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We present a method to find motifs by simultaneously using the
overrepresentation property and the evolutionary conservation
property of motifs. This method is applicable to divergent species
where alignment is unreliable, which overcomes a major limitation
of the current methods. The method has been applied to search
regulatory motifs in four yeast species based on ChIP-chip data in
Saccharomyces cerevisiae and obtained 20% higher accuracy than
the best current methods. We also discovered cis-regulatory ele-
ments that govern the tight regulation of ribosomal protein genes
in two distantly related insects by using this method. These results
demonstrate that our method will be useful for the extraction of
regulatory signals in multiple genomes.

transcription factor binding sites � Gibbs sampler � substitution matrix

A transcription factor can bind to short DNA segments in the
regulatory regions (upstream, downstream, or intronic re-

gions) of many different genes to control their expression. The
common pattern of those short DNA segments bound by one
transcription factor is called a motif, often represented as a
weight matrix (Fig. 1). To find motifs by experimentation is time
consuming. Therefore, many computational methods, including
the expectation maximization (1–4), the Gibbs sampler (5–7),
the progressive alignment (8), the word enumeration (9), and
others (10), have been developed to find overrepresented seg-
ments (called putative motifs) from the regulatory sequences of
a set of candidate genes, which can be obtained from prior
biological knowledge, microarray experiments, or ChIP-chip
experiments. In general, these computational methods can be
divided into two types, those using sequences from a single
species (1, 5, 6, 9) and those using sequences from multiple
species (2–4, 7, 8, 10). We will briefly review the methods based
on multiple species below.

The intuition behind multiple species-based methods is that
motif instances are more conserved than background sites in
evolution. That is, the similarities among motif instances are
higher than those among background sites in the orthologous
gene sequences, which evolved from the same ancestral sequence
and are in different current species. This conservation property
of motifs can be illustrated more clearly by using phylogenetic
trees. In Fig. 2, the motif instances show more conservation than
the background sites in the gene met10 regulatory sequence in
three current yeast species, Saccharomyces cerevisiae, Saccharo-
myces mikatae, and Saccharomyces kudriazevii. Moreover, the
motif instance in S. cerevisiae is more similar to that in S. mikatae
than to that in S. kudriazevii because the former two have shorter
branch lengths (short divergence time) between them.

Current methods (2–4, 7, 8, 10) using multiple species data,
although already providing useful results, still suffer from one or
more of the following limitations. Some of these methods can be
applied only on two species (2), some treat orthologous se-
quences as statistically independent (8), some neglect the dif-
ference in the divergence time among species (7, 8, 10), and some
try to find motifs in the aligned orthologous sequences and
therefore require motif instances to be aligned correctly with the
orthologous counterparts in the alignments (3, 4, 7, 8) (Data Set
1, which is published as supporting information on the PNAS
web site, gives an example showing that motif instances are not
always aligned correctly). To our knowledge, existing methods

often perform poorly when the species are distant (say, 250
million years apart), or when the transcription factor binding
sites are weak.

Here we present a method to take the evolution of DNA
sequences into account. The method does not depend on the
alignments of orthologous sequences to obtain the candidate
motif instances, which avoids the arbitrary alignment score
cutoffs to define the candidate functional sites, such as are often
encountered in current methods, and allows the flexibility to find
similar motif instances in the orthologous sequences even if
those motif instances are inverted, translocated, or mutated.
Therefore, we can find related sites in species that diverged as
much as 250 million years ago. Moreover, the method fully uses
the phylogenetic information and tracks the trace of the func-
tional sites during evolution, i.e., the motifs are allowed to
evolve, although at a slower rate than the background. Further-
more, the method simultaneously finds similar motif instances
not only in many genes but also in orthologous sequences, which
enables it to find weak but conserved motifs. Finally, the method
automatically chooses the width for motifs.

Methods
Evolution Model. We assume the motif instances evolve more
slowly than the nonfunctional background sites. Therefore two
4 � 4 substitution matrices are used to describe the evolution
along every branch of the phylogenetic tree for the motif
instances and the background sites, respectively. Each row of a
matrix gives the probabilities of one type of nucleotide in the
ancestor evolving into A, C, G, and T in the descendant, in the
order of A, C, G, and T. For instance, the number at the entry
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Fig. 1. Transcription factor binding sites and motif weight matrix. (a) A
specific transcription factor can bind to 5- to 20-bp-long specific DNA seg-
ments in the regulatory region of different genes. Each line here represents
one regulatory sequence of one gene, and the small rectangles on each line
represent the transcription factor binding sites, called motif instances. Note
those motif instances can be anywhere in the sequences. (b) The alignment of
some motif instances from a, in which the ith position of one motif instance
is aligned with the ith position of other motif instances. (c) From b, by
assuming a flat prior distribution for the nucleotide composition at each
position in the motif, we can obtain the weight matrix of the motif by using
Bayes’ theorem. Each column of the weight matrix corresponds to one posi-
tion in the motif, in the order of the first position to the last position in the
motif. Each row tells the probabilities that the corresponding nucleotide will
occur at each position of the motif, in the order of the nucleotides A, C, G, and
T. If all of the numbers in one column of the weight matrix are close to 0.25,
the position corresponding to this column is degenerate and not so informa-
tive. If many positions are degenerate in the motif, this motif is a weak motif.
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(3, 2) in the left matrix in Table 1 tells that the probability for
a nucleotide G in the ancestor to evolve into the nucleotide C in
the descendant is 0.0347.

For background evolution, regions that can be aligned† in the
upstream region of orthologous genes are aligned, and the back-
ground nucleotide distribution and the branch lengths in the species
tree are deduced from the multiple alignments by using maximal-
likelihood estimation (11). Then the background substitution ma-
trix for every branch is obtained from the estimated background
nucleotide distribution and the branch lengths. Note that here and
elsewhere in the paper, the species tree is used as the phylogenetic
tree.

To define the motif substitution matrix for a branch, we simply
decrease every branch length estimated above by a fixed proportion,
say 50%, and then construct the motif substitution matrix for every
branch from the decreased branch lengths. This is a primitive way
to model the slower evolution of the functional motifs as compared
with the background. In the future, with more experimentally
verified motif sites available [in the TRANSFAC database (12)],
motif substitution matrices may be constructed from them.

Gibbs Sampling. With the two evolution substitution matrices on
every branch of the phylogenetic tree defined, we now explain
how to implement the Gibbs sampler (6, 13, 14) to infer the
model parameters and motif instances under the assumption that
there is at most one motif instance for every gene. Gibbs sampler

was originally used by Lawrence et al. (13) to find patterns in
protein sequences. Later, it was improved to allow zero and
multiple occurrences of motifs in one sequence (6) and flexible
motif width (14). Here, we further extend the Gibbs sampler
framework onto phylogenetic trees to find motifs. We discuss the
two-species case in detail first, and the extension to the multiple-
species case is briefly outlined at the end of the section.

We assume that the sequences of coregulated genes in the
ancestral species at the root of the phylogenetic tree were generated
from a mixture model, in which background sequences were
generated from the multinomial distribution with parameter �0,
whereas motif instances were generated from the product multi-
nomial distribution with parameter � � (�l, . . . , �w), where each
�i is a multinomial distribution and w is the motif width. The
background sequences and motif instances evolved according to
two different continuous Markov chain models, i.e., at the ith
branch of the tree, the background sequences in the parent species
evolved according to a background substitution matrix M0i , whereas
the nucleotides in the motif instances evolved according to a motif
substitution matrix M1i. The notations for the model are summa-
rized in Table 2 and some details of the mixture model are in
Appendix 2 and Fig. 5, which is published as supporting information
on the PNAS web site.

There are three main steps in our Gibbs sampler method:
initialization, motif instance sampling, and parameter sampling.
The last two steps are implemented iteratively after the sampler
is initialized. In brief, the three steps are as follows.

Initialization step. pi, the probability that a gene contains motif
instances in the ith species, is sampled from a Beta(1, 1) prior
distribution. � is sampled from a Dirichlet prior distribution with
parameter 1. w, the motif width, is sampled from a Poisson prior
distribution with the mean parameter 6. With the above param-
eters, motif instances are sampled for the two daughter species
and the neighborhood nucleotides around every motif instance
are stored. For every orthologous gene group with at least one
motif instance in the current species, the ancestral motif instance
is assigned randomly to be one of its immediate daughter motif
instances and the two neighboring nucleotides of the chosen
motif instance are stored as the neighboring nucleotides of the
ancestral motif instance. These neighboring nucleotides will be
needed subsequently to update the motif width.

Motif instance sampling step. Motif instances at each node of
the tree are updated from the root to the leaves for each
orthologous gene group, one gene group at a time. This is done
based on the parameter values from the previous step.

Parameter sampling step. pi is sampled from the posterior
distribution of pi; w is updated by using the Metropolis–Hasting
algorithm (15) according to the two neighboring nucleotides
around the motif instances.
Motif instance sampling step. To describe the details of the Gibbs
sampler at the motif instance updating step, we use the ortholo-
gous gene group for met10 in two yeast species, S. cerevisiae and
S. mikatae, as an example (Fig. 3). First, the ancestral motif
weight matrix is calculated by using the ancestral motif instances
together with the two neighboring nucleotides from all other
orthologous gene groups (Fig. 3a). Every column of the matrix
except the first column and the last column is for one position
in the motif, and the first column and the last column are for the
left and the right neighboring positions of the motif, respectively.
Every row of the matrix is for one type of nucleotides, in the
order of A, C, G, and T. With the ancestral motif weight matrix,
a nucleotide will be drawn for every position in the ancestral
motif instance and two neighboring positions in met10. For every
position, the conditional probabilities for observing A, C, G, or
T at that position which results in the nucleotide(s) at the leaf (or
leaves), given the sequences of the offspring motif instances and
their neighboring nucleotides, are calculated by using Bayes’
theorem. The nucleotides for each position in the ancestral motif

†For yeast species, we downloaded alignment of upstream of orthologs from ref. 17. For the
two insect species, we did local alignment of orthologous upstream and used the best
aligned regions of length 100 bp for every orthologous pair. The 100-bp cutoff is arbitrarily
chosen, but, to our knowledge, the proposed method is not so sensitive to the background
substitution matrices.

Fig. 2. A cartoon of the evolution of the met10 gene on the phylogenetic
tree. The tree tells the evolutionary history of the met10 regulatory sequence
around the motif instances. That is, the ancient met10 regulatory sequence
TCACGTGACCATAT at the root evolved into the regulatory sequence TCACGT-
GACCAAAA at the inner node and the met10 regulatory sequence GCACCT-
GACTTTT in yeast species S. kudriazevii; the sequence TCACGTGACCAAAA at
the inner node evolved into the sequences TCACGTGACCAGAA and CCACGT-
GACCAAAA in the yeasts S. cerevisiae and S. mikatae, respectively. The three
sequences at the bottom are orthologous sequences because they evolved
from the same ancestral sequence at the root and they are in different species
now. We have only the sequences at the bottom. The sequences of the
ancestral species are unknown and are used here to describe the evolution
model. The red nucleotides in each sequence represent the sites in the motif.
Otherwise, the sites are from the background. The sites in the motif evolved
according to a continuous Markov chain model, whereas the sites from the
background evolved according to a different Markov chain model. Two
substitution matrices are deduced from the two different Markov chain
models to describe the evolution of the motif instances and the background
sites, respectively. Note the length of a branch in the tree represents the time
after the speciation from the corresponding ancestor. In the paper, we ex-
plicitly construct ancestral motif instances first and then find motif instances
in the current species. Therefore, we do not need to worry about the corre-
spondence of background sites in different species. That is, we do not need to
know the sequences of the ancestral species (Appendix 2, which is published
as supporting information on the PNAS web site).
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instance and at the two neighboring positions are then sampled
according to these probabilities. Given this updated ancestral
motif instance, we can in turn update the motif instances at the
leaf (leaves) where sequences are available. Motif instances for
every leaf are sampled independently. We will describe how to
sample a motif instance for met10 in S. cerevisiae here; see Fig.
4. First, for every position in the met10 upstream sequence in S.
cerevisiae, we calculate the probability that the ancestral motif
instance ACTTGAC will evolve into the substring of length w �
7 starting from that position in the sequence. Thus, if the
sequence is n base pair long, we will have n � w � 1 such
probabilities. From the previous iteration, we also have the
probability pi that there is no motif instance in met10 in S.
cerevisiae. Then we sample one of the possibilities according to
those n � w � 2 probabilities. Unless the ‘‘no motif’’ case is
chosen, we thus obtain a segment in the upstream as the motif
instance and its neighboring nucleotides on the left and the right
are stored. After the motif instance is sampled for met10 in S.
cerevisiae, the same procedure is followed for met10 in S. mikatae,
provided the met10 gene sequence in S. mikatae exists. In this
way, we can obtain motif instances for all species in the tree.
After motif instances for one orthologous gene group are
updated, the same procedure for the next orthologous gene
group is applied until all orthologous gene groups are consid-
ered. At the end, we have updated all of the motif instances for
every orthologous gene group.
Parameter sampling step. With the motif instances updated, updating
the parameter pi is straightforward by using its posterior distribu-
tions. For the motif width w, the Metropolis–Hasting algorithm (15)
is used by proposing to increase or decrease the width by 1 from the
left side or the right side. The acceptance or rejection of the change

of the current motif width is done according to the joint posterior
of w and A(0) (see Appendix 1) by using the neighboring nucleotides
and the ancestral motif instances as the observed data. Note that we
limit the motif width to be from 5 to 20 bp, which is the usual range
of motif widths. Moreover, we do not sample � anymore because
� is integrated out, which is what the collapsed Gibbs sampler (13)
does (see Appendix 2).
Ranking motifs. After sampling for many cycles, our sampler will
stay near some local optimal regions in the motif instance space.
Calculating the Bayes factors, the ratio of the probability of
generating the output motif instances in current species from a
motif model to the probability of generating those motif in-
stances from the background model may be the best way to
report the significance of the motifs. Unfortunately, we cannot
observe the ancestral motif instances, so it is difficult to find an
explicit formula for the joint posterior distribution of the motif
width and the motif instances in the current species given the
sequence data in current species. Another way to report motif
significance is to output the most frequent motif instances.
However, storing the most frequent motif instances is not
practical, given the many genes and the many species. To
calculate the motif significance, we output the one with the best
log posterior of w and A(0). The log posterior is some constant
plus the value from the following formula (14) (see Appendix 1):

log
w0

we�w0

w!
� log

�� �A � � 1���N � �A � � 1�

��N � 2�

� �
k�1

w

log� ��2�

	��0.5�
4

�
l�1

4

��nkl � 0.5�

�� �A � � 2�
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k�1

w �
l�1

4

nkllog �0l.

Table 1. An example of the substitution matrices for the branch from the common ancestor of
S. cerevisiae and S. mikatae to S. cerevisiae in the yeast phylogenetic tree

Background substitution matrix
S. cerevisiae

Motif substitution matrix
S. cerevisiae

Ancestor A C G T Ancestor A C G T

A 0.7743 0.0347 0.1329 0.0581 A 0.8730 0.0182 0.0783 0.0305
C 0.0583 0.6791 0.0334 0.2292 C 0.0307 0.8170 0.0176 0.1347
G 0.2320 0.0347 0.6752 0.0581 G 0.1366 0.0182 0.8146 0.0306
T 0.0583 0.1369 0.0334 0.7714 T 0.0307 0.0805 0.0176 0.8712

Table 2. Notations in our Gibbs sampler

Symbol Definition

Known parameters
m Number of current species; there are m � 1 ancestral species.
n Number of genes in one species.
I Species set. I � {0, 1, . . . , 2m � 2}.
S The set of regulatory sequences from all current species.

Unknown parameters but can be estimated before applying the Gibbs Sampler
�0 Background site model for species 0.
M0i Background substitution matrix at the ith branch of the tree, i � 0, 1, . . . , 2m � 3.
M1i Motif substitution matrix at the ith branch of the tree, i � 0, 1, . . . , 2m � 3.

Unknown parameters that can be estimated from the Gibbs sampling
pi Probability of a gene containing motif instances in the ith species, i � I.
w Motif width.
A(i) Motif instance set in the ith species, i � I.
Aj

(i) The motif instance in the jth gene of ith species, i � I.
Ajk

(i) The kth nucleotide in the motif instance in the jth gene of the ith species, i � I.
Notations that are used for describing the model and no particular interest

Sj
(i) The regulatory sequence of the jth gene in the ith species, i � I.

� Motif model for species 0, the root species.
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In the formula, the first item is from the prior distribution of the
motif width and w0 is the prior width; the second item is from the
effect of p0, the probability that an ancestral gene will contain
motif instances, for which Beta(1, 1) is used as the prior
distribution; the third and the fourth items are for the motif
weight matrix, in which �0l is the probability of nucleotide l
happening in the background of the root species, and nkl is the
number of nucleotide l on position k in motif instances at the root
species. As the parameter of the Dirichlet prior distribution for
the parameters in the weight matrix, 0.5 is used.

The above Gibbs sampler for two species can be extended to
multiple species. The only change is at the ancestral motif instance
updating step. Instead of having an ancestral weight matrix, when
we update the motif instance at the inner nodes we have a parent
motif instance. At this time, the probability that a nucleotide occurs
at a position is the multiplication of two items, the probability that
the immediate parent nucleotide updated just now will evolve into
this nucleotide and the probability that this nucleotide will evolve
into the nucleotides in its immediate daughter instances. Bayes’
theorem can again be applied to obtain the desired conditional
probabilities.

Results
Harbison et al. (16) provided the target genes for 204 transcrip-
tion factors in S. cerevisiae. For each transcription factor, the
upstream sequences of target genes and their alignments are
downloaded from Cliften et al. (17). By manually checking the
TRANSFAC database (12), we found that there are a total of 53
transcription factors, for which we have at least 5 target gene
sequences in S. cerevisiae and there is no ambiguity on the
experimentally verified binding sites. The sampler is tested on
those 53 transcription factor target gene sets.

To compare with other multiple species-based methods, we used
available software PHYLOCON (8) and COMPAREPROSPECTOR (7) on
the same datasets. Our method not only has much higher sensitivity
than the other two but also has higher specificity. See the summary
in Table 3 and details in Table 4, which is published as supporting
information on the PNAS web site.

To investigate whether the incorrect predictions are due to
failure of the sampler to search the whole space or due to
fundamental inadequacy of our statistical model, we analyzed
the incorrect predictions in more detail. Among the eight
transcription factors for which we made wrong predictions, our
method can identify the correct motif if it starts from a weight
matrix constructed from a real motif instance in every case
except the cases for RPN1 and SIP4 (we have only seven target
gene sequences for the transcription factor RPN1 and SIP4,
respectively). Moreover, the six motifs identified by starting from

Fig. 3. Update ancestor motif instance for gene met10 in yeast. (a) The weight matrix is constructed from all ancestral motif instances except the one in gene
met10, which are sampled at the previous step. We also calculate the nucleotide distributions for the two neighboring nucleotides, which are the first and the
last column in the weight matrix. (b) We have motif instances ACGTGAC for S. cerevisiae met10 and ACGTGAA for S. mikatae met10 (underlined) and their
neighboring nucleotides from the previous sampling cycle. M11 and M12 are the substitution matrices at the corresponding branch. Here both of them are the
same as defined in Table 1. (c) For each position, including the two neighboring positions, we calculate the probability that A, C, G, or T will appear there. Then
one of the A, C, G, and T is drawn based on those probabilities for that position. For example, the probability that A will appear at the ninth position (the right
neighboring position of the motif) is 0.036 � 0.8730 � 0.0182 and divided by some normalization constant, which results in 0.029.

Fig. 4. Update motif instances at the leaves. We update the motif instance
for each species in the current ortholog group, one by one. For each species,
the probability that a motif instance starts at each position is calculated. All
those probabilities, together with the probability that there is no motif
instance in the gene, are used. The sampler will randomly decide whether
there is a motif instance and where it is if there is one, according to those
probabilities. Note that only the ancestral motif instance that is underlined in
the figure contributes to the updating of the motif instance in the current
species. If there is a motif instance sampled, the two nucleotides on the left
and the right of the motif instance are recorded for future use to decide the
motif width.

Table 3. Comparison of sensitivity and specificity

Method

Sensitivity Specificity

No. % No. %

Gibbs sampler (ours) 41�53 77.4 41�49 83.7
COMPAREPROSPECTOR (29 � 1)�53 56.6 (29 � 1)�48 62.5
PHYLOCON (24 � 1)�53 47.2 (24 � 1)�35 71.4

The �1s in the second and third rows mean that one motif predicted by
COMPAREPROSPECTOR and one motif predicted by PHYLOCON look similar to the
corresponding experimentally verified motif in TRANSFAC, respectively, al-
though they do not satisfy our criteria of correct prediction. The number 41�53
in the first row means Gibbs sampler (ours) correctly made 41 predictions for
the total 53 datasets; the numbers (29 � 1)�53 in the second and third rows
have similar meaning. The number 41�49 in the first row means Gibbs sampler
(ours) correctly made 41 predictions in a total of 49 predictions; the number
(29 � 1)�48 in the second row and the number (24 � 1)�35 in the third row
have similar meaning.
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these proper prior distributions have higher scores than the
corresponding ones in Table 4. Thus, these false positives are due
to failure of the sampler to visit the global optimal region and are
not due to inherent limitation of the model. Higher accuracy can
be achieved if we improve the mixing of the sampling process.

To test the ability of the method to detect motifs in distant
species, we applied it on the 63 ribosomal protein gene pairs from
two insect species, fruit f ly (Drosophila melanogaster) and mos-
quito (Anopheles gambiae). These species diverged �250 million
years ago, and methods that rely on alignment typically give very
poor result in this situation. Our sampler found a pair of motifs
with common consensus, ACAGCTGTCAAAA. Moreover, it
found motif instances in all 63 gene pairs. If MEME (1) is applied
on genes in individual species, GCGGTCACACT (fly) and
CAGCTGTCAAACGG (mosquito) are identified in 41 and 44
genes, respectively. Although the underlined parts in the motif
consensus identified by MEME (1) look similar, the instances
corresponding to the two motifs in the orthologous gene pairs
rarely share �5 nucleotides in the underlined 9-nt parts. The
motif instances found by our method share a median 8 bp of 13
positions. Moreover, the motif ACAGCTGTCAAAA identified
by our method is similar to an experimentally verified motif
CAGTCACA, which was found to regulate 14 ribosomal protein
genes in Schizosaccharomyces pombe (17). See the motif in-
stances for every gene in Appendix 3, which is published as
supporting information on the PNAS web site.

Although PHYLOCON (8) outputs a motif ACCAGCTGT-
CAAAGGGG, which contains the one identified by our method,
only 7 orthologous pairs are found by PHYLOCON (8) to contain
the motif instances. Moreover, the p value of this motif is not
significant compared with those of other motifs output by
PHYLOCON (8). As to COMPAREPROSPECTOR (7), there is none in
the top 15 output motifs similar to the one identified by our
method. Note that 63 motif instance pairs found by our method
share 8 bp of 13 positions on average (Appendix 3). This shows
that using prealigned sequences as input to find motifs will likely
miss many motif instances for distant species, because those
alignments in general cannot take the evolutionary distance into
account, and many ‘‘well’’ conserved instances are missed.

Discussion
There are other ways to define the evolution mechanism. For
background evolution, ancient repeats in the genome or synon-
ymous sites in proteins can be used instead of using the gene
upstream regions. As to the motif evolution, the substitution
matrix can be specified by users. For example, the evolution
mechanism used by PHYME (4) can be readily applied here. The
only requirement for the motif substitution matrix is that the
matrix should have larger diagonal numbers than those in the
background evolution matrix. The more similar the matrix is to
the identity matrix, the more conserved motifs the users are
trying to find. Moreover, our method is very robust to the motif
substitution matrices; the motifs found for the 53 yeast tran-
scription factors remain basically the same when using many
different motif substitution matrices. More research on the
evolution of motif instances (18) should provide better ways to
define the evolution mechanisms, which will eventually improve
the accuracy of the sampler.

There are a number of complications in directly applying the
Gibbs sampler here. First, there may be more than one motif
instance in some genes, and it is computationally expensive to
explore all of the possible origin relationship of motif instances in
orthologous genes. Second, there is no sequence for species at any
inner node and the root. Thus, the ancestral motif instances cannot
be obtained directly from the ancestral sequences. To resolve the
first difficulty, at most one motif instance per gene is sampled, with
the aim of picking up the reciprocal ‘‘best’’ matching motif instance
pairs. After the motif is found, we can then scan the orthologous

sequences to find more motif instances if needed. For the second
difficulty, ancestral motif instances are sampled based on the motif
instances at leaves from the previous step and the ancestral weight
matrix constructed from all other gene groups. This procedure is
reasonable because there must be some ancestral motif instances
that evolved into the current ones at leaves, given the current ones
are real motif instances (i.e., those motif instances are related). See
Fig. 3 for details. Note that here we cannot use the alignments to
provide good approximations for the whole ancestral sequences in
every orthologous gene group, although they are suitable for
estimating the background evolution mechanism and the back-
ground nucleotide distribution, because many sequence regions in
the current species cannot be aligned at all.

Our sampler samples motif instances from scratch instead of
from prealigned regions. The motif instances and their counterparts
in other species may not be in the prealigned regions when the motif
instances are weak. Moreover, with more divergent species, some-
times it is even difficult to find ungapped segments in alignments.
Our sampler emphasizes that the motif instances and their coun-
terparts are more similar to each other than motif instances from
different orthologous gene groups, which avoids artificially assum-
ing the matching of motif instances and their counterparts.

We do not assume that the motifs in different species are the
same or similar. This lack of assumptions makes the model an
attractive tool to find different motifs that share the same origin.
With the advance of research on the evolution of transcription
factor binding sites, we can define a better background evolution
model for very divergent species, and distantly related transcrip-
tion factor binding sites can be discovered.

The current method of calculating motif significance in our
sampler is not appealing. The best way to assess the signifi-
cance is the Bayes factor. Unfortunately, no explicit posterior
probabilities can be deduced because the ancestral motif
instances are not observed directly. However, approximation
based on the EM (Expectation Maximization) algorithm (19)
can be used. But we have to calculate the significance at every
iteration in the sampler. Approximations for calculating Bayes
factor are still computationally expensive.

Although the sampler has many appealing aspects, it should be
considered as just the first step in modeling motif evolution on
phylogenetic trees. With more research on the evolution of
transcription factor binding sites, better understanding about the
mechanisms of evolution will greatly help the improvement of
the sampler. Moreover, the current sampler is often tested on
about 1 kb upstream of genes. Many mammalian regulatory
elements are still out of this range. Enhancing the sampler should
make it applicable to more data.

Appendix 1
Here we are going to show how to find the log posterior for w
and A(0). First we assume that the ancestral gene sequences S are
given. Thus, we can think of A(0) as a set of position indicator
functions that track the locations of the motif instances. Then we
have

Pr�w , A �0�, p0 , � �S , �0�

� Pr�S , A �0��w , p0 , �0 , ��Pr���Pr�p0�Pr�w�

� � �
l�A

T

�0l
n0l� � � �

k�1

w �
l�A

T

�kl
nkl� � p0

�A�0���1 � p0�N � �A �0��

� Pr��� � Pr�w� � Pr�p0� ,

where �0 � (�0A, �0C, �0G, �0T) is the background nucleotide
distribution parameter, � � {�k � k � 1, . . . , w} and �k �
{�kl � l � A, C, G, T} are the parameters in the motif weight
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matrix. Assume a Dirichlet prior D(�k) for �k (�k � (�kA, �kC,
�kG, �kT)), a Beta(1, 1) prior for p0, and a Poisson(w0) prior for
w on the above formula. Now we want to integrate out p0 and �.
To integrate out p0, we have

	
0

1

p0
�A�0���1 � p0�

N � �A�0��dp0 �
���A�0�� � 1� � ��N � �A�0�� � 1�

��N � 2�
.

To integrate out �k, we have

	
0

1 	
0

1��kA	
0

1��kA��kC	
0

1��kA��kC��kG �
l�A

T

�kl
nkl

�
����k��
���kl�

�kl
�kld�kAd�kCd�kGd�kT

�
����k��

�
l�A

T

���kl�

�
l�A

T

��nkl � �kl�

���A�0�� � ��k�� ,

where ��k� � 
l�A
T �kl. Therefore, the log posterior of w and A(0)

becomes

log
w0

we�w0

w!
� log

�� �A �0�� � 1���N � �A �0�� � 1�

��N � 2�

� �
k�1

w 
 �� ��k��

�
l�A

T

���kl�

�
l�A

T

��nkl � �kl�

�� �A �0�� � �� l��
� �

l�1

4

nkllog �0l� ,

where the last term is from the items containing �0, for which
we subtract a constant that is the log probability that all
sequences are generated from the background model �0.

Note that we do not actually need the exact sequences S or the
locations of the motifs A(0). All we need is nkl, which are known
from the ancestral motif instances A(0). Therefore, the above
posterior distribution of A(0) and w is valid even if S is unknown.
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