look up
values given their offsets. We show that count indexes optimize this trade-off by supporting O(log
n) offset based look ups and updates on a sequence with n runs.

2.2 Index Look Up

The run lengths in a run-length encoded sequence are not monotonic in general. Therefore we
cannot directly perform a binary search on the run lengths to look up the leaf node corresponding
to a given offset. However, if we start at the root of the count index, we can determine which of
its children contains the leaf node corresponding to the given offset in constant time. Suppose we
want to look up the value at offset p. Let the counts of the left child and the right child of the
root be lv and rv respectively. If p ≤ lv, the value at offset p is located in the left child of the root.
Otherwise, the value at offset p is located in the right child. We can now look up the left or the
right child of the root in a similar manner. The look up procedure terminates when we arrive at
a leaf that corresponds to the supplied offset. Thus the look up procedure terminates in time that
is proportional to the height of the count index. The detailed algorithm for looking up values in a
count index is presented in Figure 3.

groups. For each group, we compute the sum of the counts of its members.

We recurse on these !n
2
" groups. We note that the first step of index creation

takes n time units, the second step takes !n
2
" time units and so on. Therefore

the time complexity of index creation is n + n
2

+ n
4

+ . . . = O(n). The height

of this index is O(log n).

3.2 Index Lookup

As discussed in section 2, column stores should support efficient look up

attribute values based on run positions (or storage keys as described by [1]).

In this section we show that count indexes support O(log n) look ups where

n is the number of runs in an attribute and describe below an algorithm for

the same. The algorithm searches for the attribute value at position p in the

count index rooted at node.

Algorithm 2 Look up procedure in Column Stores

SearchCountIndex (p, node)

if node has no children then
return value at node

else
lchild ← left child of node
v ← value at lchild
if v > p then

SearchCountIndex (p, lchild)
else

SearchCountIndex (p − v, rchild)
end if

end if

To illustrate how the look up procedure works, let us revisit the count
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Figure 3: Algorithm to look-up values in a count index

To illustrate how the look-up algorithm works, let us revisit the count index (Figure 1) on the
sequence given in Example 1.1. Suppose we want to look-up the value at the 8th position from the
start of the sequence. We look up the counts of the left and right children of the root of the count
index. Since the count of the left child (= 5) is less than 8, we look-up the value at offset 3 (=
8 - 5) in the right child of the root. Since the count of the left child is 3, our look up procedure
terminates and returns the value a. The look-up procedure is shown in Figure 4.

Proof of correctness: We can establish the correctness of the look up algorithm shown in
Figure 3 using induction on the height of the count index.

Base case: (Index with a root and 2 children i.e. height = 2) Suppose we want to look up the
value in the pth position from the start of the sequence. Let lv and rv be the counts of the left and
right children of the root node. If the offset is positive and less than the size of the sequence, we
have:

1 ≤ p ≤ lv + rv (1)

5

Figure 3: Algorithm to look-up values in a count index

of r is 3, our look up procedure terminates and returns the value a.
The look-up procedure is shown in Figure 4.

key = 3

a

2

b

3 3 2

a b
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Figure 4: Example of a look-up on a count index

Therefore, either p ≤ lv or p − lv ≤ rv.
Inductive Hypothesis: We assume that the look up algorithm correctly returns the value at

any given offset in a count index of height ≤ k.
Induction Step: Suppose we look-up the value at the offset p in a count index of height k +1.

Let lv and rv be the counts of the left and right children of the root node. Following the argument
made in the base case, either p ≤ lv or p − lv ≤ rv. Since the children of the root node at a height
of k, the look up algorithm correctly returns the value at the offset p.

Time Complexity: Consider a count index on a sequence of n integers. The algorithm in
Figure 3 examines exactly one node at any level in the count index. If the height of the count index
is h, the time complexity of the look up procedure is O(h). Using Claim 2.3 we show that the
height h of a count index with n leaves is O(log n). Therefore count indexes support offset-based
look ups over a run-length encoded sequence in time that is logarithmic in the number of runs.

Supporting Range Predicates: Given a count index with n leaves, we can look up the
values within a given range of offsets in O(log n) time by creating links between the neighboring
leaf nodes. Suppose we require values within the offsets p and q from the start (p ≤ q). We look
up the value at offset p using the algorithm shown in Figure 3. On reaching the leaf node that
corresponds to the offset p, we traverse the leaf’s neighbors on the right till we reach the leaf node
corresponding to the offset q.

2.3 Index Maintenance

It is essential for any index to be efficiently updatable when new values are inserted or old values
are deleted. When values in a sequence are updated, the corresponding count index is affected in
one of the following ways:

1. The count of an existing leaf node is updated.

2. A new leaf node is inserted or an existing leaf node is deleted from the count index.

It is easy to handle Case 1 by updating the ancestors of the leaf node in time that is logarithmic
in the number of runs in the sequence. However, the count index can be potentially unbalanced
by Case 2. Since the counts of the leaf nodes are not monotonic, we cannot use traditional tree
rotation schemes that are used to balance AVL trees [2] and Red-Black trees [12]. In this section,
we discuss techniques to efficiently balance a count index when new values are inserted or old values
are deleted. We note that in all of the examples which follow, we discuss inserts and deletes of single
values or counts into a count index. We can, however, use the index update procedures described
below to insert or delete runs of any length (≥ 1).

Deletions: Suppose we want to delete a leaf from a count index. There are two cases depending
on whether the leaf has a sibling or not.
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Proof of Correctness: We can establish the correctness of the
look up algorithm shown in Figure 3 using induction on the height
of the count index.

Base Case: (Count index with a root and 2 children i.e. height =
2) Suppose we want to look up the value in the pth position from
the start of the sequence. Let lv and rv be the counts of the left and
right children of the root node. If the offset is positive and less than
the size of the sequence, we have:

1 ≤ p ≤ lv + rv (1)

Therefore, either p ≤ lv or p− lv ≤ rv .
Inductive Hypothesis: We assume that the look up algorithm

correctly returns the value at any given offset in a count index of
height ≤ k.

Induction Step: Suppose we look up the value at the offset p in
a count index of height k + 1. Let lv and rv be the counts of the
left and the right children of the root node. Following the argument
made in the base case, either p ≤ lv or p − lv ≤ rv . Since the
children of the root node are at a height of k, the look up algorithm
correctly returns the value at the offset p.

Time Complexity: Consider a count index on a sequence of n
integers. The algorithm in Figure 3 examines exactly one node at
any level of the count index. If the height of the count index is
h, the time complexity of the look up procedure is O(h). Using
Claim 2.3 (which is presented later) we show that the height h of
a count index with n leaves is O(log n). Therefore count indexes
support offset based look ups over a run-length encoded sequence
in time that is logarithmic in the number of the runs.

Supporting Range Predicates: Given a count index with n leaf
nodes, we can also look up the values within a supplied range of
offsets in O(log n) time by creating links between the neighboring
leaf nodes. Suppose we require values in between the offsets p and
q from the start (p ≤ q). We look up the value at the offset p using
the algorithm shown in Figure 3. On reaching the leaf node that



corresponds to the offset p, we traverse the leaf’s neighbors on the
right till we reach the leaf node corresponding to the offset q.

2.3 Index Maintenance
It is essential for any index to be efficiently updatable when new

values are inserted or old values are deleted. When values in a
sequence are updated, the corresponding count index is affected in
one of the following ways:

1. The count of an existing leaf node is updated.

2. A new leaf node is inserted or an existing leaf node is deleted
from the count index.

It is easy to handle Case 1 by updating the ancestors of the leaf
node in time that is proportional to the height of the count index.
However, the count index can be potentially unbalanced by Case 2.
Since the counts of the leaf nodes are not monotonic, we cannot use
traditional tree rotation schemes which are used to balance AVL
Trees [2] and Red-Black Trees [12]. In this section, we discuss
techniques to efficiently balance a count index when new values
are inserted or old values are deleted. We note that in all of the
examples which follow, we discuss the insertion and the deletion
of single values or counts into a count index. We can, however,
use the index update procedures described below to insert or delete
runs of any length (≥ 1).

Deletions: Suppose we want to delete a leaf from a count index.
There are two cases depending on whether the leaf has a sibling or
not.
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Figure 5: Count index on a sequence with five run-lengths: 1, 3, 3, 1 and 1

1. (Leaf has no siblings): In this case, we delete the leaf and its ancestors. If the new root has
only one child, we make its child the new root node and iterate down the tree.

(b) Count Index after deletion
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(a) Deleting a leaf that has no sibling
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(c) Count Index after deleting rightmost leaf

Figure 6: Deleting a leaf that has no siblings

2. (Leaf has a sibling): In this case, we check whether the leaf (say cl) or its sibling (say cs)
has a neighbor without any sibling of its own. If neither the leaf or its sibling have such a
neighbor, then we delete the leaf node and update the value at its parent. Otherwise, let cn

denote the neighbor of the leaf (or its sibling) that has no sibling of its own. We delete cl and
assign cn to be the sibling of cs.

(b) Count Index after deletion

1 3

4

7

3 3

6

3

3

(a) Deleting a leaf that has a sibling

Figure 7: Deleting a leaf that has a sibling

Consider a count index on a sequence with five run-lengths: 1,3, 3, 1 and 1 (shown in Figure 5). We
note that although the count index appears to be unbalanced, its height is in fact ≤ "log2(#nodes =
5)#. We show that this is always the case using Claim 2.3. Suppose we want to delete the rightmost
count from the count index shown in Figure 5. Since the leaf node corresponding to the rightmost
count (= 1) does not have a sibling (Case 1), we delete it and and all its ancestors which are shown
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ancestors. If the new root has only one child, we make its
child the new root node and iterate down the tree.

2. (Leaf has a sibling): In this case, we check whether the leaf
(say cl) or its sibling (say cs) has a neighbor without any
sibling of its own. If neither the leaf or its sibling have such
a neighbor, then we delete the leaf node and update the value
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Consider a count index with five run-lengths: 1, 3, 3, 1 and 1
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pears to be unbalanced, its height is in fact O(log2(no. of nodes) =
log 5). We show that this is always the case using Claim 2.3. Sup-
pose we want to delete the rightmost count from the count index
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leaf again. Since the rightmost leaf has a sibling and no neighbors
without a sibling, we delete the leaf node and update the value of
its parent. The resulting count index is shown in Figure 6(c). Now
suppose we delete the leftmost count (= 1). Since the leftmost leaf
has a sibling (with a count of 3) and a neighbor without any siblings
(Case 2), we delete the leftmost node and pair up the sibling with
the neighboring leaf. This procedure is shown in Figure 7(a) and
(b). In Figure 7(a), the hatched nodes are deleted.

Claim 2.1. Deleting a leaf from a count index takes time that is
linear in the height of the count index.

PROOF. Let f(k) and g(k) be the time taken to delete a node at
a height of k using cases 1 and 2 respectively. Then the following
recurrence relations hold.

f(k) ≤ 1 + max{f(k − 1), g(k − 1)} (2)
g(k) = f(k − 1) + 1 (3)

On solving for f(k) and g(k), we get f(k) = g(k) = c× k + d
where c and d are constants. Therefore, a leaf can be deleted from
a count index of height h in O(h) time.

Updating the Root: When we delete a leaf node which causes
one of the root’s children to be deleted as well (an example is shown
in Figure 6(a)), the root node of the count index has to be updated.
As a general rule, after the deletion procedure terminates, we check
whether the root of the count index has two children or not. If the
root has two children, no further update is required. However, if
the root has only one child, we set its child to be the new root node
and recurse down the count index.

Inserts: The process of inserting new leaves into a count index
is similar to the process of deleting leaves. Suppose we want to



insert a leaf node w between two leaves: u and v. There are two
cases depending on whether u or v have siblings or not.

1. (One of u or v has no siblings): Without loss of generality,
we can assume that u has no siblings. We make w the sibling
of u and update the count of their parent.

2. (Both u and v have siblings): If u and v are siblings of each
other then we make w the sibling of u by updating the count
at v. Next, we insert a leaf with the same count as v at the
leaf level and set its parent to have the same count as itself.

Claim 2.2. Inserting a leaf into a count index takes time that is
linear in the height of the count index.

PROOF. Let f(k) and g(k) be the time taken to insert a node at
a height of k using cases 1 and 2 respectively. Then, the following
recurrence relations hold.

f(k) = f(k − 1) + 1 (4)
g(k) ≤ 1 + max{f(k − 1), g(k − 1)} (5)

On solving for f(k) and g(k), we get f(k) = g(k) = c× k + d
where c and d are constants. Therefore, a leaf can be inserted into
a count index of height h in O(h) time.

Balancing Count Indexes: Using Claims 2.1 and 2.2, we have
established that the node insertions and deletions in a count index
of height h take O(h) time. We still need to show that an updated
count index is balanced i.e. h = O(log n). Count indexes can be
potentially unbalanced due to nodes which are not paired up with
their neighbors. We call such unpaired nodes as holes. Since a node
in a count index stores the sum of its children’s counts, we cannot
use traditional tree rotation techniques for tree balancing as is used
in AVL Trees [2] and Red-Black Trees [12].

Balancing Count Indexes: Using Claims 2.1 and 2.2, we have established that node insertions
and deletions in a count index of height h take O(h) time. We still need to show that an updated
count index is balanced i.e. h = O(log n). Count indexes can be potentially unbalanced due to
nodes which are not paired up with their neighbors. We call such unpaired nodes as holes. Since
a node in a count index stores the sum of the children’s counts, we cannot use traditional tree
rotation techniques for tree balancing as is used in Red Black Trees [12] and AVL Trees [2].

Consider a count index with n leaf nodes. The maximum number of holes at the leaf level of
the count index is !n

2 ". When we insert or delete a node from the count index, we propagate holes
on to higher levels where they either pair up with an existing hole or cause a node to be split (while
inserting a node) or two nodes to be merged (while deleting a node). The count index shown in
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Figure 7(b) has two hole positions at the leaf level (shown in Figure 8). When we insert a count
(say 1) into either of these holes, the hole propagates to the next level and pairs up with the node
which was previously the root. The final state of the count index is shown in Figure 9.
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Claim 2.3. The height of a count index with n leaves is O(log n) i.e. the count index is always
balanced.

Proof. Suppose that there are n nodes paired up at the leaf level in a count index. The maximum
number of holes at leaf level is #n

2 $. At subsequent levels, the maximum number of holes is #n
4 $,

#n
8 $, # n

16$ and so on. Hence, at every level of the count index, at most one-third of the nodes can
potentially be holes. The height of the count index index is thus log (3 × n

2 ) = O(log n).

We can, therefore, update a count index in time that is logarithmic in the number of runs in a
sequence. In the remainder of the section we show that we can actually do better if we are inserting
a sequence of runs into the input sequence.

Bulk inserting sequences: Consider a count index with n leaf nodes. Suppose that we would
like to insert a sequence of k runs. Naively, we could insert the k runs using the insert procedure
described above in O(k× log (n+ k)) time. However, we could do better if we made use of the fact
that the k runs are adjacent. We present below a procedure that efficiently inserts a sequence of k
runs (represented as [ci]) into a count index T with n leaves.
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Consider a count index with n leaf nodes. The maximum num-
ber of holes at the leaf level of the count index is dn

2
e. When we

insert or delete a node from the count index, we propagate the holes
to higher levels where they either pair up with an existing hole or
cause a node to be split (while inserting a node) or cause two nodes
to be merged (while deleting a node). The count index shown in
Figure 7(b) has two hole positions at the leaf level (shown in Fig-
ure 8). When we insert a count (say 1) into either of these holes, the
hole propagates to the next level and pairs up with the node which
was previously the root. The final state of the count index is shown
in Figure 9.

Claim 2.3. The height of a count index is logarithmic in the num-
ber of its leaves. i.e. the count index is always balanced.

PROOF. Suppose that there are N nodes that are paired up in
some level of a count index. There can be a hole adjacent to each
pair. The maximum number of holes in each level is dN

2
e. In every

level of a count index at most one-third of the nodes can potentially
be holes and at least two-third of the nodes are paired up. Hence,
the height of a count index with n leaf nodes is at most log ( 3

2
) ×

log n = O(log n).
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Claim 2.3. The height of a count index with n leaves is O(log n) i.e. the count index is always
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Proof. Suppose that there are n nodes paired up at the leaf level in a count index. The maximum
number of holes at leaf level is #n

2 $. At subsequent levels, the maximum number of holes is #n
4 $,
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8 $, # n

16$ and so on. Hence, at every level of the count index, at most one-third of the nodes can
potentially be holes. The height of the count index index is thus log (3 × n

2 ) = O(log n).

We can, therefore, update a count index in time that is logarithmic in the number of runs in a
sequence. In the remainder of the section we show that we can actually do better if we are inserting
a sequence of runs into the input sequence.

Bulk inserting sequences: Consider a count index with n leaf nodes. Suppose that we would
like to insert a sequence of k runs. Naively, we could insert the k runs using the insert procedure
described above in O(k× log (n+ k)) time. However, we could do better if we made use of the fact
that the k runs are adjacent. We present below a procedure that efficiently inserts a sequence of k
runs (represented as [ci]) into a count index T with n leaves.
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Therefore, we can incrementally maintain a run-length encoded
sequence using a count index in time that is logarithmic in the num-
ber of the runs in the sequence.

Bulk Inserting Sequences: Consider a count index with n leaf
nodes. Suppose that we would like to insert a sequence of k runs.
Naively, we could insert the k runs using the insert procedure in
O(k × log (n + k)) time. However, we could do better if we made
use of the fact that the k runs are adjacent. We present below a
procedure that efficiently inserts a sequence of k runs (dcie) into a
count index T with n leaves.

• We construct a count index T ′ on the sequence of k runs
dcie.

• We merge T and T ′. (Figure 10)

– Let u and v be the leaves in T between which the se-
quence dcie is inserted.

– If u and v are siblings, we split them up converting
them into holes.

– We pair up the left-most leaf of T ′ with u if both nodes
are holes. Similarly we pair up the right-most leaf of
T ′ with v if both nodes are holes.

– We insert the rest of the leaves of T ′ into T without
further changes and iterate at the next higher level of T
and T ′.

• At a height of log k, we insert the root of T ′ into T .

Time Complexity of Bulk Inserts: The construction of T ′ which
is a count index on k runs takes O(k) time. To insert the root of T ′

into T at a height of log k, we require O(log n
k

) time. Let us denote
the time taken to merge two count indexes with n and k leaves as
f(n, k). The bulk insert procedure results in the following recur-
rence relations.

f(n, k) = f(
n

2
,
k

2
) + O (k) (6)

f(n, 1) = O (log n) (7)

On solving for f(n, k) we get f(n, k) = O (k + log n). Thus
using the above procedure, we can amortize the cost of inserting a
sequence of runs in time that is almost linear in the number of the
inserted runs.

2.4 Optimality of Incremental Maintenance us-
ing Count Indexes

We have shown in Sections 2.2 and 2.3 that count indexes sup-
port O(log n) offset-based look ups and in-place inserts, deletes and
updates of runs into a run-length encoded sequence with n runs. We
now use a lower bound result on the complexity of incrementally
maintaining partial sums which has been proved in [8, 9, 19] to
show that the problem of incrementally maintaining a run-length
encoded sequence with n runs requires Ω(log n) time . Given an
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• We construct a count index T ′ on the sequence [ci].

• We merge T and T ′. (Figure 10)

– Let u and v be the leaves in T between which the sequence [ci] is inserted. Either of u
or v could be null.

– If u and v are siblings, split u and v converting them into holes.

– We pair up the left-most leaf in T ′ and u if both nodes are holes. Similarly, we pair up
the right-most leaf of T ′ and v if both nodes are holes..

– We insert the rest of the leaves of T ′ into T without further modifications.

– We iterate at the next higher level of T ′ and T .

• At a height of log k, we insert the root of T ′ into T .

Time Complexity of Bulk Inserts: The construction of T ′ which is a count index on k
runs takes O(k) time. To inserting the root of T ′ into T at a height of log k we require O(log n

k )
time. Let us denote the time taken to merge two count indexes with n and k leaves as the function
f(n, k). The procedure described above results in the following recurrence relations.

f(n, k) = f(
n

2
,
k

2
) + O(k) (6)

f(n, 1) = O(log n) (7)

On solving for f(n, k) we get, f(n, k) = O(k + log n). Thus using the above procedure, we can
insert a sequence of k runs in time that is almost linear in k.

2.4 Optimality of Incremental Maintenance using Count Indexes

We have shown in Sections 2.2 and 2.3 that we can leverage count indexes to support O(log n) offset-
based look ups and in-place inserts, deletes and updates of runs into a run-length encoded sequence
with n runs. We now use a lower bound result on the complexity of incrementally maintaining partial
sums which has been proved in [8, 9, 19] to show that the problem of incrementally maintaining
a run-length encoded sequence with n runs requires Ω(log n) time. Given an array {a[i]} and a
parameter k, the partial sums problem computes

∑k
i=0 a[i] subject to updates of the form a[i] =

10

Figure 10: Bulk Inserting a sequence of runs into a count index

array of numbers {a[i]} and a parameter k, the partial sums prob-
lem computes

∑k
i=0 a[i] subject to updates of the form a[i] += x,

where x is a number. [8, 9, 19] have independently established that
incrementally maintaining partial sums while supporting in-place
updates requires Ω(log n) time.

The problem of incrementally maintaining partial sums over an
array {a[i]} of length n can be reduced to the problem of incre-
mentally maintaining run-length encoded sequences. We create a
run-length encoded sequence with n runs. Every i corresponds to a
run and the run-length of the ith run is equal to a[i]. An update a[i]
+= x to the partial sums problem is equivalent to incrementing the
run-legth of the run at the offset

∑i
j=0 a[i] by x in the run-length

encoded sequence. The computation of the partial sum at a[k] is
equivalent to the computation of the starting offset of the i + 1th

run. Therefore, incrementally maintaining a run-length encoded
sequence with n runs requires Ω(log n) time. In fact, the prob-
lem of incrementally maintaining run-length encoded sequences is
more general than the problem of incrementally maintaining partial
sums because the partial sums problem does not support in-place
insertion or deletion of array elements. Thus, leveraging count in-
dexes to incrementally maintain a run-length encoded sequence is
optimal.

3. EXTENSIONS
In the previous section we showed that count indexes can effi-

ciently look up and update a run-length encoded sequence with n
runs in O(log n) time. Bitmap encoding is another compression
technique that is used in column stores to compress the attributes
with a few distinct values. Bitmaps are typically sparse and are fur-
ther compressed using run-length encoding. In this section, we ex-
tend count indexes to efficiently update bitmap encoded sequences.
We also discuss how count indexes can be adapted to block-based
stores where the number of I/Os determine the time complexity of
updates.

Updating Bitmap Encoded Sequences: Bitmap encoding a se-
quence creates a bit-vector for every distinct value in the sequence.
If the sequence contains the value v at the ith position, then the
bit-vector corresponding to the value v contains the bit 1 at the ith

position. Bitmaps are typically sparse and are run-length encoded.
When new values are added to the sequence, additional bits are ap-
pended to the end of a bitmap. When values are deleted from a
bitmap, the corresponding bits are not deleted. Instead, the deleted
values are tombstoned (see [10] for details). The insertion of a
new value or the deletion of an existing value at a given offset in a
bitmap takes time that is linear in the size of the bitmap. We can

a[i]+x. [8, 9, 19] have independently established that incrementally maintaining partial sums while
supporting in-place updates requires Ω(log n) time.

The problem of incrementally maintaining partial sums problem over an array {a[i]} of length
n can be reduced to the problem of incrementally maintaining run-length encoded sequences by
creating a run-length encoded sequence with n runs. Every i corresponds to a run and the run-
length of ith run is equal to a[i]. An update a[i] = a[i]+x to the partial sums problem is equivalent
to the insertion of x runs at the offset

∑i
j=0 a[i] in the run-length sequence. The computation of the

partial sum at a[k],
∑k

i=0 a[i] is equivalent to the computation of the starting offset of the i + 1th

run. Therefore incrementally maintaining a run-length encoded sequence with n runs requires
Ω(log n) time. In fact, the problem of incrementally maintaining run-length encoded sequences
is more general than the problem of incrementally maintaining partial sums because the partial
sums problem does not support in-place insertion or deletion of new array elements. By leveraging
count indexes, we can support offset-based look ups and in-place inserts, deletes and updates in a
run-length encoded sequence with n runs in O(log n) time which is optimal.

3 Extensions

In the previous section we showed that count indexes can efficiently look up and update a run-
length sequence with n runs in O(log n) time. Bitmap encoding is another compression technique
that is used in columnar databases to compress columns with a few distinct values. Bitmaps are
typically sparse and are further compressed using run-length encoding. In this section, we extend
count indexes to efficiently update bitmap encoded sequences as well. Finally, we discuss how count
indexes could be generalized to block oriented stores where the number of I/Os determine the time
complexity of updates.
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Figure 11: Count Indexes on Run-length Encoded Bitmaps

Updating Bitmap Encoded Sequences: Bitmap encoding a sequence creates a bit-vector
for every distinct value in the sequence. If the sequence contains the value v at the ith position,
then the bit-vector corresponding to the value v contains the bit 1 at the ith position. Bitmaps are
sparse and are compressed using run-length encoding. When new values are added to the sequence,
additional bits are appended to the end of the bitmaps. When values are deleted from a bitmap, the
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significantly improve the update complexity by extending count in-
dexes to operate on bitmap encoded sequences. For every distinct
value in an input sequence, we create a count index on the corre-
sponding run-length encoded bitmap. The bitmaps can be looked
up and updated at a given offset in time that is logarithmic in the
number of runs in the bitmap. We present an example to show how
count indexes can be extended to operate on bitmapped sequences.

Example 3.1. Suppose we bitmap encode the sequence as given in
Example 1.1. we get two bitmaps [1 1 0 0 0 1 1 1 0 0] for the value
‘a’ and [0 0 1 1 1 0 0 0 1 1] for ‘b’. Run-length encoding these
bitmaps would produce the sequences: [(1, 2), (0, 3), (1, 3), (0, 2)]
and [(0, 2), (1, 3), (0, 3), (1, 2)] respectively. Two count indexes
are constructed on the resulting sequences. These indexes (shown
in Figure 11) are identical to each other.

In general, if an input sequence has n runs and k distinct values,
then we could look up and update the bitmap encoded sequence
using count indexes in time that is proportional to k × log n

k
in

the worst case. However, we can independently execute the look
up and update algorithms over each of the k bitmaps in parallel in
O(log n) time.

Adapting Count Indexes to Block-Based Stores: In Section 2,
we stored a single run count in each leaf node of a count index and
the sum of two child nodes in their parent. In order to adapt count
indexes to block-based stores where each block of data is a disk
page instead of a single value, we modify count indexes to store



Figure 12: Incremental Maintenance of Count Indexes in Block-based Stores
Figure 12: Incremental Maintenance of Count Indexes adapted to Block-oriented Stores

(a)

Insert(Node N , Count C, Value V )
if N is not full then

Insert 〈V,C〉 into N
Update the sum of the counts of N and its ancestors

else
Create a new node M
Move 〈V,C〉 and half of the values or pointers and
the counts present in N over to M
Update the sum of the counts of N and M
P ← parent of N
C ′ ← Sum of the counts of M
Insert(P , C ′, M )

end if
In order to adapt count indexes to block-oriented stores, we establish a new

index invariant: Every non-root node of a count index is at least half-full. We can
extend count indexes to disk by increasing the fan-out of every node in a count
index much like B+ trees [?]. We call this index structure as a count+ index. We
assign the size of a node of the count+ index to be equal to the size of a page on
disk. If the size of a page on disk is S bytes and every value in the sequence is
W bytes long, then the maximum number (say k) of counts that can be stored at
an interior node and a leaf node of a count+ index is given by

√
S−4
12 and

√
S−4
W+4

respectively. Every interior node maintains the sum of its children’s counts as well
as the pointers to its children. Every node except for the root must have at least
[k
2 ] counts. The algorithms to update a count+ index when counts are inserted

or deleted are identical to the respective algorithms for count indexes with the
following exceptions:

1. When we insert a value or a count to a node of a count+ index that is full i.e.
has k counts, we create a new node and move half of the counts / values to
the newly created node.

2. When we delete a value or a count from a non-root node of the count+ index
index that has exactly [k

2 ] counts, two possible cases arise:

(a) There is a neighboring node which has at least [k2 ] + 1 counts. In this
case, the node is updated by moving either the rightmost count (if the
neighbor is on the left) or the leftmost count (if the neighbor is on the
right) from the neighboring node.

(b) All the neighboring nodes have [k
2 ] counts. In this case we can select

any of the neighbors and merge the counts of the node and its neighbor
and update the sum of the resulting node.
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(b)

Delete(Node N , Count C, Value V )
if N is exactly half-filled then

Delete 〈V,C〉 into N
if all neighbors of N are half-filled then

Merge a neighbor of N say M with N
P ← parent of M
Suppose C ′ ← Sum of counts of M
Delete(P , C ′, M )

else
M is a neighbor of N which is more than half-filled
Let Q be a pointer contained in M which is closest
to N
Let the sum of counts of Q be C ′

Delete(M , C ′, Q)
Insert(N , C ′, Q)

end if
Update the sum of the counts of N and its ancestors

else
Delete 〈V,C〉 from N
Update the sum of the counts of N and its ancestors

end if
In order to adapt count indexes to block-oriented stores, we establish a new

index invariant: Every non-root node of a count index is at least half-full. We can
extend count indexes to disk by increasing the fan-out of every node in a count
index much like B+ trees [?]. We call this index structure as a count+ index. We
assign the size of a node of the count+ index to be equal to the size of a page on
disk. If the size of a page on disk is S bytes and every value in the sequence is
W bytes long, then the maximum number (say k) of counts that can be stored at
an interior node and a leaf node of a count+ index is given by

√
S−4
12 and

√
S−4
W+4

respectively. Every interior node maintains the sum of its children’s counts as well
as the pointers to its children. Every node except for the root must have at least
[k
2 ] counts. The algorithms to update a count+ index when counts are inserted

or deleted are identical to the respective algorithms for count indexes with the
following exceptions:

1. When we insert a value or a count to a node of a count+ index that is full i.e.
has k counts, we create a new node and move half of the counts / values to
the newly created node.

2. When we delete a value or a count from a non-root node of the count+ index
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a differential store. PDTs record the deltas of the offsets of the updated tuples within a segment.
The idea of operating on deltas of offsets is common to both PDTs and count indexes. However
there are differences that separate the two data structures. Count indexes are designed to operate
on a single store (one that contains the compressed representations of tuples only) while supporting
efficient reads and updates. On the other hand, a PDT visualizes a database as a two-pronged store:
a read-optimized store and a write-optimized store (one that contains uncompressed representation
of tuples). Second, count indexes are more space efficient than PDTs. If k values are inserted into
and later deleted from a sequence of n values, the space required to store the corresponding PDT
would be O(n + k), whereas a count index would require only O(n) space. Futher, a PDT requires
a merge-scan to to bulk insert values or runs of values. Therefore the time complexity of updating
a relation is O(n) where n is the number of tuples (or pages on disk). A count index on the other
hand requires O(k× log n) time in the worst case to insert k runs. If the number of updated tuples
is a small fraction of the total number of tuples (i.e. k " n), O(k× log n) updates are much better
than O(n) updates. If the k runs are contiguous, then they can be inserted into a count index
in O(k + log n) time which is almost linear in the number of updated tuples. Additionally, while
applying updates using PDTs the columns are decompressed and later re-compressed, which can
be expensive. In contrast, count indexes operate directly on the compressed sequences of values
and can thus be incrementally maintained without decompressing the sequence.

Incremental Maintenance of aggregates: Prior work [4, 6, 8, 9, 11, 14, 18, 19, 21, 22] on
spatio-temporal aggregation for range queries have studied the problem of efficiently computing
the partial sums

∑k
i=0 a[i] for an array {a[i]} subject to the updates of the form a[i] = a[i] + x. As

shown in Section 2.4, the problem of incrementally maintaining partial sums is closely related to
the problem of incrementally maintaining run-lenth encoded sequences. However, the data struc-
tures [8, 9, 11, 14, 18, 19, 21, 22] that have been proposed for incremental maintaining partial sums
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multiple counts in each node.
Suppose each disk page is S Bytes long and the width of the

attribute to be stored is W Bytes long. We assume that the run-
lengths can be represented as 4 Byte integers. In each leaf node of
our modified count index, we store a maximum of Nl attribute val-
ues, their respective counts and the sum of their Nl counts where
Nl = S−4

W+4
. In each interior node, we now store a maximum of

Ni pointers (8 Bytes long) to its children and the sum of their re-
spective counts (4 Bytes each) where Ni = S−4

W+12
. To adapt count

indexes to block-oriented stores, we also establish a new index in-
variant: every non-root node is at least half-full i.e. every leaf node
stores at least dNl

2
e attribute values and counts and every interior

nodes stores at least dNi
2
e pointers to its children.

The modified algorithms for inserting and deleting a run are pre-
sented in Figures 12(a) and (b) respectively.

4. RELATED WORK
The problem of efficiently updating compressed columns has ben

well-studied in the database community in the context of optimiz-
ing column store updates. While column stores such as [16] support
append-only inserts, others such as [3, 13, 15, 20] merge differ-
ential updates from a write-optimized store into a read-optimized
store. An append-only insert scheme such as [16] is easy to imple-
ment. However such a scheme could arbitrarily degrade the com-
pression achieved on the non-sort key columns by order-sensitive
schemes such as run-length encoding or bitmap encoding [17] and
thus lead to inefficient look ups.

Column stores such as [3, 13, 15, 20] maintain a differential store
in addition to a read-optimized store. The updates are buffered in
the differential store and are later merged with the read-store. This
technique amortizes the cost of updates by applying the updates in
batches. Recently, [13] has proposed a data structure called Posi-
tional Delta Trees (PDTs) which efficiently buffer updates in such
a differential store. PDTs record the deltas of the offsets of the
updated tuples within a segment. The idea of operating on deltas
of offsets is common to both PDTs and count indexes. However
there are differences that separate the two. Count indexes are de-
signed to operate on a single store only (one which contains the
compressed representations of the tuples) while supporting efficient
reads and updates. On the other hand, a PDT visualizes a database

as a two-pronged store: a read-optimize store and a write-optimized
store (one which contains the uncompressed representation of the
tuples). Second, count indexes are more space efficient than PDTs.
If k values are inserted into and later deleted from a sequence of
n values, the space required to store the corresponding PDT would
be O(n+k), whereas a count index would require only O(n) space.
Further, a PDT requires a merge scan to bulk insert values or runs
of values. Therefore the time complexity of updating a relation is
O(n) where n is the total number of tuples. On the other hand, a
count index requires O(k× log n) time in the worst case to insert k
runs. If the number of updated tuples is a small fraction of the total
number of tuples (k � n), O(k×log n) time updates are much bet-
ter than O(n) updates. If the k runs are adjacent, then they can be
inserted into a count indexed in O(k + log n) time which is almost
linear in the number of updated tuples. Additionally, while apply-
ing updates using PDTs the columns are decompressed and later
re-compressed, which can be expensive. In contrast, count indexes
operate directly on the compressed sequences of values and can be
incrementally maintained without decompressing the sequence.

Incremental maintenance of aggregates: Prior work [4, 6, 8,
9, 11, 14, 18, 19, 21, 22] on spatio-temporal aggregation for range
queries have studied the problem of efficiently computing the par-
tial sums

∑k
i=0 a[i] for an array {a[i]} subject to the updates of

the form a[i] += x. As shown in Section 2.4, the problem of incre-
mentally maintaining partial sums is closely related to the problem
of incrementally maintaining run-length encoded sequences. How-
ever, the data structures [8, 9, 11, 14, 18, 19, 21, 22] that have been
proposed for problem of incrementally maintaining partial sums
are not dynamic. For instance, the insertions and the deletions of
values in the array are not supported on proposed data structures.
These operations are equivalent of supporting in-place insertion
and deletion of runs in a run-length encoded sequence. There is
another distinction between incrementally maintaining run-length
encoded sequences and the problem of efficiently computing ag-
gregates over spatial and temporal data. Consider a set of points in
the 2-D plane which is shown in Figure 13. Suppose we are inter-
ested in efficiently computing the sum of the weights of the points
within a given bounding box, say [2, 1]× [4, 5]. To efficiently com-
pute the sum of the weights we can leverage previously proposed
data structures such as Orthogonal Range Trees and k-D Trees [6].



value updates in column store relations. In addition, count indexes can bulk insert a sequence of
values in time that is almost linear in the number of inserted runs, thus improving the amortized
cost of batch updates.

To conclude, we summarize the performance of count indexes on different compression schemes
in Table 2.

Table 1: Performance of count indexes on various encoding schemes
N = number of values and n = number of runs

Encoding Scheme create look-up update bulk insert (k contiguous runs)
Run-length Encoding O(n) O(log n) O(log n) O(k+log n)

Bitmap Encoding (parallel operations) O(n) O(log n) O(log n) O(k+log n)
Uncompressed O(N + n) O(log n) O(log n) O(k+log n)

Table 2: Performance of count indexes on various encoding schemes
N = number of values and n = number of runs

Encoding Scheme create look-up update bulk insert (k contiguous runs)
Run-length Encoding O(n) O(log n) O(log n) O(k+log n)

Bitmap Encoding (parallel operations) O(n) O(log n) O(log n) O(k+log n)

gle store (one that contains the compressed representations
of tuples only) while supporting efficient reads and updates.
On the other hand, a PDT visualizes a database as a two-
pronged store: a read-optimized store and a write-optimized
store (one that contains uncompressed representation of tu-
ples). Second, count indexes are more space efficient than
PDTs. If k values is inserted into and later deleted from a
sequence of n values, the space required to store the corre-
sponding PDT would be O(n + k), whereas a count index
would require only O(n) space. Futher, a PDT requires a
merge-scan to to bulk insert values or runs of values. There-
fore the time complexity of updating the database is O(n)
where n is the number of tuples (or pages on disk). A count
index on the other hand requires O(k × log n) time in the
worst case to insert k runs. If the k runs are contiguous,
they can be inserted into the count index in O(k + log n)
time. Additionally, while applying updates using PDTs the
columns are decompressed and later re-compressed, which
can be expensive. In contrast, count indexes operate on
compressed sequences of values and can be incrementally
maintained without decompressing the sequence.

There has been prior work (e.g. [?]) to efficiently update
cumulative frequencies. [?] has proposed a data structure
called Fenwick Trees that supports O(log n) time look ups
and in-place updates of the frequencies. However, unlike
count indexes, Fenwick trees cannot support sub-linear in-
serts or deletes of frequencies. In fact, when we insert a new
frequency or delete an existing frequency, the Fenwick tree
has to be created from scratch. Count index is the first in-
dex structure that supports O(log n) offset based updates
and look ups on an O(n) sized run-length encoded or bitmap
encoded sequence.

5. CONCLUSION AND FUTURE WORK
In this paper, we have proposed a novel indexing scheme
called count indexes that supports offset-based look ups and
updates on a run-length encoded sequence with n runs in
O(log n) time. Since columnar databases compress attribute
values using run length encoding, count indexes can be po-
tentially used as an auxiliary data structure to efficiently
support single value updates. In addition, count indexes
can bulk insert a sequence of values in time that is almost
linear in the number of inserted runs, thus amortizing the
time to insert values in bulk.

We have generalized count indexes to operate on bitmap en-

coded sequences as well as uncompressed sequences. Count
indexes significantly reduce the time complexity of offset-
based updates on run-length encoded columns from O(n) to
O(log n). The problem of whether the time complexity can
be lowered further is open.

To conclude, we summarize the performance of count in-
dexes in Table ??.
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are not dynamic. For instance, the insertions and the deletions of values between a[i] and a[i + 1]
are not supported on these data structures. These operations are equivalent to supporting in-place
insertions and deletions of runs in a run-length encoded sequence. There is another distinction
between incrementally maintaining run-length encoded columns and the problem of efficently com-
puting aggregates over spatial and temporal data. Consider a set of points in the 2-D plane which
is shown in Figure 13. Suppose we are interested in efficiently computing the sum of the weights

sum (Bounding Box) = 25

5

1
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3

7

4
5

1

6

Figure 13: Aggregation of weights of points on a 2-D plane

of points within a given bounding box, say [2, 1]× [4, 5]. To efficiently compute the sum of weights
of the points within the bounding box we could use previously proposed data structures such as
orthogonal range trees and k-D trees [6]. When we insert a new point say (3, 2) into our point set,
the value of the other points is not affected. This is because there is an implicit ordering of points
in a 2-D plane based on their x and y coordinates which are monotonically increasing. However, if
we choose a different ordering of the points such as the lexicographic rank of a point in the point
set, the insertion of a new point into the point set affects the rank of other points.The tuples in
a column store are typically ordered lexicographically using sort-keys and the offset of a tuple is
given by the lexicographic rank of the sort key value for that tuple. This introduces a linear time
complexity for the in-place insertion and deletion of tuples.

There has also been prior work (e.g. [7]) on efficiently updating cumulative frequencies. [7] has
proposed a data structure called Fenwick Trees that supports O(log n) time look ups and in-place
updates of the frequencies. However, unlike count indexes, Fenwick trees are reconstructed if any
new frequencies are inserted or if any existing frequencies are deleted. Count index is the first index
structure that supports O(log n) in-place inserts, deletes and updates of runs and offset-based look
ups on an O(n) sized run-length encoded or bitmap encoded sequence.

5 Conclusion and Future Work

In this paper, we have proposed a novel indexing scheme called count indexes that supports offset-
based look ups and in-place inserts, deletes and updates in a run-length encoded sequence. Count
indexes significantly reduce the time complexity of offset-based updates on run-length encoded
columns from O(n) to O(log n). We have generalized count indexes to incrementally maintain
bitmap encoded sequences and adapted them to block oriented stores. We have also showed that
the lower bound for incrementally maintaining run-length attributes is Ω(log n). Therefore our
technique of incrementally maintaining run-length attributes using count indexes is optimal.

Column stores compress attribute values using run length encoding and bitmap encoding. Hence
count indexes can be potentially leveraged as an auxiliary data structure to efficiently support single
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When we insert a new point say (3, 2) into our point set, the value
of the other points is not affected. This is because there is an im-
plicit ordering of the points in a 2-D plane based on their x and y
coordinates which are monotonically increasing. However, if we
choose a different ordering of the points such as the lexicographic
rank of a point in the point set, the insertion of a new point affects
the rank of other points. The tuples in a column store are typically
ordered lexicographically using sort-keys and the offset of a tuple is
given by the lexicographic rank of the sort-key value for that tuple.
This introduces a linear time complexity for the in-place insertion
and deletion of the tuples.

There has also been prior work (e.g. [7]) on efficiently updating
cumulative frequencies. [7] has proposed a data structure called
Fenwick Trees that supports O(log n) time look ups and in-place
updates of the frequencies. However, unlike count indexes, Fen-
wick trees have to be reconstructed if any new frequencies are in-
serted or if any existing frequencies are deleted. Count index is the
first data structure that supports O(log n) in-place inserts, deletes
and updates of run and off-set based look ups on an O(n) sized
run-length encoded or bitmap encoded sequence.

5. CONCLUSION
In this paper, we have proposed a novel indexing scheme called

count indexes that supports efficient offset-based look ups and in-
place inserts, deletes and updates of runs in a run-length encoded
sequence. Count indexes significantly reduce the time complexity
of updating values at supplied offsets in a run-length encoded se-
quence with n runs from O(n) to O(log n). We have also shown
that the lower bound for incrementally maintaining run-length en-
coded sequences with n runs is Ω(log n). Therefore our tech-
nique of incrementally maintaining run-length encoded sequences
using count indexes is optimal. We have also generalized count
indexes to incrementally maintain bitmap encoded sequences and
have adapted count indexes to block-based stores.

Column stores compress the attribute values using run-length en-
coding and bitmap encoding. Hence count indexes can be poten-
tially leveraged as an auxiliary data structure to efficiently support
single value updates in column stores relations. In addition, count
indexes can bulk insert a sequence of tuples in time that is almost
constant per inserted tuple. This lowers the time complexity of up-
dating a batch of tuples from being linear in the total number of
tuples using previous techniques such as [3, 13, 15, 20] to be linear
in the number of updated tuples.

To conclude, we summarize the performance of count indexes
on different compression schemes in Table 2.
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