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We present a statistical methodology that largely improves the
accuracy in computational predictions of transcription factor (TF)
binding sites in eukaryote genomes. This method models the
cross-species conservation of binding sites without relying on
accurate sequence alignment. It can be coupled with any motif-
finding algorithm that searches for overrepresented sequence
motifs in individual species and can increase the accuracy of the
coupled motif-finding algorithm. Because this method is capable of
accurately detecting TF binding sites, it also enhances our ability to
predict the cis-regulatory modules. We applied this method on the
published chromatin immunoprecipitation (ChIP)–chip data in Sac-
charomyces cerevisiae and found that its sensitivity and specificity
are 9% and 14% higher than those of two recent methods. We also
recovered almost all of the previously verified TF binding sites and
made predictions on the cis-regulatory elements that govern the
tight regulation of ribosomal protein genes in 13 eukaryote species
(2 plants, 4 yeasts, 2 worms, 2 insects, and 3 mammals). These
results give insights to the transcriptional regulation in eukaryotic
organisms.

cross-species conservation � motif finding � ribosomal protein genes

A lthough significant advances have been made in the past 10
years on computational prediction of transcription factor (TF)

binding sites in eukaryote genomes, the accuracy of such predic-
tions has reached a plateau where achieving significant improve-
ments seems difficult. Dramatically improving the state-of-the-art
accuracy of TF binding site predictions, so that the in silico results
standing alone become convincing evidence rather than mere
guidance to biological tests, would significantly accelerate the pace
of scientific discovery by means of computational biology
techniques.

Up to now, the best sensitivity and specificity of cis-motif-finding
programs are achieved by computational methods (1–6) that jointly
use the cis-motif overrepresentation property in a cluster of co-
regulated genesd and the higher conservation property of bona fide
TF binding sites in the regulatory regions of orthologous genes;
these two properties were previously taken into account separately
(7–15). Although the methods (1–6) using both of the aforemen-
tioned properties already provide useful results, they still suffer
from one or more of the following limitations. Some of these
methods can only be applied to two species (3); some treat
orthologous sequences as statistically independently (1); some
neglect the difference in the divergent time among species (1, 4, 5);
and some try to find motifs in the aligned orthologous sequences
and therefore require motif instances to be aligned correctly with
the orthologous counterparts in the alignmentse (1, 2, 4–6). More-
over, to our knowledge, given the many motifs output from the
above methods, current practice of selecting motifs based on their
P values or scores from these methods will make incorrect selec-
tions in �28% of the cases from yeast chromatin immunoprecipi-
tation (ChIP)–chip data (16) (see Table 5, which is published as
supporting information on the PNAS web site). This poor perfor-
mance is because the P values or the scores of these motifs are
calculated by using the same information that was used to find them.

We propose here a previously undescribed method, the cross-
species conservation (CSC) method, which also jointly utilizes the
motif overrepresentation property and the high conservation prop-
erty. The method goes beyond the existing methods in that it finds
motifs by using overrepresentation information first and then
models the motifs in the context of the evolutionary divergence of
neutral and functional sequences to judge their significances. Such
modeling circumvents some overly simplistic assumptions used in
current methods. As the results presented below demonstrate, our
approach offers substantial improvement in prediction accuracy
over two current methods where software is available.

Methods
Schematically, for a set of coregulated genes, CSC first uses a motif
overrepresentation based method, e.g., MEME (8), with a nonstrin-
gent threshold to find potential motifs in the anchor speciesf from
which the coregulated genes are obtained, as well as in other closely
related species. We call the identified motifs in any species the
marginally significant motifs (MSMs) of that species. Because the
threshold is set to be very low, most motifs that are overrepresented
in the genomic regions of the selected genes would likely be
included in MSMs; i.e., we expect there to be many false-positive
motifs, but the genuine motifs are likely to be included. CSC then
models the evolutionary paths of the neutral intergenic regions and
poses a null hypothesis that the MSMs are not functional motifs, and
therefore their instances evolved like neutral intergenic regions.
CSC then tests whether there are MSMs that are much more
conserved in the multiple species than what are expected under the
null hypothesis. CSC performs the tests by enumerating all of the
groupingsg of MSMs and calculating the probability that the current
grouping of MSMs evolved from the same common ancestral motif
under the null model. In the end, CSC reports the significantly
conserved MSMs as putative TF binding motifs. Fig. 1 gives the
overall strategy of CSC, the details of which are below.

Identification of Coregulated Genes. The coregulated genes are
identified either with ChIP–chip data or microarray data for the
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eAppendix 1, which is published as supporting information on the PNAS web site, gives an
example showing that motif instances may not always align correctly.

fThe anchor species is where the motif-finding problem arises; i.e., if we are interested in
finding the motifs in a certain species, then this species is called the anchor species. We give
this name to this species to differentiate it from all other species that are used to help
finding the motifs (the genes from the anchor species are called anchor genes).

gA grouping of MSMs is a collection of similar MSMs, where each MSM in the group belongs
to a different species. See Appendix 2, which is published as supporting information on the
PNAS web site, for how to obtain groupings of MSMs.
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anchor species. For ChIP–chip data, genes that are bound by the
TFs with P � 0.001 for binding are used (17). For microarray
expression data, the following two criteria are applied. First, these
genes should be clustered together across many expression profiles
taken from various tissues or experimental conditions. Second,
there should be sound biological reasons for these genes to be
coexpressed, which could be that the protein products of such genes
form equimolar protein complex, that the protein products sustain
the same signal transduction pathway, or others. We apply the
second criterion to ensure these genes are indeed coregulated. This
criterion will not be necessary if the expression data are so
informative that from them alone coregulated genes can be con-
fidently inferred.

For the coregulated genes obtained from the anchor species, we
then extract the corresponding orthologous genes in other species
(see Data below).

Data. Data summary. We applied the CSC method on two sets of
data. The first set contains ChIP–chip data for 53 TFs in Saccha-
romyces cerevisiae (Sc), for which we have at least 5 candidate target
genes (P � 0.001) (16–18), and we know the experimentally verified
motifs. The second data set is the collection of ribosomal protein
genes (RPGs) in 13 eukaryote species (2 plants, 4 yeasts, 2 worms,
2 insects, and 3 mammals).
Microarray data for RPGs. We have observed the coexpression of
RPGs in the analyses of many expression profiles. Here we
exemplify this phenomenon with the mouse neural differentia-
tion data (19), the mouse time course profiles in liver and heart
(20), and the profiles of preimplantation mouse embryos (21).
We used DCHIP (22) software to make hierarchical clustering on
genes in every data set (see Fig. 4, which is published as
supporting information on the PNAS web site).
Protein complex and genomic organization. The ribosome is a large
protein–RNA complex present in bacteria and all eukaryote spe-
cies. Fifty to 90 RPGs were identified in various species. Because all
ribosomal proteins contribute to the formation of the same protein
complex, it is expected that their production is governed by the
same machinery in transcription, translation, or protein modifica-
tion stages, or in some combination of these. In bacteria, RPGs have
remarkable patterns of gene order conserved across 2 billion years
of evolution (23). In Sc, the RAP1 TF has been shown to work on
several promoters of RPGs (24). Taking the sources of information
together with our observation in mammalian gene expression
profiles, we hypothesized that the RPGs are likely to share some
cis-regulatory signal in each species.

Sequence data. The upstream sequences for all of the genes in the
ChIP–chip data set were obtained from the ‘‘phylogenetic foot-
printing’’ web site (25), which uses Saccharomyces Genome Data-
base’s (www.yeastgenome.org) sequence data.

We collected the RPG IDs for Arabidopsis thaliana, Caenorhab-
ditis elegans, and Drosophila melanogaster from the Kyoto Encyclo-
pedia of Genes and Genomes database (26) and downloaded their
800-bp upstream sequences of the transcription start sites (TSSs)
from Ensembl (www.Ensembl.org). With the gene sequences in C.
elegans and D. melanogaster, we used Ensembl to look for homol-
ogous genes in Caenorhabditis briggsae and Anopheles gambiae. In
case that one RPG has multiple homologous genes, we manually
checked the literature to nail down the genuine orthologous copy.
If we could not find proper information about orthologs in litera-
ture, reciprocal best hits are assumed as the orthologs. We then
retrieved the 800-bp upstream sequences of TSSs of these genes
from Ensembl. For Oryza sativa, we downloaded the genome
sequence and the annotated gene sequences from TIGR (www.ti-
gr.org�tdb�e2k1�osa1) and then aligned the annotated gene se-
quences with the genome sequence to identify the TSSs and
obtained the upstream 800-bp sequences. For human, mouse, and
rat, we obtained all of the RPG LocusLink IDs from the National
Center for Biotechnology Information, then used EZRETRIEVE 2.0
(27) to obtain the 1,000-bp upstream and 200-bp downstream
sequences of the TSS of every gene. For yeast species Saccharo-
myces mikatae, Saccharomyces kudriavzevii, Saccharomyces bayanus,
and Sc, we used the upstream sequences of translational start sites
of the RPGs defined by Cliften et al. (25). The number of RPGs we
obtained for every species is listed in Table 6, which is published as
supporting information on the PNAS web site.

Discovery of MSMs in Each Species. For the gene neighborhood
sequences obtained above in every species, we used REPEATMASKER
(http:��ftp.genome.washington.edu�RM�RepeatMasker.html) to
mask the repeats within them and then used MEME (8) to search for
overrepresented motifs among them. MEME uses the expectation
maximization algorithm to detect motifs that have enriched in-
stances in the input sequence sets compared with the genomic
background. The current implementation of MEME enumerates all
potential motif seeds (28), which minimizes the drawback of
potentially missing good motifs for the reason of computational
limitations. We set the parameters so that MEME would report
motifs, which are also called MSMs, of 6 to 14 bp in length and
E-value statistic of �1E8.

Note that the methodology we are about to describe does not rely
on MEME. MEME is a tool used to search the overrepresented motifs
in each species, and it can be replaced by any other method with the
same purpose (see refs. 10, 11, etc.).

Determination of the Significance of the MSMs in the Anchor Species.
If an MSM, identified by means of overrepresentation in the anchor
species, is a bona fide motif, it is likely that it also will be identified
in other species by means of overrepresentation; moreover, motif
instances for the corresponding bona fide motifs in different species
should often occur simultaneously and have high conservation if the
species are properly chosen and the motifs are conserved. Thus, a
motif in the anchor species is determined to be bona fide if the
conservation of the motif instances far exceeds the conservation of
the overall orthologous upstream sequencesh of the coregulated
genes used. The following five-step procedure is applied to select
MSMs of the anchor species based on the motif conservation P
value defined below.
Step 1: Modeling the evolution of neutral sequences. We first align the
upstream sequences of orthologous genes and obtain well aligned

hAlthough we use ‘‘upstream sequence’’ in describing the method, in practice, the method
should be applied to any regions that may contain cis-regulatory elements.

Fig. 1. CSC strategy diagram. See Appendix 2 for the details of each step.

16946 � www.pnas.org�cgi�doi�10.1073�pnas.0504201102 Li et al.



regions.i Based on these well aligned regions and by using the
species tree as the phylogenetic tree, we estimate the branch lengths
of the phylogenetic tree as well as the background nucleotide
distribution of the ancestral species at the root of the tree by
maximal-likelihood estimation (29). Then, for every branch of the
phylogenetic tree, a 4 � 4 base substitution matrix is calculated from
the background nucleotide distribution and the branch lengths (30).

A base-substitution matrix for one branch obtained in this way,
the entries of which give the probabilities of a neutral nucleotide in
the parent species evolving into a base in the child species, is a
measurement of the divergent time of the species after speciation
on the branch in the way that the divergent time is shorter if the
matrix is more similar to the 4 � 4 identity matrix. Table 1 gives an
example of a base-substitution matrix.
Step 2: Finding all groupings of MSMs. We first find similar MSMs in
two species by pulling out the motif instances of both MSMs and
then aligning the two sets of motif instances without gaps (see
Motif Profile Alignment in Appendix 2). A similar MSM pair is
called a grouping of MSMs, which is stored and then judged on
whether it contains a bona fide motif by the motif conservation
P values calculated in Step 3 and 4 below. If a grouping of MSMs
is believed to potentially contain a bona fide motif (has a motif
conservation P � 1 � 10�9),j it will be considered as a new MSM
and will be compared with all MSMs in species other than the
two where the new MSM comes from. That is, groupings of
MSMs containing motifs from two species are constructed first;
then some good groupings of MSMs (those with motif conser-
vation P � 1 � 10�9) are expanded by adding a similar MSM
from another species to form groupings of MSMs containing
motifs from three species, and so on. The details of finding all
groupings of MSMs are described in Steps 2a and 2b by using the
four species Sc, S. mikatae, S. kudriavzevii, and S. bayanus as an
example (Sc is the anchor species).

Step 2a: Constructing groupings of MSMs from Sc and another
species. The motif instances of every MSM in each species are
pulled out from MEME output and aligned as a profile. For every
MSM in Sc, we will align its motif instance profile with that of every
MSM in other species, and then we will store the pair of MSMs as
a grouping of MSMs if the alignment of the two motif instance
profiles is good. The detailed procedure of constructing the motif
instance profile, the profile alignment and the criteria of good
alignment are in Motif Profile Alignment in Appendix 2.

Step 2b: Constructing groupings of MSMs consisting of MSMs
from Sc and two or more other species. For every grouping of
MSMs from Step 2a, the P value that the putative motifs in the
grouping of MSMs are not bona fide motifs is calculated in Step 3
below. If P � 1 � 10�9, this grouping of MSMs will be stored as a
new MSM and the above Step 2a is applied to this new MSM. For
instance, if this new MSM consists of motifs from Sc and S. mikatae
currently, we will compare this new MSM with every MSM in the
species S. kudriavzevii and S. bayanus, as is done in Step 2a, to form
groupings of MSMs consisting of three MSMs from three different
species. Note that the new MSM will not be expanded anymore if
it contains MSMs from all different species under consideration (in
our example the species number under consideration is four).

In summary, at the beginning, we will find all groupings of MSMs
containing motifs from only two species; then the P values of each
of the groupings of MSMs is calculated and the MSM groupings
with P � 1 � 10�9 will be stored as new MSMs; then the new MSMs
generated just now will be compared with MSMs from a different
species to form a grouping of MSMs consisting of motifs from three
species. Groupings of MSMs consisting of motifs from more species
can be obtained in a similar fashion.
Step 3: Inferring the ancestral motif instances and the ancestral motif
weight matrix for every grouping of MSMs. For a grouping of MSMs
obtained at Step 2, no matter if it contains MSMs from two, three,
or more species, the corresponding part of the species tree will be
taken out as the phylogenetic tree for this grouping of MSMs, i.e.,
this phylogenetic tree will only have n leaves and n � 1 other nodes
if the grouping of MSMs contains MSMs from n species. Based on
this phylogenetic tree, we construct ancestral motif instances by
using maximal parsimony for every orthologous gene group in
which at least one motif instance was obtained from MEME (8)
output. An ancestral weight matrix is subsequently compiled from
the obtained ancestral motif instances. Then, every obtained an-
cestral motif instance is scored with this ancestral weight matrix, and
the 20% quantile of these scores is defined as the threshold of scores
of real motif instances of the ancestral motif. The details are
illustrated in Motif Profile Alignment and Constructing Ancestral
Motif for One Grouping of MSMs in Appendix 2.
Step 4: Assessing the significance of every grouping of MSMs. For any
grouping of MSMs, CSC uses the following procedure to assess the
statistical significance of the test statistic, the number of ortholo-
gous gene groups with at least two of the orthologous genes (must
include the gene in the anchor species) containing real motif
instances of the ancestral motifk (see Fig. 2 for the construction of
the test statistic). The significance is represented by the motif
conservation P value, which is the tail probability of the distribution
of the test statistic under the neutral evolution model.

Note that all of the ancestral sequences are random variables with
the same nucleotide distribution estimated from the current se-
quences by using maximal-likelihood estimation (29). Thus, the test
statistic is a random variable, say X, when given the phylogenetic
tree, the base substitution matrices, the ancestral motif weight
matrix, and the threshold for a segment to be a real motif instance
of the ancestral motif. The distribution of X can be derived by
assuming that the ancestral sequences evolved into the current
sequences by following the above estimated base-substitution ma-
trices (Step 1).

In Calculate the Motif Conservation P Value for a Grouping of
MSMs in Appendix 2, we show how to calculate the motif conser-
vation P value Pr(X � x), where x is the observed value of the test
statistic X. This motif conservation P value indicates the chance of
observing at least as many orthologous gene groups that contain

iFor the yeast species, we downloaded alignment of upstream orthologs from ref. 25. For
the two plant species, we did local alignment of orthologous upstream and used the
best-aligned regions of 100-bp length for every orthologous pair. The 100-bp cutoff is
arbitrarily chosen, but, to our knowledge, our method is not so sensitive to the back-
ground-substitution matrices. For the three mammalian species, two insect species, and
two worm species, we download the available alignments of the RPG upstream sequences
from University of California, Santa Cruz genome browser web site.

jThis cutoff is arbitrary. From our experience, this cutoff works well for all the data sets from
different species we used. In the text, we have another empirical P value cutoff, 1 � 10�19,
which is used to report motifs.

kTo avoid overfitting, we exclude the motif instances on the current group of orthologous
genes (the group of genes to be scanned by the ancient motif) from constructing the
ancient motif.

Table 1. Example of the base substitution matrix to describe the
evolution of neutral nucleotide from the common ancestor of
C. elegans and C. briggsae to C. elegans

Ancestor

C. elegans

A C G T

A 0.7529 0.0369 0.1457 0.0645
C 0.0622 0.6522 0.0373 0.2483
G 0.2426 0.0369 0.6560 0.0645
T 0.0622 0.1418 0.0373 0.7587

For instance, the first number 0.7529 means the probability that the nu-
cleotide A in the common ancestor of the two worm species evolved into an
A in C. elegans is 0.7529.
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conserved real motif instances of the ancestral motif in multiple
species, including the anchor species, as we have actually observed.
Step 5: Selecting MSMs and reporting their significance. We enumerate
all of the MSM groupings and apply the procedure in Step 4 to
calculate the motif conservation P value to judge whether the
current grouping of MSMs contains a bona fide motif that is derived
from a common ancestral motif. In general, if the P value of a
grouping is �1 � 10�19, the motif from the anchor species in this
grouping will be reported as a bona fide motif (see Basic Procedure
of Predicting Motifs in Appendix 2 for the detailed criteria of
reporting MSMs that are considered as bona fide motifs).

Results
Results for the ChIP–Chip Data. For every target gene set of the 53
TFs, we applied CSC as well as two recently published methods (1,
5) to predict the putative motifs. We compared CSC with these two
methods because they were considered the state-of-the-art motif-
finding methods and have available software. For the comparison,
we used the experimentally verified motifs recorded in the TRANS-
FAC database (31) as the gold standard motifs. Table 5 lists all of the
predicted motifs by the three methods and the known motifs in the
TRANSFAC database (31) for each of the 53 TFs. We gave both
PHYLOCON (1) and COMPAREPROSPECTOR (5) human help by doing
the following. In the list of their output motifs,l we manually
searched for the motif that best matched the recorded motif in
TRANSFAC. As long as one motif found by PHYLOCON (or COM-
PAREPROSPECTOR) matches the known one in TRANSFAC well,m we
agreed that PHYLOCON (or COMPAREPROSPECTOR) predicted the
correct motif. Conversely, no manual intervention was given to
CSC; we only counted the motifs identified by CSC as correct if the
top reported motif was correct. CSC correctly reported the motifs
of 30 TFs (Table 5). Both COMPAREPROSPECTOR and PHYLOCON

predicted correct motifs for 25 TFs. CSC made 5 incorrect predic-
tions of 35 predictions, whereas COMPAREPROSPECTOR and PHY-
LOCON made 21 and 10 incorrect predictions of 46 and 35 predic-
tions, respectively. From the comparison, we can see that even with
the advantage we gave to COMPAREPROSPECTOR and PHYLOCON,
CSC significantly outperformed them (see Table 2). Besides the 35
predictions, CSC did not make predictions for the remaining 18
TFs; in 16 of those, the known motif is not included in MEME output,
and in the remaining 2 cases the known motif is ranked as the top
1 motif, yet their P values were �1 � 10�19 because of the small
number (�5) of target genes containing motif instances. Notice that
in all MEME did not find the known motifs for 17 TFs, which may
be due to noisy target gene sets, because the other 6 independent
methods did not find the known motifs in 9 of the 17 cases either
(18). Moreover, the incorrect predictions in the 5 cases are not
necessarily incorrect, although the top reported motifs do not match
the known motifs associated with those TFs. For instance, the top
motif predicted by our method for CIN5, TGCGGTGTGTGGGT,
occurs in 127 different CIN5 target genes and has motif instances
in at least two species in the 127 genes, whereas the motif provided
by the literature occurs in 122 genes with only 88 genes containing
motif instances in at least two species, by allowing one mismatch
with the known CIN5 consensus, TTACATAA.

Very recently, Harbison et al. (18) used six different computa-
tional methods to look for candidate motifs from ChIP–chip data.
With the help of the prior knowledge, they made educated guesses
to pick one motif from the reservoir of candidate motifs. This
human-intervened fine tuning may achieve the highest imaginable
accuracy, because a large amount of information from different
sources has been used manually. The obvious drawbacks of this
method are that it cannot be systemized, and it is not easy to redo
the exercise for other researchers on other species. Even this
approach combined with human intervention may not necessarily
give better results as compared with CSC (see Table 5, legend).
Moreover, CSC can report multiple motifs for one set of genes
because it will assume all of the MSMs with P values less than some
threshold to be bona fide motifs. Therefore, cis-motif modules,
which consist of multiple binding sites and attract cooperative TFs,
are often evident from our result (Table 3).

Results for RPGs. CSC reported a motif in each of the four yeast
species (TACATCCGTACATT for Sc) with the motif conserva-
tion P � 1.1 � 10�120. Their consensus sequences were almost
identical both among themselves and to the previously known
RAP1 binding sites in Sc (see Table 6). Motif instances were found
in almost every upstream sequence. Because all biologically verified
RAP1 binding sites in Sc were included in the predicted motif
instances in the TRANSFAC database (31), it is not unreasonable to
assume that most of these predicted motif instances are bona fide
RAP1 binding sites. Several interesting observations were made to
them:

1. Their relative distances to translation start sites are conserved,
ranging from 200 to 500 bp.

2. The motif instances on upstream sequences of orthologous
genes appear in the same strand in most cases (399 of 433 pairs).

lPHYLOCON on average outputs 60 predictions with some redundancies. COMPAREPROSPECTOR

outputs ranked ordered motifs, for which we performed the manual search within the top
three motifs.

mThe criterion for matching with TRANSFAC motifs is that there should be at most one
mismatch when we compare the putative motifs with the TRANSFAC ones (see the legend
of Table 5 and the supplementary files of ref. 18).

Table 2. Comparison of sensitivity and specificity

Trait CSC (ours) COMPAREPROSPECTOR PHYLOCON

Sensitivity (29 � 1)�53 � 56.6% (24 � 1)�53 � 47.2% (24 � 1)�53 � 47.2%
Specificity (29 � 1)�35 � 85.7% (24 � 1)�46 � 54.3% (24 � 1)�35 � 71.4%

�1 means that one motif predicted for SUM1 looks similar to the corre-
sponding experimentally verified motif in TRANSFAC, although they do not
satisfy our criteria of correct prediction.

Fig. 2. The construction of the test statistic for testing whether a group of
MSMs are derived from the same ancestral motif.
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3. Motif instances on the orthologous upstreams tend to be more
similar than motif instances on different genes of the same
species.

In each of the two worm species (C. elegans and C. briggsae), MEME
(8) reported 12 motifs. Among them, 6 pairs of motifs pass our
conservation threshold. Appendix 3, which is published as support-
ing information on the PNAS web site, gives the MSMs and their
CSC P values.

In insects, 8 mosquito motifs and 11 Drosophila motifs were
found by MEME. One significant grouping was reported by CSC
(Appendix 3). The most conserved pair was

Drosophila: GCGGTCACAct

Mosquito: gcaGCTGTCAAAtg.

We found the two consensuses shared seven bases from a core
of nine bases. Even though the consensuses did not appear to be
extremely similar, CSC reported their conservation P value as 1 �
10�20. This result is because CSC automatically adjusted for the fact
that the local conservation of the upstream sequences of the two
species is low, because of the 250-million-year divergence of the two
insect species. We observed that the motif instances had relatively
conserved loci relative to the corresponding TSSs. Interestingly, the
motif consensus in D. melanogaster ribosomal genes matched an
experimentally verified binding site, CAGTCACA, in Schizosac-
charomyces pombe (32). This result indicates that other than the
RAP1 TF, there is another TF that also regulates RPGs in yeast but
does not play as important a role as RAP1. However, it seems that
the motif in S. pombe has taken over the importance in insects.

The two plant species A. thaliana and O. sativa, respectively, had
seven and six MSMs, and one grouping of MSMs passed our
conservation criterion (Appendix 3). The two motifs in this grouping
have consensus ATTAGGGTTTT (A. thaliana) and
GCTAGGGTTTC (O. sativa), which are more conserved com-
pared with metazoan ones, in the senses of both the resemblance
among the motif instances and the conserved relative locations of
the motif instances relative to the corresponding TSSs. One in-
stance of this identified motif in A. thaliana has been experimentally
verified in the upstream sequence of an A. thaliana gene (33).

Human, mouse, and rat had 5, 7, and 10 MSMs, respectively. CSC
reported 4 significant groupings (Table 4 and Appendix 3). The
motifs that constituted the significant groupings are the CSC-
reported motifs (referred to as ‘‘motifs’’ hereafter). The instances

of the most significant motif (ATCCGCCGCCATCC) in mouse
have been shown to have regulatory function on mouse genes
RPL32, RPL30, and RPS16 (34). Our finding shows that the
positions at the two ends of the motif are more important than the
middle, contradicting the assertions made by the authors (34). In
human, there are 78 RPGs containing at least one instance of this
motif. Many instances of this motif in three mammalian species are
located in the first intron. The genes with the motif instances in the
first intron usually have a noncoding first exon. Guofu Hu et al. at
Harvard University tested our predicted motifs with luciferase
reporter assays in HeLa cells. They inserted each predicted element
into a pGL3P vector that contained a SV40 promoter. They found
two of our predicted motifs not mentioned in literature before
(CCAACATGGTGAGT and AATCTCGCGAGAAC) having
enhancer activities (Guofu Hu, personal communication). Taken
together, of the four motifs that CSC reported in the three
mammalian species, one has been reported in literature, and two
have been verified in vitro.

Discussion
Many software programs can produce an exhaustive list of putative
motifs, but determining which motifs are bona fide is quite difficult
and is an urgent topic requiring extensive research. A routine
strategy is to choose the top one or few putative motifs with the
smallest P values or best scores. This idea does not work in �28%
cases by applying two recent methods to 53 gene data sets (see Table
5, legend). We have similar findings with other software on yeast
coregulated genes.

A fundamental problem consistently found in recent methods
is that the motifs are identified and evaluated with the same
information, i.e., the P values or scores output from those
methods are biased to be used for selecting motifs. In this work,
we use overrepresentation information to find motifs first and
then use the independent information of conservation to verify
the found putative motifs. Preliminary results show our method
is much better in determining the bona fide motifs. Two aspects
contribute to the better performance. First, using MEME (8) to
find motifs by lowering the threshold is more likely to include all
bona fide motifs. It is true that methods based on the expectation
maximization algorithm may be trapped by local optima, but this
local optima phenomena is greatly minimized by enumerating
every w-mer (for w � 4, 8, 16, 32) in the input sequences, then
running the expectation maximization algorithm starting at each
w-mer. Then, by picking the w-mers for each value of w that have
high likelihood ratios to continue, the computations converge to
local optima (28). Thus, genuine motifs are most likely included
if we can lower the threshold enough. Second, we model the
neutral evolution by using a base-substitution matrix for every
branch. These matrices reflect the differences of divergence
time. By using them, on one hand, some overrepresented and

Table 3. Predicted cis-regulatory modules by CSC

TF Motif 1 Other motifs
Cooperative

factor

ABF1 ATCACTATATACGA(ABF1) CTGAAAAATTTTCG UME6,
CGGCGGCAATT(UME6) Unknown

FKH1 GCCGTTGTTTACG(FKH1) CCCTGGCGCGTCTT Unknown
GCN4 ATGACTCAGC(GCN4) CGGGACCGGCTCTG Unknown
HAP4 GCGGGCCAATCAGA(HAP4) TTCCCGTCCTAAT Unknown
MBP1 ACGCGACGCGT(MBP1) GCGTGGGCCCTCCT Unknown

CGTCTTGCCTACAC
MCM1 CCTAATAAGGAAAT(MCM1) GGCGGCTAAAAATA Unknown
RAP1 TACACCCATACATC(RAP1) TTCGGTTTCCTTC(GCR1) GCR1
STE12 TGAAACAA(STE12) AAGAAAAAGCCGCC Unknown
SUM1 TATTTACTGACAC(SUM1) GCTGACGCTGTCGC Unknown
SUT1 ATATACGTATATAT GAAGGCACAGT(SUT1) Unknown
SW16 GGAAACGCGACGCG(SWI4) CGCGAAAGACC(MBP1) MBP1,SWI4

TTCCCTTTTCGGAA Unknown
UME6 CTTCGGCGGCTAAT(UME6) GGAAGAAAAGAAAG Unknown

The first column gives the TF on which the ChIP experiment was performed.
Motif 1 gives the most significant motif identified by CSC. Other motifs include
all the other motifs identified by CSC. They may form cis-regulatory module
with the first motif. Cooperative factor is factor that can bind onto the other
predicted motifs.

Table 4. The consensuses of the MSMs in three mammals

The MSMs are computed and ordered by the MEME program. The colored
consensuses represent the motifs with significant CSC motif conservation. P
values (1 � 10�19). The motifs with the same color form a significant grouping.
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conserved instances may not be statistically significant because
the species are very close; on the other hand, some not well
conserved motifs may be picked out because they are more
conserved than the average background sequences.

We constructed the base-substitution matrices on every branch
by using alignments from well aligned regions. Note that there is no
contradiction with our belief to try not to align orthologous
sequences first and then find motif instances from the aligned
sequences. The rationale is as follows. The background segments
are long, whereas the motif instances are short. In general, it is much
easier to identify longer regions that really should be aligned than
to judge the correctness of short segments like motif instances in an
alignment. Moreover, the base-substitution matrices are not re-
quired to be very accurate. Our experience shows that CSC is robust
to the perturbations of the substitution matrices. Of course, we also
can estimate the base-substitution matrices from other sources such
as synonymous sites in the corresponding protein sequences or
ancient repeats in the neighborhood regions.

When the first version of CSC was implemented in 2004, we
noticed that Pristker et al. (35) proposed a similar method, network-
level conservation (NLC). NLC pools together upstream sequences
from two different species and identifies candidate motifs in the
pool using motif overrepresentation-based methods. Then, NLC
screens candidate motifs by assuming that the distribution of the
number of the orthologous upstreams containing the motif in two
species follows a hypergeometric distribution. The difference be-
tween NLC and CSC is that CSC can be applied on multiple species,
whereas NLC can be used only on two species; CSC models the
evolution of motif instances by taking the divergence time into
account to determine motif significances, whereas NLC neglects
the divergence time and uses a hypergeometric distribution to
calculate motif significances; and CSC assumes orthologous se-
quences evolved from the common ancestral sequence, whereas
NLC assumes orthologous sequences are independent. In our
opinion, CSC not only can select motifs from very distant species
such as fly and mosquito, which cannot be done by NLC, but also
is more powerful than NLC in selecting motifs in close species.

A recent method (36) that also used the phylogenetic trees and
the base-substitution matrices to find motifs can find very degen-
erate motifs. Nonetheless, the highest ranking motif found by that
method is not guaranteed to be a bona fide motif, and is it not clear
exactly how many of the output motifs are indeed genuine. On the
contrary, CSC may not be able to find very degenerate motifs, but
it can rank the motifs well and can choose multiple correct motifs
from any software output (see Table 5).

The comparison of conserved motifs in RPGs among close
species using CSC suggests two things. First, there are some
dominant TFs regulating the RPGs in each species. Second, the TFs
may be different for different species, although the ribosome has
the same function across all species. These two suggestions extend
our understanding of the transcriptional regulation of RPGs.
Although the RPG sequences and functions are highly conserved
across species, the cis-elements and probably the TFs behind them
are different.

The comparison of conserved motifs in RPGs in 13 species by
using CSC (see Fig. 5, which is published as supporting information
on the PNAS web site) also sheds light on the evolutionary
properties of cis-regulatory motifs. The three mammalian species,
two worm species, and four yeast species are close enough to share
exactly the same dominant elements, whereas the two insects,
separated by �250 million years, share less similarity in the dom-
inant sites. Conversely, the two plants, far from each other (�250
million years), share exactly the same dominant site. These data
suggest the evolutionary differences of cis-regulatory motifs not
only depend on the divergent time, but also on the species genus.
This understanding may help refine current phylogenetic footprint-
ing methods.
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