Evolutionary Monte Carlo Methods
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The problem of clustering a group of observations according to some objective
function (e.g.,K-means clustering, variable selection) or a density (e.g., posterior
from a Dirichlet process mixture model prior) can be cast in the framework of Monte
Carlo sampling for cluster indicators. We propose a new method called the evolution-
ary Monte Carlo clustering (EMCC) algorithm, in which three new “crossover moves,”
based on swapping and reshuffling subcluster intersections, are proposed. We apply the
EMCC algorithm to several clustering problems including Bernoulli clustering, biolog-
ical sequence motif clustering, BIC based variable selection, and mixture of normals
clustering. We compare EMCC's performance both as a sampler and as a stochastic op-
timizer with Gibbs sampling, “split-merge” Metropolis—Hastings algorithkaneans
clustering, and the MCLUST algorithm.

Key Words: Dirichlet process mixture model; Gibbs sampling; Integrated auto-correlation
time; K-means; Metropolis—Hastings algorithm; Model-based clustering; Parallel tem-
pering; Temperature ladder; Variable selection.

1. INTRODUCTION

The problem of clustering a given set of multidimensional objects arises in many dif-
ferent applications such as marketing, speech recognition, text mining, gene expression
microarray studies, and biological sequence analysis, to name only a few. At the concep-
tual level, the main goal of clustering is to partition a set of objects into nonoverlapping
“homogeneous” subgroups according to a certain “similarity” or “distance” measure. Some
often-used measures include the Euclidean distance, Hamming distance, Pearson correla-
tion, and entropy distance. Some methods, such as hierarchical clustering,diceoty
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partition the set and decide on homogeneous groupings, but provide a tree structure order-
ing of the objects according to their similarities. Other methods, suétrameans and the
self-organizing map, attempt to give the user the best partitioning of the set when provided
with a pairwise similarity or distance measure and the total number of desired clusters;
Hastie, Tibshirani, and Friedman (2001) provided a good introduction to these methods.

In general, a clustering problem can be posed as a sampling problem from a probability
density over the space of all possible clusters. In some cases, such as the Bayesian Dirichlet
process mixture models, this density arises naturally (Jensen and Liu 2007). In some other
cases, such as th€-means algorithm, which minimizes the “goodness” of a proposed
clustering determined by a given distance or similarity measure, one can recast it into a
sampling problem using the Boltzmann distribution format (Liang and Wong 2000, 2001),
and the simulated annealing framework.

In difficult multimodal high-dimensional problems, the standard Markov chain Monte
Carlo (MCMC) techniques such as Gibbs sampling (Gibbs; Gelfand and Smith 1990) and
the Metropolis—Hastings (MH; Hastings 1970) algorithm do not work very well. A class
of MCMC sampling methods, known to be effective in such situations, capitalize on the
“annealing” idea and use multiple parallel runs of MCMC chains, each corresponding to
a “heated” version of the target distribution. We call this class of metipagsilation-
based methodsvhich include, for example, parallel tempering (PT; Geyer 1991), adaptive
directional sampling (ADS; Gilks, Roberts, and George 1994), conjugate gradient Monte
Carlo (CGMC,; Liu, Liang, and Wong 2000), and evolutionary Monte Carlo (EMC; Liang
and Wong 2000, 2001; Goswami and Liu 2007).

The new sampling recipe proposed in this article, the evolutionary Monte Carlo cluster-
ing (EMCC) algorithm, is structurally similar to EMC. We introduce three new crossover
moves, namely, SCSC:TWO-NEW, SCSC:ONE-NEW, and SCRC in the PT framework.
These new EMCC moves enhance the performance of the sampler with respect to depen-
dency among its draws and the ability to escape local modes. As a result, the sampler
performs much better than Gibbs sampling, “split-merge” MH algoritkimeans, and
the MCLUST algorithm (Fraley and Raftery 2002).

The article is organized as follows. In Section 2, we discuss the pros and cons of several
existing approaches to clustering and motivate the need for the EMCC algorithm. In Sec-
tion 3, we introduce the EMCC algorithm and its different moves. In Section 4 we briefly
review the Dirichlet process mixture model (DPMM) prior and discuss Gibbs sampling
from the resulting posterior; the DPMM prior has been used in the examples in this arti-
cle. In Section 5, we look at applications of the EMCC algorithm to motif clustering, Beta
mixture of Bernoulli clustering, Bayesian information criterion (BIC) based variable selec-
tion and mixture of multivariate normals clustering, and compare its performance both as a
sampler and as a stochastic optimizer with Gibbs sampling, “split-merge” MH algorithm,
K-means clustering, and the MCLUST algorithm. Finally, in Section 6 we provide some
discussion.
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2. ABRIEF OVERVIEW OF CLUSTERING METHODS

Approaches to clustering a set of observations can be roughly divided into two classes,
namely, methods that rely on sampling over the space of possible clusters and methods that
use optimization techniques instead of sampling.

Some of the methods that fall in the second categor|Karmaeans clustering, hierarchi-
cal clustering, and the MCLUST algorithm (Fraley and Raftery 2002neans performs a
greedy search for the best clustering solution by iteratively minimizing an objective func-
tion (Section 5.3) and thus often gets stuck in some local mode. This problem is solved
partially by restarting the algorithm with many random starting values and then choosing
the solution with the minimum objective function value. The statistical software R takes
this approach. Another route for avoiding the local minima trap is to ktarieans from a
hierarchical clustering solution to the problem. The statistical software S-PLUS takes this
approach. But there is no guarantee that the global minimum of the objective function is
achieved by the ultimate solution. MoreovEr;means takes the number of clusters as an
input, and additional effort is needed to determine the “right” cluster size. The MCLUST
algorithm, on the other hand, maximizes the likelihood functions of mixture Gaussian mod-
els with varying number of clusters individually, using the expectation—maximization (EM;
Dempster, Laird, and Rubin 1977) algorithm, and then performs a BIC-based model selec-
tion to determine the “right” cluster size.

The sampling-based approaches to clustering avoid some of the problémseains
and MCLUST. Many methods in this category use variations of the Gibbs and the MH
algorithm to sample from the posterior induced by a Bayesian clustering model. One can
either use a Bayes nonparametric hierarchical model (Liu 1996) to induce the clustering
effect, or prescribe a prior distribution on the space of partitions of the data. Jain and
Neal (2004) used the DPMM prior and Jensen and Liu (2007) used the uniform prior,
both of which give positive probability to all possible clustering solutions with all possible
numbers of clusters. Given the choice of prior, one can determine the “right” number of
clusters in the light of the posterior distribution. Thus, if a MCMC sampler is efficient
enough to sample from the posterior distribution, we can avoid the problem of specifying
the number of clusters beforehand.

Unfortunately, both vanilla Gibbs and MH algorithms are known to perform poorly
in high-dimensional multimodal sampling problems. In the MCMC literature, a powerful
approach for improving the mixing property of a MCMC sampler is the tempering frame-
work (e.g., PT and EMC). The EMC algorithm, which adds “crossover” moves to the PT
structure has been shown to perform better than PT in many cases (Liang and Wong 2000).
Our main innovation over vanilla EMC is the design of three new crossover moves that take
advantage of the special structure of the space of clustering solutions. We discuss the main
motivation behind these new moves in Section 3.2, and comment on their unique features
in Section 6. In the following sections, we will u¢m : n} as a short hand for the set of
positive integergm, m+ 1, ..., n}.
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3. THE EMCC ALGORITHM

Suppose we have objects to be clustered. Lej be the cluster label for objeat u
{1 :d}, and callz £ (21,20, ...,29) the cluster indicator vectarBy convention, we
takez, € {1 : d}, and thusz € Z 2 (1 : d}9. For examplez = (k,k, ..., k) for
anyk e {1 : d} means that all our objects belong to only one cluster. Asequals
(1,2,...,d)orany of its permutations means that each object forms its own cluster. Given
z, we call A = {Ak}kK:1 the partition representatiorf z, where theAy’s form a partition
of {1 : d}, and eachAx corresponds to the set of indices (or objects) which have the same
cluster label. Clearly, there is a many-to-one correspondence betamah its partition
representation, and we will use them interchangeably. In this article, our goal is to sample
from the target density expressed in the Boltzmann distribution form

9(2) o exp{—H(2)/tmin}, z€ Z. (3.1)

We call H (-) the energyfunction. For explicit form ofH (-) as determined by the cluster-

ing formulation see, for example, Section 5.1. Clearly, lower energy values correspond to
higher density regions of the sample space. We refer to samples with lower (higher) energy
values agiood(bad samples throughout the article. Usually the temperatireis set at

1. But if we are interested in locating the mode(sp@f), we considetmin € (0, 1).

In PT and EMC, one needs to design a suitable temperature ladder, which is a decreas-
ing sequence of positive numbets,> t, > --- > ty > 0, such thaty = tmin. We
denotet; by tmax for later reference. Fdre {1 : N}, we define the sequence of densities
fi(xi) o< exp{—H(Xj)/ti}, Xj € Z; we use botlz andx; to denote cluster indicator vec-
tors in the rest of the article. Now, we expand the sample spaceZréorZN and define
the new target density as

N
fO) o [T i), x2(x1.x2,....xn) € ZV. (3.2)
i=1

Borrowing terminology from Liang and Wong (2001), we o@&)t) £ (X1, t1; X2, t2; .. .;
XN, tn) the population andx; theith chromosomeThe EMCC algorithm samples from
the new target density (-) using moves described in the following subsections.

3.1 MUTATION

This move consists of updating a chosen chromosome using a “split-merge” MH step.
More precisely, we choose e {1 : N} according to a distributiop(l =i | x) (e.g.,
uniform or deterministic). We set the “split” and the “merge” probabilityggss (0, 1)
andgm = 1 — gs, respectively. Letd = { Ak}ff:l be the partition representation ®f.

We randomly pick one of the coordinates ok, say, theuth. Letu € Ay, for kg €
{1: K} If |Ag| = 1, we randomly chooske, # ko, and propose to mergewith Ay,
which gives rise to a new partitio® = [A\ {Axy, Ax, }] U {Ax, U {u}}. If on the other
hand|Ay,| > 1, we consider two different scenarios.Kf = 1; that is,. A4 = {Ay}, we
split u from the rest to form a new partitio, = {A;<O \ {u}, {u}}. If K > 1, then we
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split or mergeu with probabilitiesgs andgm, respectively. Splitting gives a new partition
C £ [A\ {Ax} U{Ak \ {u}, {u}}. For merging, we randomly chooke # ko and merge
uto Ay, giving a new partitiorC = [A\ {Ak,, Ak} U { Ak \ {U}, A, U {u}}. Let i

be a cluster indicator vector representing the partiioWe accept the new population

v,t) = (X1, t1; ... Yiotis.. XN, tn) with probability min(1, ry), where
filyi) pU=ily) T X)
= = x - X == 3.3
™ o0 e =110 < Ty (23)

HereT (xi, yi) is the probability of generating; from x; by the “split-merge” move, and
is given by the following. Le€ from the previous paragraph hakeclustersC £ {C, }|L=1'
andu € Cj, for somelg € {1: L}. Then,T(., -) can be expressed as

1 if |Co|l=14=1
Toa. yi) = Os if [C,|=114]>1 .
T 1/(AI-1)  if |Cp| > 1 |Ag| =1
am/(IAl = 1) if  [Ci| > 1, |A| > 1

This move is different from the “split-merge” Metropolis—Hastings move found in Jain and
Neal (2004) and Dahl (2003); see Section 6 for further discussion.

3.2 THE NEw CROSSOVERMOVES

In general, a crossover move takes two chromosomes in the current population, which
are called thgparents and recombines them to produce two new chromosomes, called the
children each inheriting some aspects of the parental configurations. We have developed
two types of crossover moves, which swap or reallocate, respectively, the intersections
of the clusters of the two chosen parent chromosomes to produce child chromosome(s),
and hence we coin the terminology subcluster swap crossover (SCSC) and subcluster
reallocation crossover (SCRC), respectively. The SCSC move is of two types, namely,
SCSC:TWO-NEW and SCSC:ONE-NEW.

The main motivation behind the design of these new crossover moves is as follows.
Since the crossover moves are disciplined by the Metropolis—Hastings acceptance—rejection
rule, two new children have to be proposed to replace the two parents to maintain reversibil-
ity. But the children produced by crossing over two good parents are usually not as good
as their parents, and replacing two good parents by their children, even good ones, impov-
erishes the population. It has been a long standing problem to design crossover moves, that
preserve both good parents and good children to a certain degree. Our moves are the first
to appear in the literature that satisfy this requirement.

We use the following notation in the subsections below.X;eandx; be two parent
chromosomes with partition representatiofis® { Ak}kK:l andB £ (B }|L=1' respectively.

Given two sets of indicegks, 11) and (ko, I2) with ki, ko € {1 : K} andlq,12 € {1: L},
and two set$31, Gz (e.9.,Gi = Ay N By, i = 1, 2), we define the disjoint collection of
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sets{S | ke {1:K}, | € {1:L}}where,

G, for k=ky, | =1»
S =162 for k=kq, | =17 (3.4)
Ax N B otherwise

Then we formCy £ U~ ; S, k e {1 : K} andD; £ UK S, | € {1:L}. Lety; and
yj be cluster indicators formed by the partition representatibrs {Ck},’f:l andD 2
fD|},L=1, respectively. We introduce the notati()yn,yj) = SCShufflé(xi, xj); kg, 11),
G1; (k2, 12), G2).

3.3 SUBCLUSTER SWAP CROSSOVER (SCSC:TWO-NEW)

In this move, we samplg j € {1 : N}, i # ], according to distributionp(l =
i|x)andp(d = j | x,1 =1i). LetA £ {AJK  andB £ {B}]_, be the partition
representations ofj andxj, respectively. Then, we randomly chodsek; € {1 : K} and
l1,12 € {1 : L} such thatky # ko andly # |, and A, N B, # ¥, u = 1, 2. Now, we
obtain(Yi , YJ) = SCShufflé(xi, Xj); (Ke, 1), A, N Big; (K, 12), A, N Byy).

The choice of thes’s and thelj’s forces the childrery;, y; to be distinct from each
other and their parents, xj (unless the parents have the same configuration to begin
with), and hence the name of the present move. We replace the parents by the children in
the population with probability mii, rscsc:ty Where,

fily) fi(y)) _ Tij(y,x)

r = X , 3.5
RO ) T y) (59)
with Tij(x,y) = p(I =1 [ x)pd =] I x 1 =) +pl =] x)pd =i
x, | = j). If we randomly select andJ without replacement, we refer to this move as

the TWO-NEW-r-r move, for future reference. On the other hand, if we tpke = i |
x) < exp{—H(xj)/s}andp(J = j | x, | =1i) occexp(—H(xj)/s}, | # i, with selection
temperatures positive and close temin, we call this move th@wO-NEW-b-b move, for
later use. A diagrammatic representation of this move is shown in Figure 1.

3.4 SUBCLUSTER SWAP CROSSOVER(SCSC:ONE-NEW)

In this crossover, we samplee {1 : N} according to distributiorp(I =i | x).
Then, we randomly choosg as one of the two neighbors bfwith equal probability (or
the only possible neighbor whenis either 1 orN). Now, we chooseM € {I, J} with
probability p(M = m | x, I, J), and call the chromosomey the survivor-parentand
the other one th@onsurvivor-parentSuppose we happen to choogeas our survivor-
parent andk; as the nonsurvivor-parent. Also, let = {Ak}ff:l andB £ {B }|L=1 be the
partition representations af andx;, respectively. We randomly chookgee {1 : K} and
l1,12 € {1:L}suchthat; # |, andAg,NBy, # @, u =1, 2. Now, we produce the children
as(yi, Yj) = SCShufflé(xi, xj); (ki, 11), A, N Biy; (Ke, 12), A, N By,). By construction
Yi = >~<.~ and hence the name SCSC:ONE-NEW. We g@lthe modified-childproduced
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Parent 1 Parent 2
++++ ====
++ ==
0000 #H#H
00 ##
The SCSC:TWO-NEW move
0000 S
00 ##

++++ =

Figure 1. Diagrammatic representation of SCSC:TWO-NEW clustering (Section 3.3). The horizontal and the

vertical lines form the partition representations of parentl and parent2, respectively. The objects in the two sub-
cluster intersections represented by symbols “+” and “0” in parentl are swapped. Similarly, objects represented
by symbols “=" and “#” in parent2 are also swapped. This swapping process produces child1 and child2 both of
which are different from each other and from parentl and parent2.

by modifying the nonsurvivor-parent; with guidance from the survivor-parerf. The
child Yi is accepted to replacg in the population with probability mifi, rscsc.on, where

fi(yj) T
fixp) — Tixy)
ForT;j (-, -) we note that, unlesp s at the boundary of the temperature ladder, both of the
neighbors are its candidate survivor-parents.H(gt, X, Yi) be an indicator function that
takes the value 1 i; is the modified child from survivor-parert and nonsurvivor-parent

(3.6)

I'scsc:on=

xj and is O otherwise. Led(i, j, x) Sipl=i]xxpl=jlxI=i)+pl=j]
X)x pA=i|x, 1 =j)xpM=i]|x, | =i,J =), be the probability of choosing
Xi as the survivor-parent. Thus, we have
g1, 2,x) forj=1
(N, N —1,x forj=N
Ty =19 ) J @D

{9(i = 1, j,%) x h(xj-1, %}, ¥j)
+9( +1,j, x h(xj+1, X}, yj)} forl<j <N

If we randomly choose bothandM, then we call this move theNE-NEW-r-r move
for later use. On the other hand, if we tagél =i | x) o< exp{—H (X;)/s} andp(M =
m | x,1,J) o exp{—H (xm)/s} with s positive and close temin, we call this move the
ONE-NEW-b-b for future reference. A diagrammatic representation of the present move is
shown in Figure 2.
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Parent 1 Parent 2
++++ ====
++ ==
0000 ##H##
00 ##

The SCSC:ONE-NEW move

Child 1 Child 2
0000 e
00 it
++++ ====
++ ==

Figure 2. Diagrammatic representation of SCSC:ONE-NEW clustering (Section 3.4). The horizontal and the

vertical lines form the partition representations of parentl and parent2, respectively. The objects in the two sub-
cluster intersections represented by symbols “+” and “0” in parentl are swapped. Similarly, objects represented
by symbols “=" and “#” in parent2 are also swapped. This swapping process produces childl and child2, where
childl is different from parentl but child2 is same as parent2.

3.5 SUBCLUSTER REALLOCATION CROSSOVER(SCRC)

The initial steps of this move are exactly the same as in the SCSC:ONE-NEW move de-
scribed in Section 3.4. Following the steps of Section 3.4, we chiokeM, ki, andl; #
2. Then, we takéd £ (A, N By,) U (A, N By,), and divide it into two nonempty subsets,
Hi andHy. Letmy = | A, N By,| andhy = [Hyl, u =1, 2, and thushy + hy = my + my.
We take a random sample of sikhe from theh; + h, members ofH to form Hj, and
henceH,. Then, we produce the children &g, y;) = SCShufflé(x;, Xj); (k1, 1), H1;
(k1, 12), H2). By constructiony; = Xx. As in Section 3.4, we cal; the modified child
produced by modifying the nbnsurvivor—paregt and with guidaﬁce from the survivor-
parentx;. The modified child has been produced by reallocating the elements of the sub-
clusters of the nonsurvivor parent, and hence the name of the present move. Thg child
is accepted to replaog in the population with probability mifi, rscro), where )

fi(yj) T S,
fi(xj) = Ty Sy

HereT; (-, -) has an expression similar to Equation (3.7) of Section 3.4 and we omit the
details to avoid repetitior§; (-, -) is the reallocation probability, and its expression depends
on the reallocation scheme used. If we require thatho} = {mz, my}, then we call the
move theSAME-SIZE move, for later reference. If, on the other hand, we pick a random
sizeh; € {1 : (JH| — 1)}, we call the move th@ANDOM-SIZEmove. FOrSAME-SIZE

(3.8)

I'scre =
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Parent 1 Parent 2
++++ ====
++ ==
0000 HHHH
00 ##
The SCRC move
Child 1 Child 2
0000 HtHH
++ ==
++++ ====
00 #

Figure 3. Diagrammatic representation of SCRC clustering (Section 3.5). The horizontal and the vertical lines
form the partition representations of parentl and parent2, respectively. The objects in the two subcluster intersec-
tions represented by symbols “+” and “0” in parentl are (randomly) reallocated. Similarly, objects represented
by symbols “=" and “#” in parent2 are also (randomly) reallocated. This swapping process produces child1 and
child2, where childl is different from parentl but child2 is same as parent2.

since{hy, hp} = {my, my}, we haveSj (y, x)/Sj(x, y) = 1. ForRANDOM-SIZE

h h 1mo!
suorsion= (i) / (/") -

where([) is the standard combination coefficient. Sitk¢a) = ({') as a function of, is
maximized for = [n/2],h; = h; gives(hlﬁrlhz) > (hlnflhz), and henc&; (y, x)/Sj (x, y) >
1. Thus,RANDOM-SIZEprefers equal reallocation of members. A diagrammatic represen-

tation of this move is shown in Figure 3.

3.6 RANDOM EXCHANGE (RE)

This move is the same as the exchange move of PT. Briefly, we randomly select
{1 : N}, and setj = i £+ 1 with equal probabilities (with a small modification at the
two ends of the temperature ladder so as to make the proposal symmetric). The new con-
figuration(y, t) = (X1, t1; ... 5 Xj, tis .. .5 Xi, tj5 ... s XN, tn) is accepted with probability
min(1, rre), Where

_ R fii)
fi (xi) fj (xj)

Sincerre > 1if | <i andH(xj) < H(Xj), a virtue of RE is to bring good samples down
the ladder.

= exp[(H(xj) — H(x) - (1/t] — 1/t)] . 3.9)

re
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3.7 IMPLEMENTATION OF THE EMCC A LGORITHM

Letx©@ = (x{?, ggo), e gff,))) be an initial configuration of the population. Fx, €
(30% 50%), and call it themutation rate Let {t; > t > --- > ty = min > 0} be a
well-chosen temperature ladder. Then, one iteration of the EMCC algorithm consists of
the following sequence of steps:

Algorithm 1 (EMCC).

1. Choose mutation or crossover with probabiliy and (1 — pm), respectively. For
mutation, all the chromosomes are systematically updafedimes each. For
crossover, one selects, and crosses pairs of chromosomes using any one of the ways
described in Sections 3.3, 3.4, and 318/P] times.

2. Apply RE to the populatioiN times; that is, propose to exchani§epairs of neigh-
boring chromosomes, where one pair is chosen in the way described in Section 3.6.

For the crossover step, we use oneT@fO-NEW-b-b, TWO-NEW-r-r, ONE-NEW-b-b,
ONE-NEW-r-r , RANDOM-SIZE andSAME-SIZE; we refer to these six moves as the EMCC
schemes or EMCC family of moves. At the end of the iterations the required sample from
the target distribution consists ({)i,(\? | t = 1,2,...}. For a general discussion on the
construction of the underlying temperature ladder for the EMC algorithm, see Liang and
Wong (2001, sect. 3); Goswami and Liu (2007) provide a specific recipe, which consists
of two preliminary runs of the EMC algorithm. First preliminary run samples are used to
determinermax. The samples from the second preliminary run are used to place the inter-
mediate temperaturés, t3, ..., ty—1 betweenrmax(= t1) and (tny =)tmin. This recipe is
easily modified to work in the EMCC setting.

4. GIBBS SAMPLING

Dirichlet process priors are often used in nonparametric Bayes analysis (Liu 1996;
Jain and Neal 2004). The problem of clustering can be formulated as a nonparametric
Bayes problem. Let the dal?. £ (y1, V2, ...,Y¥d) be a set of observations such that
Yu | 6y indep F@y) andg, | G g G. Also, we assume thdb(-) has a Dirichlet
process prior with the baseline meas@gand the total mass parametef> 0) (Fergu-
son 1974). The hyper-paramet&gs ando are set by the user. Lower valuegorrespond
to smaller number of clusters being preferred by the prior. For a cluster indicator zector
with partition representatioll £ {HS}SS:l, Dirichlet process induced prior (Blackwell and
MacQueen 1973), the likelihood, and the resulting posterior, respectively, take the follow-
ing forms:

s TIS.1(1Hs| — 1)1

41
M2 (u—1+a) “-1)

P2 =a

S
py12= [ 012780 =[] [ | [T FOul0m)} Gobn) db, | (42
s=1

ueHs

P(z|y) < p(2) x p(y | 2). (4.3)
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The following decomposition of the prior in Equation (4.1) into product of conditionals is
used in the Gibbs sampling from the posterior in Equation (4.3). Giyea {1 : d} we
have

n
P(zu =z z1:u-1) =ﬁ for zezyu-y
a .
P(zu = 2| z1:u-1)) T otherwise

whereu > 1,21,y-1) = {zv}l()“:_ll) andnyz;={z, |z, = z,v € {1: (u— 1)}}|. For Gibbs
sampling from the posterigp(z | y), we needp(zy | z—y, ¥), Wherez_ denotes both
the set{z, | v # u,v € {1 :d}} E\Qd the(d — 1)-tuple formed by it. Let the partition
representation of_, be H £ {Hs}S ;. Also, let p(y | Hs) be the likelihood for the
sub-clustettls. Note, fors ¢ z_y, Hs, = {u}, and thus we have,

pP(zu =% | Z_y, Y) o8 p(y | zy = %0, Z—u) p(zy = o, Z—u)
x p(y | Zu =%0,Z-u)P(zu = S0 | Z—u) o p(Yu | |:TSO)OL
Now we takes € z_ (clearly,s # sp) and compute the ratio:
s P@u=s8]Zuy  plylzu=s2upzi=5]|zu)
P(zZu=%12Z-u.Y) PYI|zu=5s,2-0)P(Zu=%12Z-u)
_p(y | HsU {u}) |Hs|
p(y | Hs)p(Yu | Hep)ar

q(s, s)

In some of the examples to follow the ratios above turn out be very easy to compute. We
finally set

p(ZU =S | Z—Ua Y) = q(39 a)) : p(ZU = &) | g—l,b y) X p(yle)

5. EXAMPLES

In the following sections, we call the sampler arising from application of the mutation
move (Section 3.1) and the Gibbs move (Section 4) onlyNGz) = g(2) (Section 3) the
MHscheme and th&ibbs scheme, respectively. In the following examples, we used the
same set of starting values across different schemes for a fair comparison. We took the split
probabilitygs = 1/2 for the mutation step (Section 3.1). The burn-in period for a chain
producingT draws was taken to b&[/4]. It was argued by Geyer (1992) that fewer than
5% burn-in works well; we used a slightly larger default burn-in to be on the safe side.

To compare the performance of the various samplers, we usen/énage integrated
autocorrelation time(AIAT) of several statistics computed from the MCMC draws. Let
7T, be theintegrated autocorrelation tim@AT) computed from theT; values of the (one-
dimensional) statisti&(-), computed from thd; post-burn-in draws from thigh run of
a sampler. Then, foR(> 1) different runs, the AIAT for a given statistic is defined as
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AIATR £ %{ ziR:l?Ti. We computedt following Geyer (1992). For a one-dimensional
series{ut}t , of draws from a reversible Markov chain with sample auto-covariances
{ ,;}J _o» the monotone estimator of the variance of the sample mean is defined as

m
GaonaT = — 0+ 2x D T3,
i—0
wherefJ* = min{To,T1,..., T}, with Tj = "3 + 341, | = 0,1,... andm s such

that Ty < O for the first time. We tookt £ 52,1/ o for a detailed discussion

on computing IAT, please refer to Geyer (1992) or Goswami and Liu (2007). We looked
at AIAT r’s of the following one-dimensional statistics gfwith partition representation
H 2 (Hs)2 )

e Number of distinct clustersi(z) = S(= |H]).

« Entropy of the clusters (Dahl 2003)z) £ — 5, %l log ('HS')

e The log densityl (2) £ _H (2), whereH (-) is the energy function as in equation
(3.1).

¢ Proportion of observations in the largest clusi@ax(2) 2 max<s<s|Hs|/d .

We also defined thaverage maximum log densiaghieved oveRR runs as AMLDy =
%{ ZiR=1 maxi< <7, |(zj), wherezjj is the jth of theT; samples from théth run, and used
it to detect which algorithm(s) were capable of escaping from local modes.

5.1 A SIMULATION STUDY WITH BERNOULLI —BETA CLUSTERING

This example is taken from Jain and Neal (2004), and it concerns clustering of vec-

tors of Binomial observations with a conjugate Beta prior. ¥et= (Y1, Y2, ..., Yd),
. ind . i
wherey, = (Yut, .-, Yum), With yun | 6un e Bernoulli(@yn). We takebyn "

BetaB1n, fon)- SO, we have,
m
P(Yu | 6u) = Hey”“(l Oan)t Ve (5.1)

o I'(f1h + Pon) gl fon 5
Pk = H L T om0 7 &2

Here f1n, fon > 0, and are set by the user. In the notation of SectioR @) andGg(-)
are given by Equations (5.1) and (5.2), respectively. The likelihood fevith partition
representatiof{ £ {Hs} >_,) from Equation (4.2) becomes

H H I'(Xsh + f10)T (Ns — Xsh + fon) T (B1h + Pon)

plyl2 = T T (B1n0)T (Bon)T (Ns + B1n + Pon) ’

(5.3)
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Table 1. True mixture distribution components for the Bernoulli-Beta clustering example (Section 5.1). The
column entries corresponding fio= 5 throughh = 15 are the same in each row of théble.

6nh, h=212..., 15

mixture no.  proporton h=1 h=2 h=3 h=4 h=5 ... h=15
1 0.2 0.95 0.95 0.95 0.95 0.95 --- 0.95
2 0.2 0.05 0.05 0.05 0.05 0.95 --- 0.95
3 0.2 0.95 0.05 0.05 0.95 0.95 --- 0.95
4 0.2 0.05 0.05 0.05 0.05 0.05 --- 0.05
5 0.2 0.95 0.95 0.95 0.95 0.05 --- 0.05

wherexsh = > iy, Yih, andns = |Hs|. Now, combiningp(y | z) with the priorp(z) from

Equation (4.1), we get the posterip(z | y), which becomes the density-) of equation
(3.1) for EMCC withH(z) = —log(p(z | ¥)) andmin = 1. ForGibbs , we have for
u € {1:d} (Section 4):

ng—1 " D keHs, kzzu 0¥k, Yuh)+Byyp.h if
p(zu =S| 2Z-y,y) x d=Ifa Llh=1 Ns—1+pA1n+Pon

a m  Byunh .
=15 L h=1 75,150 otherwise

SEEU 5y

We tookm = 15 and five distincts’s, as shown in Table 1, and simulated g0s
from each of the fivé=(-)’s resulting ind = 100 data points. We constructed a temperature
ladder of length 20 withmax = t1 = 20. We rarGibbs andMHand the six EMCC schemes
20 times each for fixed amount of CPU time. The acceptance rates wei@%ian 20%) for
the SCSC:TWO-NEW family of moves, whereas for the SCSC:ONE-NEW and the SCRC
family of moves, they were if0.1%, 10%). From Table 2, we observe that the performance
of Gibbs andMHare more or less comparable, but they did considerably worse than all the
EMCC schemes, even thougiibbs andMHproduced around 10 times more samples than
the EMCC schemes at the same computational expense. Between the EMCC schemes,
the twoTWO-NEVEchemes out-performed the other four, which can be explained by their
higher acceptance rates (10%—20% as compared to 0.1%—10%); this is a problem-specific
issue and we get a different comparative picture in Section 5.2.

5.2 MOTIF CLUSTERING

This example is taken from Jensen and Liu (2007). We have motif matrices
(Y1,Y2,..., Yq) of fixed width w; that is,Y’s are matrices of dimensiol x 4 each.
Here Y,k is the count for the nucleotide(e {A, G, T, C}) for the columno(e {1 :

o)) in the motif matrixu(e {1 : d}). Letdy £ > Yuk, U € {1 : d}; note,dy
should not depend on since all the column sums within a motif matr¥, are the
same. We assume a product multinomial model for the columné, i, that is, we as-
sumep(Yy | ®4) = [1o—_1 P(Yuw | Ouy), with Yy, | Oy, nd Multinomial(dy, 8yy).

We take a four-dimensional Dirichlet distribution for the parameters, namely, we take
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Table 2. Comparative performance of various algorithms for the Bernoulli Beta clustering example (Section
5.1). The statistica(-), e(-), 1 (-), and pmax(-) represent the number of clusters, entropy of clusters,
log density of the cluster indicator vector, and the proportion of observations in the largest cluster, re-
spectively. Also, AIALg and AMLD»q refer to the average integrated autocorrelation time and average
maximum log density over 20 runs, respectively; for detailed definitions of the quantities mentioned,
refer to Sectiorb.

AIAT ¢ for statistic
Method n2 e(2) 1z pmax(z) AMLD g
Gibbs 102.489  98.73 35.174  81.975 —606.481
MH 96.327 161.879 163.48 82.721 —589.482
TWO-NEW-b-b 3.388 6.33 7.889 3.971 —589.782
TWO-NEW-r-r 2.653 4.506 6.622 4.703 —589.73
ONE-NEW-b-b  13.159  29.827  29.91 7.045 —589.44

ONE-NEW-r-r 21.324 21.683 17.336 12.166 —589.44
RANDOM-SIZE  20.072 50.111 49.102 7.359 —589.098
SAME-SIZE 23.284 55.469 54.159 6.869 -589.226

Ao i Dirichlet(c, c, c, c), with ¢ > 0. Thus, we have:

dy!

P(Yu | Ouw) = T Youed O (5.5)
I'(4c) _
pOu,) = 0 [To5 (5.6)
K

In the notation of Section 4, (5.5) and (5.6) corresponH ¢ andGo(-), respectively. The
likelihood for z (with partition representatiof = {Hs}ss=l) from Equation (4.2) becomes:

SR dy! I (Xsok +©) I (4c)
p(Y'g):HH[ [l Fove X[E[ r© ]Xr(zkx50k+4c)}’

s=1lv=1 ueHs

whereXg,k = ZUGHS Yuok- Now, combiningp(y | z), with the prior p(z) from Equation
(4.1), we get the posterigu(z | ), which becomes the densigy-) of Equation (3.1) for
EMCC. For Gibbs sampling, we have fore {1 : d} (see Section 4):

ns—1 Hw Ik r((Yuuk+)~(svk)+C)r(zk Xspk+4€) if

— d—1+a v=1 Hk F(Xsnk+C)r(Zk(Yur)k+xsr>k)+4C) S€ g_u
Pzu =S|z, Y) x a_q1e_, Ll Ouwito " Tuo otherwis
d—1+a v=1 F(Zk Yu17k+4c) [F(C)]4 e
5.7)

where Xsok = e, Yuoks andH 2 {Ifis}sézl, the partition representation af.,. We
considered a dataset from Jensen and Liu (2007) avith90 aligned motif matrice¥,’s

each of widthw = 8. For the EMCC schemes, we used a temperature ladder of length 33
With tmax = t1 = 60. We ranGibbs andMHand the six EMCC schemes 50 times each for
fixed amount of CPU time. The acceptance rates we(&0fa 25%) for the SCRC family

of moves, whereas for the SCSC:ONE-NEW and the SCSC:TWO-NEW family of moves,
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Table 3. Comparative performance of various algorithms for the motif clustering example (Section 5.2). The
statisticsn(-), e(+), I (), and represent the number of clusters, entropy of clusters, and log density of
the cluster indicator vector, respectively. Also, Ayland AMLDs refer to the average integrated
autocorrelation time and average maximum log density over 50 runs, respectively; for detailed defini-
tions of the quantities mentioned, refer to Secon

AIAT g, for statistic
Method n(z) e(2) 1(2) AML Dgg
Gibbs 222.136 310.25 247.105 —6467.902
MH 21.259 21.359 34.037 —6440.006

TWO-NEW-b-b 11.425 12.136 3.212 —6431.652
TWO-NEW-r-r 10.902 13.459 3.95 —6431.527
ONE-NEW-b-b 10.295 9.619 1.233 —6431.527
ONE-NEW-r-r 24.644 26.716 18.298 —6431.527
RANDOM-SIZE 5.749 5.392 1.065 —6431.527
SAME-SIZE 8.878 8.123 1.018 —6431.527

they were in(0.1%, 10%). In this example, the SCRC moves had the best acceptance rates
among the EMCC schemes (compare with Section 5.1), and thus the leagpAbies in

Table 3. We also see from this table that all the EMCC schemes outperforme@ibbth
andMHin every aspect; particularly, performance®@ibbs was much worse compared

to all the other methods. In all the 50 runs, the EMCC family of moves achieved the log
posterior value of logp(z | y)) = —6431527, except th@WO-NEW-b-b move, which
achieved this height 48 timeMHfailed to achieve the same maximum almost half the
times in the same amount of CPU time, daithbs failed to do so in all the runs.

5.3 OBJECTIVE FUNCTION BASED CLUSTERING

Here we generate five distin@t’s from Normaj(u, 721 ) and simulate 4% ,’s from
each of these five Normal@s, 521 m), wherel p, is them x m identity matrix. Thus we
haved = 200 data points, witlY = (Y1, Y2,...,Yq). Wetakem =2, 4 = 0,062 =1
andz? = 30; one of the simulated datasets is shown in Figure 4, labeled “Original data.”
The method ofk-means is a popular clustering tool for continuous data. It mini-
mizes the “within-cluster sum of squares” for a given number of clusters, namely, for

a cluster indicatoz with partition representatiof{ = {Hs}i’:l, K-means minimizes

K(z) £ Zsszl Suer [Yu— Ys||2, whereYg = ﬁ > e, Yu. We formulate the mini-
mization ofK (2) (for the data in Figure 4) overas a stochastic optimization problem by
considering the following density

Pz 1Y) o exp[—K(2)/tmin] - 1is=5)(2), (5.8)

wherermin = 0.5, and 1s_s)(2) is the indicator function foz's with five clusters. We
applied the EMCC algorithm to sample frogtz) = p(z | Y) from Equation (5.8) using
a temperature ladder of length 30, withax = t1 = 60. We ran all the EMCC schemes
50 times for 16 iterations each. We also ran tkemeans algorithm 50 times with maxi-
mum number of iterations fGnd random starting values, using the functareans(x,
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Figure 4. The best-clustering result, the worst-clustering result, and the original data for the objective function
based clustering example (Section 5.3).

centers = 5, iter.max = 10e4) in R (R 2004). At the end of each of these 50 runs,
we collected the minimum valul (z) obtained. We also saved the minimized values of
K(2) from 50 runs of each of the six EMCC moves. Table 4 shows the six-point sum-
mary of the 50 minimized values for various methods. The number 339.7, which corre-
sponds to the minimum of 50 minimized values fz) by all the methods, has been
subtracted from all the entries of this table. We have the best-clustering result correspond-
ing to K(2) = 3397 in Figure 4. We can see from Table 4 that theneans results are
heavily right skewed; the plot of the worst-clustering fréameans appears in Figure 4.
Thus we have shown that even in this extremely simple low-dimensional example, favoring
theK-means “equal-variance” set-ugs-means clustering can fall into the local mode trap
pretty often (at least more than 50% of the time), whereas stochastic optimization through
the EMCC schemes give much better results.
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Table 4. Six-point summary of the 50 minimized values ofkhg) function obtained from 50 runs ¢&f-means
and the various EMCC schemes for the objective function based clustering example (Section 5.3). The
value 339.7 has been subtracted from the numbers in the table and then they have been réunded of

Summarystatistics

Method Min. 1stQu. Median Mean 3rd Qu. Max.

K-means 0 0 0 56.4 40.2 1065.3
TWO-NEW-b-b 0 0 0.2 0.1 0.3 0.5
TWO-NEW-r-r 0 0 0 0.2 0.3 5.8
ONE-NEW-b-b 0 0 0 0.1 0.2 0.6
ONE-NEW-r-r 0 0 0.2 0.2 0.3 0.8
RANDOM-SIZE 0 0 0 0.1 0.2 0.4
SAME-SIZE 0 0 0 0.1 0.2 0.4

5.4 CLUSTERING BASED ON THE MIXTURE NORMAL DISTRIBUTION

Here we generated datd = (Y1,Y2,...,Yq) from a four-component equally
weighted mixture ofn-variate normal distributions. The means of the four mixture com-
ponents@s's) appear in Table 5. We tooks = AR1[0.95]fors =1, 2 andXs = 0.2l
for s = 3, 4, where ARm[p] is am x m matrix, with (a, b)th entryp/2=2, We setm = 5
andd = 200, and generated 50 datasets from this model; a sample dataset appears in Fig-
ure 5. We compared the performance of the model-based clustering@alST(Fraley
and Raftery 2002)K-means , MH and some of the EMCC moves in this setting. Note that
the data generation procedure here adhered to the “ellipsoidal, varying volume, shape, and
orientation” set-up oMCLUST

For EMCC we took the standard Bayesian mixture Gaussian approach. More precisely,
for givenz with partition representatio® = {HS}SS:l, we letZs ~ Inv-Wishart, (Aal)
andfs | £s ~ Normal,(u, £s/xo). We also tookY, | 8¢ g Normal, (s, Xs), u € Hg,
which gave the likelihood foz as follows

s 1 m/2 m et o] (det(Ag))¥o/?
p(Y 12 =]] W<KO) [T (=5) /m (57} ey

s=1 Kls =1

Table 5. The mixture component weights and means for the mixture normal clustering example (Bé¥tion

Component Coordinates
Weights means 1 2 3 45
0.25 01 -3 075 0 0 O
0.25 ) -3 -075 0 0 O
0.25 03 3 -10 0 0 O
0.25 04 3 1.0 0 0 O
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Figure 5. One of the 50 (five-dimensional) datasets used in the mixture normal clustering example (Section 5.4),
projected to the first two coordinates.

wherexis = xg + |Hs|, vis = vo + [Hs|, andAys = Ag + ZueHS(YU - ?s)(Yu -
Yol + %(?S —w)(Ys—p)T, withYs = ﬁ > uet, Yu (Gelman, Carlin, Stern, and
Rubin 2004). We setg = 6, ko = 0.05, andAg = | . For EMCC, we considered a
temperature ladder of length 30, withax = t1 = 60, and usegj(2) = p(z|Y) o p(Y |
2) - 1{s—4(2). ForK-means andMCLUSTwe used the functiorigneans(x, centers =
4, itermax = 10e4, nstart = 10e4) andMclust(x, minG = 4, maxG = 4)
in R (R 2004), respectively.

To study the clustering error rates for competing methods, we defined the disagreement
between two cluster indicatord(z, z) £ 29,0:15(21u, Zp,), Whered(a,b) = 1, ifa =
b, and 0 otherwise. To compare the perfor?ﬁavncﬁmeans, MCLUST and EMCC, we
computedd (Zopt, Ziruth) for each of the generated 50 datasets, whgig was the cluster
indicator used to generate the dataset, apgdwas the optimal cluster fak-means and
MCLUST and the cluster corresponding to the posterior modeviéand EMCC. In each
row of Table 6, we recorded the numberdifzopt, zruth) values, as produced by different
methods, falling in the range [600) and [60Q 6,000). It is easily noted from Table 6 that,
not surprisinglyK-means performed poorly since the data generation was not in its home
ground. The EMCC schemes and algdperformed much better thanCLUST although
the data-generation process here favonet USTthis could be partly explained by the fact
that unlikeMCLUST in MHand EMCC, we integrated all the parameters in the model out
and performed (stochastic) optimization on the “collapsed” space of the cluster indicators.

5.5 Variable Selection

We cast a variable selection problem into a clustering problem. Wedtakes0 vari-
ables andh = 100 observations. We consider the Bayesian information criterion (BIC) as
our variable selection criterion. Since exhaustive search in the spaé8 ef 2models is
impossible, we compare the performance of algorithms below by their ability to locate the
empirical maximum BIC, not necessarily the global maximum.
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Table 6. Summary comparison of th¢, -) values for various methods for the mixture normal clustering ex-
ample (Section 5.4). The two numbers in each row represent the numiber 9fvalues falling in the
intervals [Q 600) and [60Q 6,000), respectively

Method #d(-,-) €[0,600} #{d(,-) € [600, 6000}
K-means 0 50
MCLUST 8 42
MH 31 19
TWO-NEW-b-b 42 8
ONE-NEW-b-b 41 9
RANDOM-SIZE 41 9

Letforu e {1 : 20}, Y3u-1, Y3u—2 i Normak (0, I ), the n-dimensional standard
normal distribution. Also, let fou e {1 : 20}, Yau d Normah(Y3au—1, 0.0121,,). This
generation procedure introduces high collinearity among the explanatory variables. We
generate the dependent variable according to the mddelY g + €, whereY £ [Y; :

Y2 : ... : Yq]is the matrix of explanatory variablegsz,—1 = f3u—2 = 1, f3y = 0 for
ue{l:20, ande ~ Normah(0, I ).

We use the cluster indicatarof lengthd to represent a regression model, where=
1 and 0 indicate the inclusion and exclusion of explanatory varidllén the model,
respectively. We do not include an extra intercept term in the model, and hence we do not
allowz = (0,0,...,0). Let{A; = {u | zy = 1}, Ag £ {u | z, = 0}} form the partition
representation af. We define:

Pz 1Y, Z) x exp[—BIC(2)/tmin] - 1{a10},

whereryin = 0.5, and BIGz) = n-log (||Z — 2A1||2/n) + |Aq] - log(n), with 2A1 being

the (ordinary least square) prediction vectordbased oY, u € Ap}; that is, all the
explanatory variables in the model. Clustering based on the two clusiensd Ag requires
tweaking the SCRC scheme in the following way; the two SCSC crossover schemes are
not effective here. We select the two parextandx; exactly the same way as was done
in Section 3.3, and takgks, ko} = {l1,12} = {0, 1}, so thatAy, N B, # 8,i = 1,2. If
such a choice ok;, l;,i = 1, 2 is not possible, then this crossover cannot be performed.
We takeH £ (A, N By,) U (A, N By,) and proceed with the reallocation procedure of
Section 3.5, to produckl; and Hyp, with {h1, ho} = {my, my}. We obtain the children as
(yi, Yj) = SCShufflé(xi, Xj); (ki, 11), H1; (k2,12), H2), and replace the parents by their
children with probability:

_ fily) filyp) y Tij(y,x)

fxi) fj(xj) = Tij(x,y)

HereT; (-, -) has an expression similar to that of Section 3.3 and we omit the details to
avoid repetition. We compared the performance of EMCC using this modified version of

SCRC scheme anghax = 16 with theMHscheme. We ran the two algorithms on 25 ran-
domly generated datasets from the data-generation model introduced earlier in this section,

(5.9)
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Table 7. The first two rows show the six-point summary of the minimum BICs achieved by the MH scheme and
the modified SCRC scheme on 25 randomly generated data sets, respectively, for the variable selection
example (Section 5.5). The row labeled diff is the summary of the differences of the minimum BICs
achieved by the MH scheme from those achieved by the modified SCR&ne.

Summarystatistics
Scheme Min. 1stQu. Median Mean  3rd Qu.Max.
MH 154.40 119.30 113.00 113.80 104.30 88.11
mod-SCRC  154.30 119.00 112.70 113.70 10430 87.94
diff -029 -025 -0.18 -0.17 -0.09 0.00

for the same amount of computing time. EMCC found lower minimum BICs M&im

all the 25 runsMHwas able to match EMCC in only one of those runs. A comparison of
the minimum BICs achieved by the two methods is given in Table 7. It is worth mention-
ing that theMHscheme, as described in this article, is a powerful method in itself; it was
able to reach the minimum BIC level that could be achieved by PT or EMCC in all the
variable selection examples (other than the present) we tried (e.g., Liang and Wong 2000,
example 4.2).

6. DISCUSSION

This article demonstrates that the EMCC algorithm is an effective tool both for sam-
pling clusters from the space of clustering solutions in high-dimensional settings and for
finding the optimal clustering solution based on a given objective function. Moreover, the
EMCC algorithm can be applied to any problem that can be cast into a cluster-sampling
framework (e.g., the variable selection problem of Section 5.5).

The intuition behind the EMCC moves has an appealing justification. We choose two
parent chromosomes either randomly or with probability proportional to (a function of)
their fithess value. We take their “vote”; that is, we consider the subcluster intersections
of the two parents, and randomly swap (in SCSC) or reshuffle (in SCRC) two of these
intersections and thus form the child(ren). This way of producing child(ren) only perturbs
the internal structure of the parents with respect to only two clusters and hence this process
respects what the parents jointly have to say about the structure of the other (unperturbed)
clusters, which ensures that good parents produce good children.

Note that if a SCSC or SCRC move is accepted, then we are able to change more than
one coordinate of the parent chromosome(s) at once, which is not possible in Gibbs or
“split-merge” MH (Section 3.1) sampling where only one coordinateisfproposed to be
updated at a time. The flavor of “split-merge” MH move that can be found in Jain and Neal
(2004) is different from ours. In the Jain—Neal “split-merge” method, one first chooses two
coordinates of. If these happen to lie in the same mother cluster, then the mother cluster is
split into two child clusters containing those two coordinates. In case that the two chosen
coordinates lie in different clusters, these clusters are merged. This procedure proposes
drastic changes to the system by changing potentially a lot of coordinateataf time,
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and thus this is the other extreme of a Gibbs move. The SCSC and the SCRC moves take
a somewhat middle ground between Gibbs on one end and the Jain—Neal “split-merge”
sampler on the other.

The intuition behind introducing the SCRC moves is that it is not as drastic as the
SCSC family of moves. Instead of swapping two subcluster intersections, as required in
the SCSC:ONE-NEW move, in SCRC, we reshuffle their members randomly which un-
derstandably does not perturb the structure of the nonsurviving parent as much. In fact, the
SCSC:ONE-NEW move can be considered as a special case of the SCRC move where the
reshuffling is nothing but a deterministic swapping. SCSC:TWO-NEW is the most drastic
in that it perturbs both the parents.

Note the EMCC schemes do not alter the number of clusters present in the parents in the
process of producing child(ren). One might argue that discovery of new modes using the
EMCC schemes may not be possible in difficult scenarios where the whaleofl : d}¢
needs to be searched quite rapidly. This drawback of the EMCC schemes is also a plus for
problems where the number of clusters is always fixed (e.g., Sections 5.3, 5.5); in contrast,
MH “split-merge,” Gibbs, and the Jain—Neal “split-merge” method can produce invalid
proposals.

The equi-energy sampler (EE; Kou, Zhou, and Wong 2006) is a powerful technique
that does not fall in the category of population-based methods. The strength of the EE
sampler lies in thequi-energyjump step where samples from differemergy ringsare
proposed to be exchanged. Unfortunately, as of now, the set up of the EE sampler does
not allow for any kind of crossover moves. The new crossover moves introduced here are
complementary to and not substitutes for the EE sampler. We hope the ideas introduced
in this article will enable discovery of similar crossover moves in the context of the EE
sampler in the future.

We use AIAT as a measure of how well a sampler moves around the space; use of IAT
for the same purpose can be found in Jain and Neal (2004) and Dahl (2003). However,
unless we know from a different source that a sampler is visiting all the modes (which is
almost always impossible) in a certain problem, the use of IATs might be misleading, since
the sampler may move freely within a local mode producing low IATs whereas a “better”
sampler which infrequently jumps around modes might produce an abnormally high IAT.
On similar grounds, the use of AMLD as a measure of how well the sampler escapes from
local modes is questionable. AMLD is a sound measure for stochastic optimization, but for
sampling problems it portrays only a part of a grand picture.

7. IMPLEMENTATION

All the simulations in this article were done using C code interweaved with underlying
random number generation C code of R (R 2004). The analysis of the simulation output
was done using R. The first author is in the process of publishing the code as an R package
calledEMCCPIlease check the following Web sites for release announcement and updates:

o http://www.people.fas.harvard.edyunliu/

o http://www.r-project.org/
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