Dexter: Plugging-n-Playing with Data Sources in your Browser

Abhijeet Mohapatra and Sudhir Agarwal and Michael Genesereth
353 Serra Mall (Gates Bldg.), Stanford University,
Stanford CA-94305, U.S.A

Abstract

We present Dexter, a browser-based, general purpose data ex-
ploration system for end-users. Dexter enables end-users to
easily query across multiple Web-accessible heterogeneous
(semi-) structured data sources with higher expressivity than
that is usually directly supported by the sources. A novelty
of our approach lies in the client-sided evaluation of end-user
queries. Our query evaluation technique exploits the querying
capabilities of the sources and communicates directly with
the sources whenever possible. Dexter-Server, the server-
sided component of Dexter, merely acts as a proxy for ac-
cessing sources that are not directly accessible from a Dexter-
Client. Dexter also supports organizational internal and per-
sonal data sources while respecting end-users’ security and
privacy. We present the results of our evaluation of Dexter
for scenarios that involve querying across data about the U.S.
Congerss, the U.S. Code, and feeds from popular social net-
works. We discuss the applicability of Dexter for data about
cities.

Introduction

End-users often need to quickly integrate and analyze in-
formation from multiple information sources including Web
sites, for example for decision making, hobby, general
knowledge or simply for fun. Often such tasks are dynamic
and volatile and performing them with the state of the art
tools is very cumbersome, tedious, and time consuming.
Publicly available data sources usually support limited
querying capability, because allowing arbitrary queries
could potentially overload the servers, and expose the
sources to DoS attacks. Consider the Web site https:
//www.govtrack.us which has information about the
age, role, gender of U.S. congress persons till date. Even
though Govtrack has the required data, it is still very hard
to find out “Which U.S. senators are under 40 years old?’,
or “‘Which U.S. states have currently more female than male
senators?’ just to name a few examples. It is even harder
to find answers to queries that require data from multiple
sources. For example, ‘Which congress members were Head
of DARPA or Deputy Director of NASA’ or ‘How did the
senators who like Shooting as a sport discipline vote for bills
concerning gun control?’ In addition to publicly accessible

Copyright (© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

sources, end-users often have access to organizational in-
ternal data sources or local data in form of files or tables
that are extracted from Web pages. When end-users wish to
query such data sources, privacy and confidentiality become
an important issue and data-shipping (Kossmann 2000) is
not feasible.

Popular search engines do not support compilation of in-
Sformation from multiple documents, a prerequisite to satisfy
the overall information need of an end-user. Popular spread-
sheets do not support increasingly sophisticated data inte-
gration and query requirements of end-users such as joins
across multiple sources. Both Semantic Web (Berners-Lee,
Hendler, and Lassila 2001) and Linked Data (Bizer, Heath,
and Berners-Lee 2009) rely on providers’ cooperation for
annotating their websites or providing semantic data. How-
ever, end-users cannot be expected to consume RDF di-
rectly. For detailed analysis of Dexter-related tools and tech-
nologies we refer to (Agarwal, Mohapatra, and Genesereth
2014).

Running Example: Suppose that Columbus is an end-
user who is browsing the Politico website. Columbus notes
down the names of the senators who voted against ending
the U.S. Government shutdown of 2013 in a file (say local-
File.csv). Columbus is curious to find out from Govtrack
which of these senators are from Texas. After Columbus
discovers the relevant Texan Republican senators, he wants
to find out what these senators are tweeting about, say, the
IRS scandal.

With the previous techniques, Columbus has to repeatedly
access the data sources, and either (a) manually correlate file
data with the data from Govtrack and Twitter or (b) upload
localFile.csv into a database server to automate the answer
compilation. In case (a), computing the answer is poten-
tially very tedious and time-consuming. In case (b), Colum-
bus compromises the privacy of his local data by uploading
localFile.csv to a server.

Our Contribution

We present Dexter, a domain-independent, browser-based
tool that enables end-users to easily connect, integrate, and
query data from multiple plug-n-play sources, to better ex-
ploit the data that is accessible to them. Dexter supports
publicly accessible data sources such as Web-APIs and or-

ganization internal databases. In addition, Dexter can also
import data from common formats such as CSV, XML,
and JSON as well as allows end-users to extract interest-
ing data from Web pages while they browse (Agarwal and
Genesereth 2013). Dexter respects users’ privacy by storing
users’ data locally inside their Web browsers and not on a
remote server.

The end-user queries are expressed in Datalog (Garcia-
Molina, Ullman, and Widom 2009) that is extended with
arithmetic and logical operators, and aggregates (Mohap-
atra and Genesereth 2013). As a result, Dexter supports
queries with higher expressivity (for e.g. recursive queries)
than that are supported by server-sided query evaluation sys-
tems (Kossmann 2000).

A novelty of Dexter lies in the client-sided evaluation
of end-user queries. The client-sided query evaluation in
Dexter follows a hybrid-shipping strategy (Kossmann 2000)
and exploits the querying capabilities of the sources. Dex-
ter does not ship users’ local data or organizational internal
data to a remote server. This not only further contributes to
privacy but also improves the performance of queries over
sources that are directly accessible from the client by reduc-
ing the communication cost of shipping the data to a remote
server.

Dexter enables end-users to query not only individual data
sources but more importantly across multiple data sources.
The high expressivity fills the gap between the provided and
the desired view on information. The client-sided query
evaluation is combined with an intuitive user interface to
allow even the end-users with little technical background to
query data from multiple sources. Dexter relies on end-users
to resolve entities (Elmagarmid, Ipeirotis, and Verykios
2007) by defining appropriate views and (in)-equalities.

Dexter: An Overview

In this section, we briefly describe how Dexter allows
end-users to easily incorporate Web-accessible data sources
(plug) and query them in ad-hoc fashion (play).

Incorporating Sources

End-users can connect to, and query a diverse set of struc-
tured and semi-structured data sources with Dexter. These
sources could be local files (e.g. CSV, XML, and JSON),
APIs (e.g. Twitter), databases or web-pages. Dexter-Client
communicates directly with directly accessible sources e.g.
local files and JSONP APIs. For other sources (e.g. Twitter
API), the connection between Dexter-Client and the sources
is established using Dexter-Server, the server-sided compo-
nent of Dexter. When end-users plug a supported type of
data source into Dexter, the data is converted to the Rela-
tional Model as follows.

Extraction from Web Pages The conversion of an HTML
DOM fragment (copied and pasted by an end-user) to a table
is performed with the technique presented in (Agarwal and
Genesereth 2013). The extracted tables are stored locally
inside the browser of an end-user.

Importing Files CSV, XML, and JSON files in the local
file system or accessible via a URL are handled in a similar
fashion. First, the file content is fetched. Then the content is
converted into a set of tables. In case of CSV file the output
set contains exactly one element. In our running example,
Columbus would import the file LocalFile.csv in Dexter and
have obtain a table, say, localFile. In case of XML or
JSON files, the output set may contain multiple tables since
XML and JSON are nested data structures. The tables are
stored locally inside the browser of an end-user.

Connecting Web-APIs Majority of the Web-APIs support
JSON format. In contrast to traditional Web applications
which hard-code the set of underlying sources, Dexter is
based upon a generic source model and allows end-users to
specify the source-specific information as an instantiation of
the generic model at the time of plugging in a source.

The generic model of a remote source is a tuple
(name, type, direct, fnlowering, fnlifting, O), where

e name is the name of the source used for referring to the
source in the Ul and in the queries,

e fype is either ‘none’, “filter’ or ’datalog’, and determines
the querying capability of the source, where ‘filter’ means
that the source supports selection of rows based on pro-
vided values for fields, and °‘datalog’ means that the
source supports a datalog query,

e direct is either ‘true’ or ‘false’ and determines whether a
Dexter-Client can directly access the source (JSONP) or
needs to use Dexter-Server as proxy,

e fnlowering is a function that takes the object type, an off-
set and a limit, and returns the arguments required for
source invocation to fetch instances of the object type
ranging from offset to offset+limit,

e fnlifting is a function that converts the returned instances
to a table, and

e O is the set of specifications of object types. An object
type O € O is a tuple (name, properties, URL), where
name is the name of object type O, properties are the
properties of O, and URL is the URL required to fetch
instances of O.

Dexter stores the set of above mentioned source definition
tuples inside end-user’s local browser so that they need to
specified only once.

Queries over Sources

End-users can query his or her set of sources by using Dex-
ter’s UL The end-user queries are expressed in Datalog that
is extended with arithmetic and logical operators, and ag-
gregates over the relational schemas of the plugged sources.
The queries are evaluated on the client side to ensure privacy.
In our running example, the tweets of Texan Republican sen-
ators can be expressed by the following query.

g(T) :- senator (U, "Rep", S) & tweet (U, T)

Of course, the join over U has the intended meaning only
if the syntactic equality of the first column of senator and

tweet translates to semantical equality. We rely on the end-
user to decide which predicates he or she wishes to join in
order to have meaningful answers. When a query has been
evaluated, Dexter allows an end-user to export of query re-
sults in CSV format.

In order to enable end-users to construct complex queries
modularly and to support efficient evaluation of queries,
Dexter allows end-users to define and materialize views over
the available sources. The views are defined with the same
formalism as the queries. A view definition is a set of ex-
tended Datalog rules, where each rule has the same head
predicate. Note that multiple rules with the same head pred-
icate denote union in Datalog. View definitions of an end-
user are stored on the client-machine. To avoid the re-
computation of the results of a view in a query, an end-user
can choose to materialize a view. Materializing a view can
significantly speed-up the time taken to evaluate a query that
is defined over the view. If an end-user chooses to material-
ize a view, the evaluation of the view definition is material-
ized on the client side.

Client-sided Query Evaluation

The end-user queries are expressed in Datalog over the (re-
lational) schemas of the involved sources, and are evaluated
on the client side to ensure privacy. The naive approach of
first fetching all the required data to the client machine and
then evaluating the query answers, also referred to as Data-
Shipping (Kossmann 2000), is not practical since the client
machines are usually not high-performance machines. We
follow the Hybrid-Shipping strategy (Kossmann 2000) for
achieving acceptable query answering performance without
requiring the end-users to compromise on their privacy or
overloading client machines.

The views in the query schema, some of which are po-
tentially materialized, map to the data in the sources. Sup-
posethm the views senators (Name, Party, State)
and tweets (U, Tweet) represent the senator data from
Govtrack and the Twitter posts of a user U respectively. The
internal schema is automatically generated in Dexter when
connecting to the sources. The architecture of the query
evaluation process in Dexter is presented in Figure 1.

The input query is then processed in three stages. First,
the query is decomposed into partial queries that are sent to
the respective sources. For example, the input query g (T)
is decomposed as follows.

q(T) :— gl(U) & g2(U, T)
gl (U) :— senator (U, "Rep", 9)
g2 (U, T) :- tweet (U, T)

The partial queries gl (U) and g2 (U, T) are sent to
Govtrack and Twitter respectively. The input query could,
however, take too long to answer either because the partial
queries are too complex or because the size of the answer
is too large. Therefore, the partial queries are fragmented
horizontally (Kossmann 2000) before sending them to the
sources to avoid the bottlenecks of the query and communi-
cation times. In the final step, the answer to the input query
is constructed from the answers to the query fragments.

Dexter Client

Query Processor
U Luser's query Query
Decomposition
— i;;browtser's
store 1 1
N partial queries
Answer [Query Fragmentation|
Construction|| Source Invocation
7
answer ;---i answer ...\Eluery fragments
""""""""""""""""""" | Dexter Server (proxy)|
query fragments "~

. —source
-— -— -— n

source,

Figure 1: Query Evaluation in Dexter

Query Decomposition A query over the internal schema
is decomposed into partial queries and rules that assembles
the answers to the partial queries. The query decomposition
in Dexter is a hybrid-shipping strategy (Kossmann 2000)
and depends on the distribution of data to which the views
in the internal schema map and the querying capability of a
source. For example, suppose that Govtrack is a relational
database. Since databases allow filters on any attribute of
a table, the query g1 (U) is sent to Govtrack. However, if
Govtrack does not allow the senator table to be filtered by
the attribute Party, then the whole table is shipped to the
Dexter-Client where the filters are, subsequently, applied.
In addition, if it is not known whether a certain operation
(say, join or negation) can be performed at a source, then the
relevant operation is performed on the client-side after ship-
ping the data from the source. We note that, in Dexter, the
queries over local data (such as CSV, XML or JSON files)
are always evaluated on the client-side and never shipped
to a source. Thus, the privacy of the local data is always
preserved. For example, in the following query that finds
the Texan Republican senators who voted against ending the
shutdown, the data from localFile is never shipped to the
Govtrack source to filter the senator table on the Name at-
tribute in addition to the Party and State attributes.

g’ (T) :- senator (U, "Rep", "TX") &
localFile (U)

Query Fragmentation In Dexter, an input query is de-
composed into partial queries that are shipped to the sources
and the answers to the input query is constructed on the
client-side from the answers to the partial queries. The eval-
uation of the partial queries can be bottlenecked by (a) the
complexity of the query and (b) the size of the answers, es-
pecially when the size of the data that is shipped from a
source is much greater than the size of the browser’s local
store of an end-user. To relieve these bottlenecks, the partial
queries are fragmented horizontally into chunks based on
the the size of the browser’s local store and the maximum
number of an answers to a query that can be returned from a
source. For example, suppose that the Twitter API allows a

maximum of 500 tweets to be returned per call. If the num-
ber of senators and the total number of tweets are, say, 500
and 10000 respectively, then the partial query g2 (U, T) is
fragmented into 20 fragments. We note that, in addition to
the partial queries, the rules that assemble the answers to the
partial queries are fragmented as well to support pipelined
execution of queries.

Source Invocation After fragmenting the partial queries,
the fragments are shipped to the sources in parallel by invok-
ing the appropriate wrappers which could be located either
on client (e.g. local files, servers that support JSONP re-
quests) or on the server (e.g. Twitter API, databases such as
MySQL).

Answer Construction In the answer construction stage,
the answers of the partial query fragments are assem-
bled to compute the answer to the query that was sup-
plied as an input to the query decomposition stage. The
set-union of the query answers is computed for posi-
tive Datalog queries. However, for queries that involve
negation or aggregation, the rules that combine the an-
swers to the partial queries are rewritten. For exam-
ple, suppose a query, say, g (X) :— gS(X) & not gT (X)
is fragmented into multiple queries which are defined as
gij(X) :— qTi(X) & not gSj(X) where ¢ and j are
bounded by the number of fragments in source S and T re-
spectively. In this case, the answers of q(x) = {x |Vi,j
gij(x)}.

Implementation and ExploreGov Case Study

As mentioned before, Dexter is a domain-independent
browser-based data explorer. We have evaluated Dexter for
a case study that involves exploration of data about the U.S.
Congress in conjunction with the U.S. Code and feeds from
popular social networks. In the next section, we motivate the
applicability of Dexter to explore semantic cities’ data.

Implementation

Dexter-Client is implemented in Javascript and JQuery. Co-
ordination of parallel query processing threads (correspond-
ing to the query fragments) is implemented with the help
of Web Workers. The Answer Construction module is im-
plemented by using the Epilog Javascript library (Gene-
sereth 2013). We have extended the Epilog library to out-
put answers in a streaming fashion to improve query re-
sponsiveness. Dexter-Client is equipped with a caching
mechanism in order to reduce communication with and load
on servers as well as to enhance client-sided query perfor-
mance. Dexter-Server is implemented in PHP and Python,
and acts primarily as proxy for data sources that are not di-
rectly accessible from a Dexter-Client.

Case Study: ExploreGov

The ExploreGov case study involves exploration of data
about U.S. Congress. and senators along with their biodatas
and social network posts. For the ExploreGov case study we
use the following sources:

1. Govtrack API for queries over latest U.S. executive and
legislative data. Govtrack API can be accessed directly
from Dexter-Client since it supports JSONP.

2. Govtrack Archival DB for very complex queries on
archival data. We have downloaded the Govtrack Archival
DB and we host it on a DB server reachable from the
Dexter-Server. A Dexter-Client can access the Govtrack
DB via a PHP script hosted on Dexter-Server.

3. Cornell Law for obtaining the text of U.S. Codes referred
to by the bills. This API is a completely client-sided API.
It requires concrete input values for the title and the sec-
tion of a U.S. Code and returns the text of the U.S. Code.
Therefore, it is invoked during query processing since the
bindings for inputs are not known before.

4. Twitter and Facebook. PHP scripts hosted on Dexter-
Server to fetch tweets or Facebook posts of per-
sons (congresspersons, senators, representatives etc.)
by using Twitter API (Twitter 2014) and Facebook
API (Facebook 2014). In order to not overload the
Twitter server, the Dexter-Server caches the tweets.
The API interface twitter.tweets (ID, TWEET,
LINK, TIME) also accepts constraints on the four
fields in SQL syntax, e.g. twitter.TWEET LIKE
"$ObamaCare%". The API for Facebook posts func-
tions analogously.

5. Further sources containing information about U.S. col-
leges and state relationships, general geographic and de-
mographic information about the U.S. states, and biogu-
ide which contains brief bio-datas of U.S. congressper-
sons.

Evaluation Results: We have evaluated many queries
with varying complexities (from simple selections and pro-
jections to joins with negation and aggregation) on and
across the above mentioned sources.

An example query ‘U.S. presidents who attended college
in Harvard University and some college in CA’ required
joining Govtrack data with bioguide and colleges data. Dex-
ter required only 5 seconds to find out that Barack Obama
and John F. Kennedy are the only matches for the query.

For the example query involving negation ‘Which U.S.
states currently do not have any male Republican senators’,
Dexter could find out within 15 seconds that NH is the only
such state.

For the query ‘Male senators who recently tweeted about
equal pay’ which required joins over Govtrack data and
Twitter data, Dexter could find out the senator names and
their relevant tweets within 10 seconds.

The query “Which party do the maximum number of pres-
idents come from?’ required aggregates. Our system could
find out the correct answer ‘Republican’ within 3 seconds.

We refer the reader to the online demo at http:
//dexter.stanford.edu/semcities for further
tested queries along with their Datalog formulations. Fur-
thermore, we encourage the readers to try their own queries
in Dexter.

Conclusion and Outlook

We presented Dexter, a tool that empowers end-users to
plug-n-play with (semi-) structured data from heterogenous
data sources such as databases, local files (e.g. CSV, XML
and JSON), Web pages and Web-APIs. Dexter allows end-
users to exploit their small-data in contrast to big-data ana-
Iytics which is used by large organizations to draw greater
value from their ever increasing data collections. Dexter-
Client communicates directly with data sources when pos-
sible, and through Dexter-Server (proxy) otherwise. Dex-
ter preserves the privacy of end-users’ local data through
a client-sided query evaluation strategy in which the users’
local data is never shipped to a remote server. By enabling
end-users to pose arbitrary queries over a source or across
sources, Dexter bridges the gap between the querying capa-
bility of sources and the information need of a user.

Exploring Semantic Cities through Dexter The seman-
tic city initiative is driven by open data for example
https://www.data.gov/cities/ thatis made pub-
licly available by the cities. This data is either available
for download in CSV, XML or JSON formats or accessi-
ble through public JSONP APIs. Since Dexter is a domain-
independent data-explorer that supports queries over the
open data formats, it can be used by end-users to explore
and query across the open city data. We motivate the use
of Dexter to explore semantic cities’ data and to build smart
services (IBM 2014) through the following examples.

Example 1. Suppose Columbus is visiting Washington
D.C. and is interested to find out popular local restaurants
that are hygienic. We assume that Columbus has plugged
the Yelp API (YELP 2014b) into Dexter and is explor-
ing the popular Washington D.C. restaurants. In addi-
tion, we also assume that the Yelp data is queried as the
predicate yelp (NAME, ADDRESS, RATING, CATEGORY)
in Dexter.

Recently, Yelp introduced an initiative to display hygiene
scores for restaurants that are reported by municipalities. A
study presented in (Simon et al. 2005) suggests that there is
a marked decrease in the number of hospitalizations due to
food borne diseases (for e.g. 13% in Los Angeles County)
if restaurant hygiene data is made available. To display the
hygiene scores Yelp requires that the municipalities upload
the health inspection data as per the LIVES standard (YELP
2014a). Although, there is an abundance of free publicly
available hygiene data of restaurants, only the data reported
by the municipalities of San Francisco and New York con-
form to the LIVES standard. Therefore, Yelp currently does
not display the health scores of restaurants except those
which are in San Francisco or New York. For instance, the
results of the food safety inspections in Washington D.C.
restaurants are available at (OpenDataDC 2014) as CSV files
but the schema of these CSV files does not conform to the
LIVES standard. This is a typical scenario in which the con-
sumer (e.g. Columbus) is constrained to consume data as
is produced by a producer (e.g. Yelp and the municipal-
ity of Washington D. C.). However, Columbus can circum-
vent this restriction by first, plugging the inspection results
of Washington D.C. restaurants into Dexter as a table, say

inspection (NAME, ADDRESS, VIOLATION), and then,
filtering popular restaurants (with a Yelp rating of, say > 4)
that do not have any health code violations using the follow-
ing query.
g(X, YY) :— yelp(X, Y, Z, W)
& not withViolation (X, Y)
& 2 > 4

withViolation (X, Y) :— inspection (X, Y, 2)

Example 2. Suppose Joe Black is an entrepreneur who
wants to open a Chinese restaurant in Downtown San Fran-
cisco. Joe wants to set up his restaurant in a location that
does not have other Chinese restaurants in a 2 mile ra-
dius. In addition, he wants to set up his restaurant near
a parking structure so that his customers can conveniently
find parking. The data regarding parking meters owned
by the SMFTA in San Francisco is available as a CSV file
at https://data.sfgov.org/Transportation/
Parking-meters/28my-4796. Suppose Joe imports
the parking data into a table, say parking (ADDRESS). In
order to make an informed decision regarding viable restau-
rant locations, Joe can query the Yelp data on Chinese
restaurants in Downtown San Francisco in conjunction with
the SMFTA parking data in Dexter using the datalog query
g shown below.
g(Y) :- parking(Y) & not nearBy(Y)
nearBy (Y) :— parking(Y)

& yelp(X, Y¥’', Z, "chinese")

& distance (Y, Y’, D) & D < 2
In this example, we assume that we have a built-in predicate
distance (X, Y, Z) which is true if the distance between
address x and address Y is z miles.

Future Work Currently Dexter expects end-user queries
to be expressed in Datalog. As a next step, we plan to
make an end-user’s querying experience in Dexter more
user-friendly and comprehensible using the following tech-
niques.

1. Supporting conceptual queries (Halpin and Morgan 2008)
to enable end-users to define concepts by integrating the
available data and to pose complex queries over these
concepts. In addition, the generation and the integra-
tion of concepts could potentially be automated (Maedche
and Staab 2001) by leveraging the source-metadata (such
as column names, types, integrity constraints and prove-
nance).

2. Supporting query-by-example (QBE) (Zloof 1975) in

Dexter to enable end-users to query the available data in
an user-friendly way.

3. Allowing end-users to define constraints on available data

and pinpointing constraint violations that lead to data in-
consistencies.

References

Agarwal, S., and Genesereth, M. R. 2013. Extraction and
integration of web data by end-users. In He, Q.; Iyengar, A.;
Nejdl, W.; Pei, J.; and Rastogi, R., eds., CIKM, 2405-2410.
ACM.

Agarwal, S.; Mohapatra, A.; and Genesereth, M. 2014.
Survey of dexter related tools and techonologies.
http://dexter.stanford.edu/semcities/
TR-DexterRelatedWork.pdf.

Berners-Lee, T.; Hendler, J.; and Lassila, O. 2001. The Se-
mantic Web: a new form of Web content that is meaningful
to computers will unleash a revolution of new possibilities.
Scientific American 5(284):34—43.

Bizer, C.; Heath, T.; and Berners-Lee, T. 2009. Linked data
- the story so far. International Journal on Semantic Web
and Information Systems 5(3):1-22.

Elmagarmid, A. K.; Ipeirotis, P. G.; and Verykios, V. S.
2007. Duplicate record detection: A survey. IEEE Trans.
Knowl. Data Eng. 19(1):1-16.

Facebook. 2014. Facebook api. https://
developers.facebook.com/docs/reference/
apis/.

Garcia-Molina, H.; Ullman, J. D.; and Widom, J. 2009.
Database systems - the complete book (2. ed.). Pearson Ed-
ucation.

Genesereth, M. 2013. Epilog for javascript.
http://logic.stanford.edu/epilog/
javascript/epilog. js.

Halpin, T., and Morgan, T. 2008. Information Modeling and
Relational Databases. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2 edition.

IBM. 2014. Smarter cities. http://www.ibm.com/
smarterplanet/us/en/smarter_cities/.

Kossmann, D. 2000. The state of the art in distributed query
processing. ACM Comput. Surv. 32(4):422-469.

Maedche, A., and Staab, S. 2001. Ontology learning for the
semantic web. IEEE Intelligent Systems 16(2):72-79.

Mohapatra, A., and Genesereth, M. R. 2013. Reformulat-
ing aggregate queries using views. In Frisch, A. M., and
Gregory, P., eds., SARA. AAAL

OpenDataDC. 2014. Washington DC restaurant inspection
data. http://www.opendatadc.org/dataset/
restaurant—-inspection-data.

Simon, P. A.; Leslie, P; Run, G.; Jin, G. Z.; Reporter, R.;
Aguirre, A.; and Fielding, J. E. 2005. Impact of restau-
rant hygiene grade cards on foodborne-disease hospitaliza-
tions in los angeles county. Journal of Environmental Health
67(7).

Twitter. 2014. Twitter api. https://dev.twitter.
com/docs/api/1.1.

YELP. 2014a. Local inspector value-entry specification
(LIVES). http://www.yelp.com/healthscores.

YELP. 2014b. Yelp search api. http://www.yelp.
com/developers/documentation/search_api.

Zloof, M. M. 1975. Query-by-example: The invocation

and definition of tables and forms. In Proceedings of the 1st
International Conference on Very Large Data Bases.

