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Wetmore DZ, Mukamel EA, Schnitzer MJ. Lock-and-key mecha-
nisms of cerebellar memory recall based on rebound currents. J
Neurophysiol 100: 2328–2347, 2008. First published August 1, 2007;
doi:10.1152/jn.00344.2007. A basic question for theories of learning
and memory is whether neuronal plasticity suffices to guide proper
memory recall. Alternatively, information processing that is addi-
tional to readout of stored memories might occur during recall. We
formulate a “lock-and-key” hypothesis regarding cerebellum-depen-
dent motor memory in which successful learning shapes neural
activity to match a temporal filter that prevents expression of stored
but inappropriate motor responses. Thus, neuronal plasticity by itself
is necessary but not sufficient to modify motor behavior. We explored
this idea through computational studies of two cerebellar behaviors
and examined whether deep cerebellar and vestibular nuclei neurons
can filter signals from Purkinje cells that would otherwise drive
inappropriate motor responses. In eyeblink conditioning, reflex acqui-
sition requires the conditioned stimulus (CS) to precede the uncondi-
tioned stimulus (US) by !100 ms. In our biophysical models of
cerebellar nuclei neurons this requirement arises through the phenom-
enon of postinhibitory rebound depolarization and matches longstand-
ing behavioral data on conditioned reflex timing and reliability.
Although CS–US intervals "100 ms may induce Purkinje cell plas-
ticity, cerebellar nuclei neurons drive conditioned responses only if
the CS–US training interval was !100 ms. This bound reflects the
minimum time for deinactivation of rebound currents such as T-type
Ca2#. In vestibulo-ocular reflex adaptation, hyperpolarization-acti-
vated currents in vestibular nuclei neurons may underlie analogous
dependence of adaptation magnitude on the timing of visual and
vestibular stimuli. Thus, the proposed lock-and-key mechanisms link
channel kinetics to recall performance and yield specific predictions of
how perturbations to rebound depolarization affect motor expression.

I N T R O D U C T I O N

Research to date on the biological mechanisms of long-term
memory has focused primarily on candidate mechanisms for
memory formation, such as neuronal plasticity. But to what
degree are the phenomenological properties of memory deter-
mined by biological mechanisms of memory recall? Studies on
recall mechanisms have concerned reconsolidation processes
that accompany retrieval (Debiec et al. 2006; Doyere et al.
2007), network attractor theories of associative memory (Hop-
field 1982; Wills et al. 2005), and expression of learned
reflexes (du Lac et al. 1995; Mauk and Donegan 1997; Medina
and Mauk 2000; Medina et al. 2000). However, the electro-
physiological dynamics that occur during recall might have an
important role in shaping qualities such as memory reliability

and generalization. Thus, a basic question is whether these
dynamics function primarily as a readout mechanism for re-
trieving stored memories or also perform additional processing
of the stored information. Pattern completion is one aspect of
associative memory recall for which candidate biological
mechanisms have been identified (Nakazawa et al. 2002).
Nonetheless, the existing literature on recall has generally
assumed that the electrophysiological dynamics of recall
should facilitate effective readout, i.e., retrieving the appropri-
ate memory in response to a stimulus. The possibility that some
constraints on memory expression might also be enacted at
recall has not been widely considered.

Recent work on cerebellar memory systems indicates there
are multiple loci of neuronal plasticity and at least two different
brain areas of memory storage with distinct induction kinetics
(Boyden et al. 2004; De Zeeuw and Yeo 2005; Hansel et al.
2001; Lang et al. 1999; Ohyama and Mauk 2001; Ohyama
et al. 2003a). According to two-stage models of cerebellar
learning, the numerous synapses in cerebellar cortex support
flexible and rapid acquisition of new associations, whereas
subsequent plasticity in the deep cerebellar or vestibular nuclei
allows long-lasting memory storage (Boyden et al. 2004; du
Lac et al. 1995; Mauk 1997; Mauk and Donegan 1997; Miles
and Lisberger 1981). Purkinje cells in the cerebellar cortex
receive inputs from approximately 105 parallel fibers and
project outputs to the deep cerebellar and vestibular nuclei in a
highly convergent manner, with each nuclear cell influenced
indirectly by 107–108 parallel fibers (Mauk 1997; Napper and
Harvey 1988). Given the vast number of potential network
states in the cerebellar cortex, a rich set of training experiences
might lead to network states that encode undesirable or inap-
propriate movements. The plausibility of this occurring is
indicated by behavioral and computational studies that suggest
the distribution of synaptic plasticity levels might evolve in a
complex manner throughout learning experience, rather than
purely reversing course during extinction or relearning (Kimpo
et al. 2005; Mauk and Ohyama 2004). An example of an
undesirable motor response is one executed in response to
sensory cues that are reliably associated with rewarding or
aversive stimuli but that arrive too late to be predictive of an
appropriate motor action. Are there memory recall mechanisms
that selectively prevent the expression of inappropriate motor
responses, despite significant induction of synaptic plasticity?
Or does plasticity induction always suffice to modify cerebel-
lar-mediated motor behavior? At least for some forms of
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associative motor learning mediated by noncerebellar memory
systems, it has been shown that associative memory storage by
itself can be insufficient to modify behavior (Barnet et al.
1997).

To explore these issues, we formulated a “lock-and-key”
hypothesis stating that the induction of plasticity is necessary
but not sufficient to modify motor behavior. There is the
additional requirement that plasticity must shape the dynamics
of neural activity (the “key”) to match a temporal filter (the
“lock”) that selectively precludes inappropriate motor re-
sponses to sensory stimuli. We examined this hypothesis in the
context of two cerebellum-dependent behaviors, classical eye-
blink conditioning (Christian and Thompson 2003) and adap-
tation of the vestibulo-ocular reflex (VOR) (Ito 1982; Miles
and Lisberger 1981), for which there exist longstanding, rich
behavioral data sets (Gormezano et al. 1962; Raymond and
Lisberger 1996). If our hypothesis is true, what biological
mechanisms might serve as the lock for these two behaviors?

This paper focuses on rebound currents in the deep cerebel-
lar nuclei (DCN) and medial vestibular nuclei (MVN) neurons
as candidate lock mechanisms, because it is well established
that these currents perform significant temporal transforma-
tions of hyperpolarizing inputs, such as those from cerebellar
Purkinje cells believed to trigger learned movements. Rebound
channels, such as low voltage-activated (T-type) and hyperpo-
larization-activated cation (h) channels, are expressed at suffi-
cient density to generate robust postinhibitory rebound depo-
larizations in DCN and MVN neurons, the output neurons of
cerebellar circuits (Aizenman and Linden 1999; Aizenman
et al. 1998; Jahnsen 1986a; Llinás and Muhlethaler 1988;
Sekirnjak and du Lac 2002). For both behaviors studied,
rebound channel kinetics emerge as crucial determinants of the
minimum allowable duration between a sensory cue and a
trained motor response. If the delay between the cue and a
well-timed response is less than the time needed to activate
rebound channels fully from the neuronal resting potential, the
magnitude of the learned response declines or vanishes,
thereby enacting the lock mechanism. This proposal represents
a direct link from channel kinetics to learning performance and
yields specific predictions of how learning performance is
affected by perturbations to the rebound process.

In eyeblink conditioning, key aspects of the behavior that
remain poorly understood concern stimulus timing. Training of
a reliable reflex requires the conditioned stimulus (CS), such as
a tone, to start at least $100 ms prior to the unconditioned
stimulus (US), such as an air puff to the eye (Fig. 1A)
(Gormezano et al. 1962; Ohyama et al. 2003b). Even after
averaging data over multiple subjects, there remains a steep
dependence of reflex acquisition on the CS–US training inter-
val (Fig. 1B), with the expression of conditioned blinks falling
sharply for intervals "100 ms (Ohyama et al. 2003b; Salafia
et al. 1980; Schneiderman and Gormezano 1964; Smith 1968;
Smith et al. 1969). What is the mechanistic basis for this
effect? Analogous, unexplained dependencies on stimulus tim-
ing have been reported for VOR adaptation, in which the
magnitude of learned eye movements depends on the timing
between pulsed visual and vestibular training stimuli (Ray-
mond and Lisberger 1996).

According to current thinking in the field an important
mechanism of memory formation is the long-term depression
(LTD) of cerebellar parallel fiber (PF) to Purkinje cell synapses

induced by synchronous activation of PF and climbing fiber
(CF) inputs to Purkinje cells (Albus 1971; Ito 1989; Ito and
Kano 1982; Marr 1969). In eyeblink conditioning, it is thought
that PF and CF inputs respectively convey signals regarding
the CS and the US (Hesslow et al. 1999; Mauk et al. 1986;
McCormick et al. 1985; Steinmetz et al. 1989; Steinmetz et al.
1986), and that LTD resulting from repeated CS–US pairings
leads to a conditioned reflex to the CS alone. This is proposed
to occur since LTD should diminish the efficacy of CS-driven
input to Purkinje cells, allowing disinhibition of deep cerebel-
lar nuclei (DCN) neurons that receive GABAergic Purkinje
cell inputs and drive conditioned reflexes (Albus 1971). In
VOR adaptation, CFs and PFs respectively convey visual and
vestibular information, and LTD is proposed to allow adaptive
increases in VOR amplitude by reducing the strength of PF
inputs signaling ipsiversive head rotation (Ito 1989). Although
other cerebellar plasticity mechanisms exist (Boyden et al.
2004; De Zeeuw and Yeo 2005; Hansel et al. 2001), multiple
strains of mice with disrupted LTD show deficits in eyeblink
conditioning and VOR adaptation (Feil et al. 2003; Kishimoto
et al. 2001; Koekkoek et al. 2003, 2005; Miyata et al. 2001;
Shibuki et al. 1996). Nonetheless, accounts of cerebellar-
mediated learning based solely on LTD do not easily explain
the full range of behavioral data (Boyden and Raymond 2003;
Boyden et al. 2006; Kimpo et al. 2005; Medina and Mauk
1999; Ohyama and Mauk 2001; Ohyama et al. 2003a).

One issue concerns whether Purkinje cells purely inhibit
motor responses. Purkinje cells might be partly excitatory in
their net effect, due to postinhibitory depolarization in their
target DCN and MVN neurons (Aizenman et al. 1998; Jahnsen
1986a,b; Llinás and Muhlethaler 1988; Sekirnjak and du Lac
2002). Another issue concerns the possible role in learning of
long-term potentiation (LTP) at the PF–Purkinje cell synapse.
LTP and LTD induction at this synapse are spike-timing
dependent (Abbott and Nelson 2000), with LTP induced by
unpaired PF or asynchronous PF–CF input (Coesmans et al.
2004; Wang et al. 2000). Maximal LTD induction seems to
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FIG. 1. Neural pathways and stimulus timing requirements for eyeblink
conditioning. A: neural pathways involved in delay eyeblink conditioning.
Cerebellar climbing fibers (CFs) originate in the inferior olive (IO) and convey
activity driven by the unconditioned stimulus (US). Mossy fibers (MFs)
originate in the pons and convey activity driven by the conditioned stimulus
(CS). The Golgi (Go) and granule (Gr) cell network processes the CS-driven
signals. Purkinje (Pkj) cells receive synaptic inputs from parallel fiber (PF)
axons of Gr cells. Pkj cells send GABAergic projections to neurons in the deep
cerebellar nuclei (DCN) that drive conditioned motor responses via the red
nucleus (RN). B: the reliability of conditioned responses to a CS in trained
rabbits, as a function of the CS–US interstimulus interval (ISI) used in training.
Data were collected from classic studies of Smith et al. (1969; solid black line
and black squares), Salafia et al. (1980; dotted blue line and blue diamonds),
Smith (1968; solid red line and red triangles), and Schneiderman and Gor-
mezano (1964; dotted green line and green circles).
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occur for PF activity that slightly precedes CF activity by
50 –100 ms, which likely reflects the kinetics of postsynaptic
Ca2# dynamics (Doi et al. 2005). LTD induction can occur
with either PF or CF activity occurring first, but delays of
!200 ms are ineffective with either ordering (Wang et al.
2000). It has been suggested that disinhibition of cerebellar
nuclei neurons and spike-timing dependent plasticity suffice
to explain the requirement in eyeblink conditioning for the
CS–US interval to be !100 ms (Wang et al. 2000). How-
ever, this has never been demonstrated explicitly using
either computational modeling or experimental manipula-
tion of behavior. A main difficulty is that the empirically
determined rules for LTD induction suggest LTD should
occur at short CS–US intervals that do not lead to acquisi-
tion of conditioned reflexes in behavioral experiments
(Wang et al. 2000). Furthermore, the dependence of learning
performance on the CS–US interval appears much steeper
than that of spike-timing dependent plasticity at the PF–
Purkinje cell synapse (Salafia et al. 1980; Schneiderman and
Gormezano 1964; Smith 1968; Smith et al. 1969; Wang et
al. 2000). Thus, the degree to which conditioned reflex
acquisition is shaped by physiological mechanisms other
than spike-timing dependent plasticity remains an important
issue for experimental investigation.

Here, we consider the novel possibility that significant
shaping of learned motor expression might occur through
the electrophysiological mechanisms of memory recall. In
our work LTP and LTD emerge as complementary pro-
cesses, both of which are important for memory formation
as well as for memory clearance. This contrasts with the
common view of LTD and LTP as opposing processes, one
allowing memory storage and the other clearance (Boyden
and Raymond 2003; Coesmans et al. 2004; Lev-Ram et al.
2003). Because plasticity induction is spike-timing depen-
dent, we begin by considering the timing of sensory driven
activity in the PF axons of cerebellar granule cells. Using a
series of electrical compartmental models of increasing
complexity, we simulate responses of DCN and MVN cells
to learned sensory cues. This allows us to validate quanti-
tatively the data from our DCN cell simulations against the
classic behavioral data on eyeblink conditioning (Salafia
et al. 1980; Schneiderman and Gormezano 1964; Smith
1968; Smith et al. 1969), by comparing the percentage of
trials with successful responses as found experimentally to
data generated by our models.

Comparison of the VOR adaptation magnitude in our mod-
eling to that in behavioral studies suggests postinhibitory
rebounds might play a role in multiple cerebellum-dependent
behaviors. Based on the results of our biophysical models we
provide an algorithmic description of the “lock-and-key”
mechanism as a temporal filter. Learning experience that
successfully modifies motor behavior shapes neural activity
to match this temporal filter. Unsuccessful training can yield
comparable magnitudes of synaptic plasticity, but the result-
ing patterns of Purkinje cell activity do not trigger learned
motor responses. We have organized the following sections
so that readers who wish to omit the computational details
may skip the following METHODS section without loss of
logical continuity.

M E T H O D S

General simulation procedures

We created compartmental models of DCN and MVN cells in the
NEURON (Hines and Carnevale 1997) and MATLAB software en-
vironments and set model parameters using empirically determined
values whenever possible. Fortunately, much is known about DCN
cells from in vitro studies. We found that values determined from
measurements in DCN and MVN cells, rather than other cell types,
facilitated consistency with behavioral data. The current balance
equation describing the balance of capacitive and ionic currents,
Cm(dV/dt) % &¥ Iionic, was integrated over time using the MATLAB
function ode45 for deterministic one-compartment simulations, an
Euler method for one-compartment simulations with stochastic syn-
aptic inputs, or NEURON's implicit Euler method for two-compart-
ment simulations. In all simulations, timesteps were less than or equal
to 0.1 ms and the membrane capacitance Cm was 1 "F/cm2.

Voltage-dependent currents obeyed equations of the form I %
g!x#y(V & Vrev), where g! is the maximum conductance and Vrev is the
reversal potential. Activation variables, x, followed first-order kinetics
defined by dx/dt % $x[%x(V)(1 & x) & &x(V)(x)], where %x and &x are
forward and backward rates and $x % Q10

(T/10°C is a temperature
factor. Q10 was 1.4 for T-type current and 2.3 for all other conduc-
tances. (T is the difference between the physiological temperature
of 37°C used for all simulations and the temperature at which
experimental measurements of channel kinetics were made. Inac-
tivation variables, y, obeyed analogous expressions. Steady-state
and relaxation time constants are given in terms of %x and &x: x)

% %x/(%x # &x) and 'x % 1/[$x(%x # &x)].
The firing rates of Purkinje cells were modeled to be from a

cerebellar network after behavioral training. Electrophysiological data
from in vivo recordings were used to constrain background firing
rates, rPkj,b % 40 Hz (Berthier and Moore 1986; Jirenhed et al. 2007;
Kotani et al. 2006), and the modulation of Purkinje cell firing rates
due to learning-related cerebellar plasticity; low and high Purkinje cell
spike rates following depression and potentiation of parallel fiber
inputs were rPkj,d % 20 Hz and rPkj,p % 100 Hz, respectively (Berthier
and Moore 1986; Jirenhed et al. 2007; Kotani et al. 2006).

Given these basic constraints the average Purkinje cell spike rate,
RPkj(t), was determined by first convolving a smooth plasticity func-
tion, S((t), whose argument is the relative delay between activity in
parallel fibers and climbing fibers (Fig. 2A), with a boxcar function,
U(t), representing a US of 10 ms duration. The result of this convo-
lution was multiplied by a smooth function, C(t), representing a CS of
duration no less than a minimum interval, tCS min % 50 ms

S*(t+ ( A1 ) A2,T -*(t * tLTD+/'. * T -*(t * tLTD&+/'./

U*t+ ( !0, t + tISI

1, tISI , t , tISI ) 10 ms
0, t - tISI ) 10 ms

C*t+ ( T -*t * '+/'. * T --t * ' * max *tCS min, tISI ) 10 ms+./'.

RPkj*t+ ( rPkj,b ) C*t+ "
&)

)

S*t' * t+U*t'+dt'

where tISI is the interstimulus interval (ISI) between the CS and US
onset times. tLTD& % &10 ms and tLTD % 75 ms, respectively, set the
minimum and maximum allowable delay between CS-driven parallel
fiber and US-driven climbing fiber activity for induction of LTD, and
' % 10 ms is a characteristic transition time describing the smooth
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temporal evolution of neural dynamics. We used the smoothing
function T [x], to ensure gradual changes in spike rates

T -x. ( !0 x + *1
-1 ) cos *.x+./2 &1 , x + 0
1 x / 0

The constants A1 and A2 were set such that the minimum and
maximum Purkinje cell firing rates for a long ISI were rPkj,d % 20 Hz
and rPkj,p % 100 Hz, respectively (Table 1) (Berthier and Moore 1986;
Jirenhed et al. 2007; Kotani et al. 2006). These plasticity rules led to
gradual transitions between distinct average firing rate values over
intervals of about 20 ms, approximating the observed intervals over
which Purkinje cells modulate their spiking rates during expression of
motor learning (Berthier and Moore 1986; King et al. 2001).

CS-driven modulation of the rate of mossy fiber spiking was also
constrained by data from in vivo electrophysiological recordings and
was expressed as

RMF*t+ ( rMF,b ) *rMF,CS * rMF,b+ C*t+

where rMF,b % 10 Hz is the background firing rate for mossy fibers
and rMF,CS % 50 Hz is the spiking rate of mossy fibers during
presentation of the conditioning stimulus (Freeman Jr and Nicholson
1999; Nicholson and Freeman Jr 2002).

Model 1: a single-compartment model of DCN neurons

We modeled a DCN cell with a single electrical compartment that
included leak (IL) and T-type Ca2# (IT) currents, as well as synaptic
currents due to inputs from Purkinje cells (Isyn,Pkj) and mossy fibers
(Isyn,MF). Membrane voltage dynamics were determined by time integra-
tion of the current balance equation: Cm(dV/dt) % &IT & IL & Isyn,Pkj &
Isyn,MF. The passive current, IL % gL(V & VL), was an admixture of two
components: a tonic mixed-cation current that is characteristic of DCN
cells and has a &30 mV reversal potential (Raman et al. 2000) and a
standard leak current with &75 mV reversal potential (Jahnsen 1986b;
Llinás and Muhlethaler 1988). Total leak conductance, gL, and leak
reversal potential, VL, were determined by the DCN cell’s resting poten-
tial of Vrest % &58 mV (Aizenman and Linden 1999; Llinás and
Muhlethaler 1988), and the observed membrane time constant of about
12 ms (Jahnsen 1986a; Llinás and Muhlethaler 1988)

gL ( Cm/'m * #
i

gi

VL ( Vrest ) #
i

Ii/gL ) #
syn

Isyn/gL

where gi and Ii are, respectively, the steady-state conductance and
current density at Vrest for each of the active conductances, and Isyn

represents the steady-state synaptic current densities determined by
Vrest and the background rate of spiking of each type of synaptic input.

Parameter values for Purkinje and mossy fiber synaptic inputs were
constrained by physiological measurements: Vsyn,Pkj % &75 mV
(Jahnsen 1986b; Llinás and Muhlethaler 1988), 'syn,Pkj % 14 ms (Anchisi
et al. 2001), and Vsyn,MF % 0 mV (Anchisi et al. 2001) (Table 1).
Glutamatergic synapses in the DCN have significant %-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate
(NMDA) components (Anchisi et al. 2001). As a simplification, 'syn,MF

for mossy fibers was chosen to be 23 ms by weighting the AMPA and
NMDA decay time constants at &60 mV by the measured relative
amplitudes of AMPA and NMDA glutamatergic input (Anchisi et al.
2001). T-current was the sole voltage-dependent current: IT % g!Tnl(V &
VCa), with VCa % 140 mV (Mainen and Sejnowski 1996). T-type kinetics
were adapted from a model of the %1G T-type channel (McRory et al.
2001), which is highly expressed in the DCN (Talley et al. 1999).
Steady-state values of the gating variables, n) and l), were modified to fit
measurements of T-type currents in DCN cells (Gauck et al. 2001).
Measurements of T-type currents in DCN neurons were made at room
temperature, so we used a Q10 of 1.4 for temperature adjustment to
produce rebound depolarizations at 37°C (Jahnsen 1986b). After temper-
ature adjustment these expressions were

'n ( 0.287 ) 0.0711 ! exp *&V/15.8+

'l ( 5.96 ) 0.00677 ! exp *&V/7.85+

n) ( ,1.00 ) exp -&*V ) 42.0+/4.25./&1

l) ( ,1.00 ) exp -*V ) 63.0+/3.50./&1

where in this and all subsequent expressions numerical parameters
with dimensions of time and voltage are expressed in units of
milliseconds and millivolts, respectively.

n-1

n
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FIG. 2. Cerebellar memory formation based on temporally sparse granule
cell coding and bidirectional plasticity at the PF–Purkinje cell synapse. A: the
relative timing of PF and CF activation sets the propensity toward long-term
depression (LTD) or long-term potentiation (LTP). Maximal LTD induction
arises when PF activity precedes CF activity by up to a time, tLTD, of about 75
ms, but LTD can also occur when CF activity slightly precedes PF activity
(Coesmans et al. 2004; Wang et al. 2000). B: in classical eyeblink condition-
ing, individual PFs are assumed to exhibit elevated activity during only a brief
portion of the CS. By the plasticity rule in A, some PF inputs will be
strengthened and others depressed, depending on the relative timing of PF and
US-driven CF activity. DCN cells receive input from populations of Purkinje
cells whose activity reflects aggregate input from CS-activated PFs. C: re-
peated CS–US training (top) leads to biphasic CS-driven Purkinje cell spiking
due to the bidirectional plasticity shown in B. In subjects that received forward
training (bottom left), spiking rises and then falls relative to baseline (red
curve). In subjects that received backward training (bottom right), spiking falls
and then rises (blue curve). The red arrows (bottom left) correspond to tLTD.
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Unfortunately, several DCN cellular parameters could not be tightly
constrained by biophysical data. T-type channels appear to be most
dense in DCN cell distal dendrites (Gauck et al. 2001). Thus, estima-
tion of total T-type conductance from somatic recordings is difficult.
However, in initial simulations we identified a broad range of T-type
conductance values over which rebound depolarizations occurred,
indicating that the occurrence of postinhibitory rebound is not highly
sensitive to the value of the T-type conductance density. In all
subsequent single-compartment simulations (Models 1 and 2) we
chose g!T % 0.5 mS/cm2, within the middle of this identified range.

The weight of Purkinje cell synaptic input, Wsyn,Pkj % 0.2 mS/cm2,
was chosen to be near the middle of a range of values capable of
inducing physiological 10 to 15 mV changes in membrane voltage
when input firing rates were modulated. The mossy fiber synaptic
conductance weight, Wsyn,MF % 4 "S/cm2, was chosen such that
mossy fiber input alone was insufficient to drive the cell to rebound.
Without this stipulation there would be little dependence of learned
responses on Purkinje cell input, contrary to experimental findings. In
Model 1 all synaptic inputs were simulated in a deterministic fashion.
Each synaptic conductance density, gsyn(t), was determined by con-

TABLE 1. Parameters for compartmental simulations of DCN neurons

Parameter Description Value Model(s) Reference(s)

Cm Membrane capacitance 1 "F/cm2 1,2,3
Vrest Resting membrane potential &58 mV 1,2,3 Aizenman and Linden 1999; Llinás and

Muhlethaler 1988
VCa Ca2# reversal potential 140 mV 1,2,3 Maincn and Scjnowski 1996
Vsyn,Pkj GABAergic reversal potential, determined by

Cl& gradient
&75 mV 1,2,3 Jahnsen 1986b; Llinás and Muhlethaler 1988

Vsyn,MF Glutamatergic reversal potential 0 mV 1,2,3 Anchisi et al. 2001
VNa Na# reversal potential 50 mV 3 Mainen and Sejnowski 1996
VK K# reversal potential &90 mV 3 Jahnsen 1986b; Mainen and Sejnowski 1996
rPkj,b Background Purkinje cell spike rate 40 Hz 1,2,3 Berthier and Moore 1986; Jirenhed et al.

2007; Kotani et al. 2006
rPkj,d Reduced Purkinje cell spike rate due to LTD

of parallel fiber inputs
20 Hz 1,2,3 Berthier and Moore 1986; Jirenhed et al.

2007; Kotani et al. 2006
rPkj,p Elevated Purkinje cell spike rate due to LTP

of parallel fiber inputs
100 Hz 1,2,3 Berthier and Moore 1986; Jirenhed et al.

2007; Kotani et al. 2006
rMF,b Background mossy fiber spike rate 10 Hz 1,2,3 Freeman Jr and Nicholson 1999; Nicholson

and Freeman Jr 2002
rMF,CS CS-driven mossy fiber spike rate 50 Hz 1,2,3 Freeman Jr and Nicholson 1999; Nicholson

and Freeman Jr 2002
g!T Maximum T-type Ca2# conductance in

Models 1 and 2
0.5 mS/cm2 1,2

g!T Maximum T-type Ca2# conductance in phase
plane modeling

0.3 mS/cm2 1,2

g!T Maximum T-type Ca2# conductance in
Model 3, somatic compartment

5 "S/cm2 3

g!T Maximum T-type Ca2# conductance in
Model 3, dendritic compartment

0.5 mS/cm2 3

Wsyn,Pkj Maximum total conductance of Purkinje cell
synapses

0.2 mS/cm2 1,2,3

Wsyn,MF Maximum total conductance of mossy fiber
synapses

4 "S/cm2 1,2,3

g!HVA Maximum high-voltage-activated Ca2#

conductance in Model 2
0.15 mS/cm2 2

g!HVA Maximum high-voltage-activated Ca2#

conductance in Model 2 phase plane
0.09 mS/cm2 2

g!HVA Maximum high-voltage-activated Ca2#

conductance in Model 3, somatic
compartment

0.3 mS/cm2 3

g!HVA Maximum high-voltage-activated Ca2#

conductance in Model 3, dendritic
compartment

0.15 mS/cm2 3

g!SK Maximum Ca2#-dependent K# conductance 32 "S/cm2 3
g!Na Maximum Hodgkin-Huxley type fast Na#

conductance
144 mS/cm2 3

g!Kv Maximum Hodgkin-Huxley type K#

conductance
56 mS/cm2 3

'm Membrane time constant 12 ms 1,2,3 Jahnsen 1986b; Llinás and Muhlethaler 1988
'syn,Pkj GABAergic synaptic time constant 14 ms 1,2,3 Anchisi et al. 2001
'syn,MF Glutamatergic synaptic time constant 23 ms 1,2,3 Anchisi et al. 2001
Nsyn,Pkj Number of Purkinje cell inputs 50 2,3
Nsyn,MF Number of mossy fiber inputs 10 2,3
R Ratio of Purkinje to mossy fiber inputs 5 2,3 Chan-Palay 1973
gc Intercompartmental coupling 0.53 "S/cm2 3 Mainen and Sejnowski 1996; Pinsky and

Rinzel 1994
0 Percentage of membrane surface area

occupied by somatic compartment
5% 3

The symbol, description, value, and literature citations are given for each parameter in Models 1–3 of DCN cells.
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volving the input spike rate with an exponential function of time
constant 'syn and amplitude Wsyn, which represented the conductance
response (Table 1).

Model 2: a single-compartment model
of dendritic Ca2# spiking

Model 2 was the same as Model 1 but with two modifications. First,
we added a high-voltage-activated (HVA) Ca2# current, so we could
study how graded T-current-mediated rebound depolarizations led to
the initiation of HVA Ca2# spikes. The conductance model for IHVA

was identical to that used by Mainen and Sejnowski (1996). Second,
membrane voltage dynamics were no longer deterministic. Instead,
the time-varying synaptic conductance density was determined by the
stochastic arrival of action potentials at times selected independently,
as governed by Poisson statistics and the instantaneous spike rate. The
number of Purkinje cell (Nsyn,Pkj % 50) and mossy fiber (Nsyn,MF %
10) inputs roughly matched the ratio, R, of GABAergic to glutama-
tergic synapses found in the DCN (Chan-Palay 1973) (Table 1). The
occurrence of a presynaptic spike on any of these independent indi-
vidual inputs led to an instantaneous jump in synaptic conductance of
amplitude Wsyn,Pkj /Nsyn,Pkj or Wsyn,MF /Nsyn,MF, which then declined
exponentially with time constant 'syn,Pkj or 'syn,MF, respectively
(Table 1).

Model 3: a two-compartment model of DCN neurons

A DCN cell model with dendritic and somatic compartments was
used to test the effect of rebound conductances on Na# spiking output.
The potentials of dendritic (Vd) and somatic (Vs) membranes were
determined by the currents flowing in each compartment (Pinsky and
Rinzel 1994)

Cm

dVd

dt
( &IT * IL * IHVA * ISK * Isyn,Pkj * Isyn,MF *

gc *Vd * Vs+

1 * 0

Cm

dVs

dt
( &IT * IL * IHVA * ISK * IKv * INa *

gc*Vs * Vd+

0

where the coupling between the two compartments was specified by
the conductance between compartments, gc, and the ratio of somatic
membrane surface area to total cell surface area, 0. The passive
current, IL, was determined independently in both compartments from
Vrest % &58 mV and the membrane time constant 'm % 12 ms. The
somatic compartment exhibited spontaneous Na# spiking, so we
determined IL by setting the INa gating variables to m)(Vrest) and
h)(Vrest), and the IKv gating variable to n)(Vrest). Stochastically
arriving synaptic currents entered the dendritic compartment. For
computational ease, we modeled the spike rate of Purkinje cells using
a simple formula that closely approximates the rate function used in
Models 1 and 2

RPkj*t+ ( rPkj,b ) C*t+! rPkj,p * rPkj,b ) *rPkj,d * rPkj,p+

1 $T% t * tISI ) tLTD

' ) 10 ms
* 1& * T%t * tISI ) tLTD&

' ) 10 ms
* 1&'(

Active somatic currents were T-type Ca2#, high-voltage-activated
Ca2# (IHVA; Gauck et al. 2001), Ca2#-activated K# (ISK; Raman et al.
2000), fast Na# (INa), and delayed rectifying K# (IKv). The simulation
used the total Ca2# current, ICa, to determine the internal Ca2#

concentration, which controlled the gating of ISK. In addition to IL, the
dendrite had T-type currents (Gauck et al. 2001), IHVA (at half the
density as in the soma; see Gauck et al. 2001), ISK, and synaptic input.
Conductance models for IHVA, ISK, IKv, and ICa were identical to those
used by Mainen and Sejnowski (1996), including parameter values.

INa was based on the model of Mainen and Sejnowski (1996) (see also
Hines and Carnevale 2001; Schaefer et al. 2007). For Na# channel
activation, # % 3 with kinetics determined by

%x,Na ( 0.182 *V ) 31+/,1 * exp -&*V ) 31+/9./

&x,Na ( &0.124*V ) 31+/,1 * exp -*V ) 31+/9./

For Na# channel inactivation, # % 1 and

'y,Na ( *$Na -0.024*V ) 48+/,1 * exp-&*V ) 48+/5./

* 0.0091*V ) 73+/,1 * exp-*V ) 73+/5./.+&1

y),Na ( ,1 ) exp -*V ) 64+/6.2./&1

Conductance densities and the voltage dependence of INa gating were
chosen to reproduce the observed tonic DCN cell firing rate of about
25 Hz (Aksenov et al. 2005; Jahnsen 1986a; Raman et al. 2000) and
spike width of about 1.5 ms (Aizenman and Linden 1999; Llinás and
Muhlethaler 1988). Reversal voltages were VNa % 50 mV, VK % &90
mV, and VCa % 140 mV (Jahnsen 1986b; Mainen and Sejnowski
1996).

Coupling parameters, gc % 0.53 "S/cm2 and 0 % 0.05, were chosen
to ensure each compartment had relatively independent dynamics
while still permitting dendritic voltage deflections to affect somatic
spiking. Synaptic weights were set by the same criteria as for the
one-compartment models, with Wsyn,Pkj % 0.2 mS/cm2 and Wsyn,MF %
4 "S/cm2. As in Models 1 and 2, in the dendrite g!T % 0.5 mS/cm2 was
set near the middle of a broad range of values that allowed rebound
depolarization. In the soma g!T % 5 "S/cm2, reflecting the lower
density of low-voltage-activated Ca2# channels in this compartment
(Gauck et al. 2001). The densities of Ca2#-activated K# conductance,
g!SK % 32 "S/cm2, and of high-voltage-activated Ca2# conductance in
the soma, g!HVA % 0.3 mS/cm2, and dendrite, g!HVA % 0.15 mS/cm2,
had scarcely any effect on the probability of HVA Ca2# spiking in
response to synaptic inputs across a broad range of conductance
densities and were chosen to reduce the duration of the Ca2# spike to
physiologically realistic values (Jahnsen 1986b; Llinás and Muhletha-
ler 1988). Hodgkin-Huxley conductances, g!Na % 144 mS/cm2 and
g!Kv % 56 mS/cm2, were chosen to reproduce the experimental
observation of spontaneous spiking in the soma at Vrest % &58 mV.

Phase plane analysis of rebound depolarizations

To study whether a memory recall mechanism based on rebound
depolarization would be robust, we reduced Model 1 to a system of
two dynamical degrees of freedom amenable to graphical phase plane
analysis. This involved an approximation in which the T-type activa-
tion variable was set equal to its asymptotic value, n % n)(V),
reducing the dynamical variables to only the T-type inactivation
variable (l) and the membrane voltage (V). Because this approxima-
tion increased the membrane excitability, resulting in larger magni-
tude rebounds, we decreased the density of T-type Ca2# channels to
g!T % 0.3 mS/cm2 as a compensatory measure. The system’s dynam-
ical trajectories within the (V, l) phase plane could then be fruitfully
studied by determination of the two nullclines, on which the time
derivatives vanish

dl

dt
( 03 l ( l)*V+

dV

dt
( 03 l (

gL *V * VL+ ) I!syn,Pkj*V+ ) I!syn,MF*V+

g!Tn)*V+ ! *VCa * V+

where the Purkinje cell and mossy fiber synaptic input currents
I!syn(V) % gsyn(V & Vsyn) represent the mean synaptic currents as
determined from the synaptic weights and background firing rates.
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Both time derivatives vanish at the intersection point of the two
nullclines, so this is a fixed-point of the dynamics. Fixed-points during
the neuronal resting state (stage 1), the CS–US interstimulus interval
up until tLTD before the expected US onset (stage 2), and the remain-
ing portion of the CS (stage 3), were found using the MATLAB
function fzero to solve for the intersection of the nullclines. Linear
stability analysis within a neighborhood of the resting (stage 1)
fixed-point at V % &58 mV revealed that this fixed-point is stable for
g!T " 1.28 mS/cm2. The dynamical trajectories near this fixed-point
exhibit damped oscillations for g!T / 0.20 mS/cm2. The density of
T-type channels used in our studies (Table 1) results in a stable spiral
fixed-point.

A map of rebound magnitudes in the phase plane (Fig. 6C) was built
by numerically integrating the equations of motion using MATLAB’s
Runge–Kutta initial-value differential equation solver, ode45. A series
of evenly spaced initial points was chosen along the boundary lines of
the phase plane, defined by V % &72 mV and l % 0, and trajectories
were integrated forward in time using the current balance equation
and the constant synaptic input values of stage 3. Integration pro-
ceeded until the trajectories reached the stage 3 fixed-point. Each
trajectory formed a contour (level curve) on the phase plane map with
the contour amplitude given by the maximum depolarization achieved
on that trajectory.

To determine the voltage threshold curve for firing all-or-none
Ca2# spikes (Fig. 6D), we added a high-voltage-activated (HVA)
Ca2# conductance (Mainen and Sejnowski 1996) to the phase plane
treatment of Model 1 in which n relaxes instantaneously to its
asymptotic value, n % n)(V) (Fig. 6, A–C). This yielded a determin-
istic version of Model 2 that produced virtually the same trajectories
as those of Model 1 over the voltage range, V " &35 mV, in which
the HVA channels are largely closed (Fig. 6D). As before, the
instantaneous activation of T-type currents led to increased membrane
excitability, for which we compensated by decreasing the density of
T-type Ca2# channels to g!T % 0.3 mS/cm2 and the density of HVA
Ca2# channels to g!HVA % 0.09 mS/cm2. We solved for the dynamical
trajectories by integrating the equations of motion forward in time
starting at a series of initial points distributed along two boundary
lines of the phase plane, defined by V % &72 mV and l % 0. The
trajectories fell into two classes depending on whether the T-current-
mediated rebound was of sufficient magnitude to cross the threshold
for generation of a HVA Ca2# spike.

Phase plane movies showing model trajectories

Movies of deterministic (Movies S1 and S2 using Model 1) and
stochastic (Movie S3 using Model 2) voltage trajectories were created
in MATLAB.1 As in the phase plane analysis of Fig. 6, Movies S1 and
S2 relied on the mathematical approximation of instantaneous relax-
ation of the T-channel activation variable to its asymptotic value. The
motion of the V nullcline was determined by solving the equation
dV/dt % 0 for l, using the steady-state values of the synaptic conduc-
tances, gsyn, that would be attained given constant Purkinje cell and
mossy fiber spiking at rates equal to their instantaneous values.
Numerical integration of the current balance equation used a maxi-
mum timestep of 0.1 ms. In Movie S3 the synaptic conductances were
modulated by the independent but stochastic arrivals of spikes from
50 Purkinje cells and 10 mossy fibers.

Single-compartment model of MVN neurons

We created a simple one-compartment model of MVN cells (Table
2) obeying the current balance equation, Cm(dV/dt) % &IL & Ih &
Isyn,Pkj & Isyn,MF, in which the reversal potential and conductance
values for the leak current, IL % gL(V & VL), were determined by the
membrane time constant (12 ms), the resting potential (&58 mV), and

Ih % g!hq(V & Vh), where Vh % &20 mV is the mixed-cation reversal
potential (Dickson et al. 2001; Pape 1996) and q is the activation
variable. Synaptic inputs were modeled in a deterministic fashion, as
in Model 1 above, with synaptic time constants 'syn,Pkj % 8.9 ms and
'syn,MF % 5.5 ms (Chun et al. 2003) and synaptic weights
Wsyn,Pkj % 0.5 mS/cm2 and Wsyn,MF % 4 "S/cm2.

Measured h-current time constants vary broadly across cell types,
but detailed measurements of h-current in MVN cells have not yet
been made. The HCN2 isoform appears to be the predominant subtype
of h-channel in the vestibular nuclei (Santoro et al. 2000), and the
kinetics of this isoform are consistent with the activation time constant
of hyperpolarization-activated rebound burst firing in the MVN,
measured to be $620 ms at 31°C (Sekirnjak and du Lac 2002).
Following Sekirnjak and du Lac (2002) we modeled Ih kinetics with
a fixed time constant, 'q. To determine the steady-state voltage
dependence for HCN2 we fit measurements of total h-current obtained
in a Xenopus oocyte expression system (see Fig. 9C in Santoro et al.
2000)

q) ( $1.00 ) exp%V ) 78

5.53 &'&1

g!h % 3 mS/cm2 was chosen to be within a range of values that
produced rebound depolarization. We used 'q % 400 ms for MVN
simulations shown in Fig. 7, C and E, because this value approximated
the time constant that generated the largest ratio of rebound amplitude
between the long ISI condition and the zero ISI condition. Rebound
amplitude in the zero ISI condition varied by only about 3 mV across
a wide range of time constants, 50 ms " 'q " 1,000 ms.

Linear–nonlinear (LN) model of lock-and-key mechanism

For our algorithmic description of memory retrieval we generated a
set of “key” activity patterns, K(t), using the CS-driven waveforms for
the instantaneous Purkinje cell spike rates arising for ISI values
ranging from 0 to 200 ms. The Purkinje cell spiking rates were the
same as those for biophysical Model 1. We created a linear filter

F*t+ (
1

Z !&$T%t * '

'
& * T%t * tF * '

'
&'

)
2

3$T%t * tF * '

'
& * T%t * 2tF * '

'
&'(

where Z is a normalization constant chosen to be the maximum
absolute value of the linear response, T[t] is the smooth transition
function (see General stimulation procedures), tF % 20 ms, and ' %
10 ms. The filtered key activity was determined by the convolution

x*t+ ( "
0

)

K*t'+F*t * t'+dt'

Finally, this signal was passed through an exponential nonlinearity,
M(t) % G[x(t)] % exp[h ! x(t)], where h % 12 is a gain factor. The
response amplitude for a given ISI value (Fig. 8E) was determined by
the peak value of M(t) normalized by the amplitude attained for a long
ISI of 200 ms.

R E S U L T S

A theoretical framework for cerebellum-dependent
learning and memory

Cerebellar granule cells number in the tens of billions but
individually appear to be rarely active, producing only a few
spikes at a time in response to mossy fiber input (Chadderton1 The online version of this article contains supplemental data.
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et al. 2004). Such transient activation implies that after behav-
ioral training and plasticity induction at PF–Purkinje cell syn-
apses, presentation of a learned sensory cue should drive a
biphasic modulation of population Purkinje cell activity (Fig.
2). For example, in classical conditioning transient CS-driven
granule cell activity that is concurrent with US-driven CF
activity will lead to LTD at PF–Purkinje cell synapses (Fig.
2A). CS-driven granule cell activity that is asynchronous with
CF activity will lead to LTP. During subsequent CS input, the
net effect of LTD and LTP induction at distinct PF–Purkinje
cell synapses will be biphasic modulation of the aggregate
Purkinje cell activity received by a DCN neuron (Fig. 2, B and
C). Similarly, overlapping pulses of vestibular and visual input
in VOR adaptation will also lead to biphasic modulation of
Purkinje cell activity. This general pattern of modulation does
not hinge on the details of granule cell coding but is contingent
on there being spike-timing-dependent bidirectional plasticity
and subsets of granule cells in which sensory-driven activity
lasts for only portions of the sensory cue duration (Buonomano
1994; Mauk and Donegan 1997; Medina et al. 2000).

We explored the conditions under which biphasic activation
of Purkinje cells leads to reliable postinhibitory rebound de-
polarization of their target neurons that drive learned motor
responses. In classical conditioning, whether Purkinje cell
spiking first rises and then falls in response to a learned CS, or
vice versa, depends on whether the CS and US were paired
with a “forward” (CS–US) or “backward” (US–CS) ordering.
The two patterns of aggregate Purkinje cell activity should be
quite distinct in their propensity to induce DCN cell rebounds.
A rise and then fall of Purkinje cell spiking appears well suited
to induce rebounds by causing a hyperpolarization and then a
depolarization in DCN target cells. The DCN cell resting
potential is about &58 mV (Aizenman and Linden 1999), at
which T-channels are largely inactivated (Fig. 3). The initial
hyperpolarization allows T-channels to deinactivate and the
ensuing depolarization allows them to activate. The opposite

pattern of Purkinje cell spiking resulting from backward train-
ing should be a poor initiator of DCN cell rebounds because the
initial depolarization will heighten T-channel inactivation and
should largely preclude rebounds. To test these ideas, we
performed compartmental modeling of DCN cells to explore
whether such a disparity in rebound generation could account
for the observed differences in behavioral responses following
backward versus forward classical conditioning. For our mod-
eling, we described the timing dependence of LTP and LTD
induction on the interval between paired activation of PF and
CF afferents as a smooth function that permits LTD for PF
activity anticipating CF activity by up to a time tLTD ) 75 ms
(Fig. 2A) (see METHODS). This timing dependence mimics that
of the experimental data (Wang et al. 2000). The maximal
levels of LTD and LTP induction in our models did not depend
on the CS–US training interval. By comparison, the durations
of each phase of the biphasic Purkinje cell activity did vary
with the CS–US interval. This distinction allowed us to focus
initially on the signal processing performed by the DCN cells
rather than on effects that depend on plasticity amplitude. We
subsequently explored how changes in plasticity amplitude, as
quantified through the resulting changes in Purkinje cell spike
rates, affect a rebound-based mechanism for memory recall in
the DCN cells.

Memory recall in a one-compartment model DCN neuron

We studied whether forward and backward patterns of bi-
phasic Purkinje cell spiking could lead to distinct patterns of
rebound activity in DCN cells after presentation of a classically
conditioned stimulus. We created a series of compartmental
DCN cell models that received inputs from both Purkinje cells
and mossy fibers and we interpreted the resulting rebounds as
the initiators of conditioned motor responses. The simplest
model (Model 1) had one electrical compartment, lacked fast-
spiking capability, and had only leak, T-type, and synaptic

TABLE 2. Parameters for compartmental simulations of MVN neurons

Parameter Description Value Reference(s)

Cm Membrane capacitance 1 "F/cm2

Vrest Resting membrane potential &58 mV du Lac and Lisberger 1995b; Straka et al. 2005
Vsyn,Pkj GABAergic reversal potential, determined by Cl&

gradient
&75 mV Hille 2001

Vsyn,MF Glutamatergic reversal potential 0 mV Chun et al. 2003
Vh Ih mixed-cation reversal potential &20 mV Dickson et al. 2001; Pape 1996
rPkj,b Background Purkinje cell spike rate 40 Hz Berthier and Moore 1986; Jirenhed et al. 2007;

Kotani et al. 2006
rPkj,d Reduced Purkinje cell spike rate due to LTD of

parallel fiber inputs
20 Hz Berthier and Moore 1986; Jirenhed et al. 2007;

Kotani et al. 2006
rPkj,p Elevated Purkinje cell spike rate due to LTP of

parallel fiber inputs
100 Hz Berthier and Moore 1986; Jirenhed et al. 2007;

Kotani et al. 2006
rMF,b Background mossy fiber spike rate 10 Hz Freeman Jr and Nicholson 1999; Nicholson

and Freeman Jr 2002
rMF,CS Mossy fiber spike rate during head rotation 50 Hz Freeman Jr and Nicholson 1999; Nicholson

and Freeman Jr 2002
g!h Maximum h-type cation conductance 3 mS/cm2

Wsyn,Pkj Maximum total conductance of Purkinje cell synapses 0.5 mS/cm2

Wsyn,MF Maximum total conductance of mossy fiber synapses 4 "S/cm2

'm Membrane time constant 12 ms du Lac and Lisberger 1995a,b
'syn,Pkj GABAergic synaptic time constant 8.9 ms Chun et al. 2003
'syn,MF Glutamatergic synaptic time constant 5.5 ms Chun et al. 2003
'q h-current activation time constant 400 ms

The symbol, description, value, and literature citations are given for each parameter used in simulations of MVN cells.
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conductances (Fig. 3A). This allowed us to focus initially on
rebound generation, apart from issues studied later concerning
membrane potential noise and downstream readout. Kinetic
parameters for T-currents were obtained from in vitro mea-
surements in DCN cells (Gauck et al. 2001; McRory et al.
2001). Deinactivation can occur within about 20–100 ms of
hyperpolarization from the resting potential and activation can
then occur within a few milliseconds during subsequent depo-
larization (Fig. 3, D and E). Conductance densities were set to
reproduce the observed resting potential of &58 mV and
membrane time constant of about 12 ms (Aizenman and
Linden 1999; Jahnsen 1986a; Llinás and Muhlethaler 1988).

We compared the model’s responses to forward and
backward patterns of biphasic Purkinje cell input. In our
initial studies, the forward CS–US interstimulus interval
(ISI) was /200 ms, more than sufficient delay for reliable
conditioning in rabbits (Fig. 1B) (Ohyama et al. 2003b).
Mossy fiber excitation rose during the entire CS but was
insufficient to drive a rebound during baseline or elevated

Purkinje cell spiking. This is consistent with data supporting
a key role for Purkinje cells in generating properly timed
reflexes via the suppression of early, mossy fiber-driven
responses to the CS, which can be unveiled by blocking
Purkinje cell inputs to the DCN (Ohyama and Mauk 2001;
Perrett et al. 1993). We found that biphasic Purkinje cell
input shaped by forward training led to rebounds that
initiated as Purkinje cell spiking transitioned from an ele-
vated to a diminished rate, about tLTD prior to the expected
US onset (Fig. 4A, red traces). Hence, rebounds could drive
blinks that anticipate the US. We then tested the effect of
varying the ISI value. With backward training there was
insufficient deinactivation of T-currents to generate re-
bounds (Fig. 4A, blue traces). With positive ISI values
"100 ms, rebounds occurred but with diminished ampli-
tude, since there was insufficient time for T-channel dein-
activation during the brief increase in Purkinje cell spiking
(Fig. 4A, orange trace). Thus, rebound generation occurred
selectively for sufficiently positive ISI values and antici-
pated US arrival.

We also explored the dependence of rebound generation on
the graded magnitude of LTP and LTD at the PF–Purkinje cell
synapse, as quantified through the resulting elevation and
diminution in Purkinje cell spike rates, respectively (Fig. 4, B
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FIG. 4. DCN cell rebounds require a minimum CS–US ISI and sufficient
expression of cerebellar LTP and LTD. A: the time course of CS-driven
depolarization in Model 1 (Fig. 3A). If prior training involved a sufficiently
positive ISI, the CS-driven rebound is of large amplitude and occurs at a time
approximately tLTD before the expected US (red traces). If training involved an
insufficient ISI value, CS-driven rebounds do not occur (blue traces). For short
ISI values, rebounds are diminished in amplitude (orange trace). The color bar
indicates the ISI values, which are also marked above the graph with the color
corresponding arrowheads for each voltage trace. Rebounds occur prior to the
expected US, indicating anticipatory responses. B: rebound amplitude varies
with the degree to which the CS drives biphasic Purkinje cell activity. This, in
turn, depends on having sufficient expression of both PF–Purkinje cell LTP
and LTD (Fig. 2). Driving a large-amplitude rebound in the DCN cell requires
that during the first phase of biphasic activity the Purkinje cell spiking rate
rises well above the spontaneous frequency of 40 Hz. The 3 voltage traces
(blue, cyan, red traces) in B1 occurred with the color corresponding, Purkinje
cell peak spiking rates shown in B2. Lower peak spiking rates reflect lower
expression levels of LTP. The arrowhead indicates the ISI value of 200 ms.
C: driving a large-amplitude rebound in the DCN cell also requires that during
the second phase of biphasic activity the Purkinje cell spiking frequency drops
below the 40 Hz spontaneous rate. The 3 voltage traces in C1 (blue, cyan, red)
were created using the color corresponding, Purkinje cell minimum spiking
rates shown in C2. The higher rates reflect lesser degrees of LTD. The
arrowhead indicates the ISI value of 200 ms.
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FIG. 3. Compartmental modeling of T-type Ca2# current rebounds in DCN
cells. Compartmental simulations of a Purkinje target neuron in the DCN
involved 3 models of increasing complexity. A: Model 1 has one electrical
compartment, contains T (gT) and leak (gL) conductances, and receives gluta-
matergic mossy fiber and GABAergic Purkinje cell inputs. Membrane voltage
follows a deterministic time course. B: Model 2 adds high-voltage-activated
Ca2# (gHVA) channels. Synaptic inputs arrive stochastically, leading to mem-
brane potential fluctuations and nondeterministic dynamics. C: Model 3 has
dendritic and somatic compartments, coupled by a conductance gc. Synaptic
inputs are localized to the dendrite, approximating empirical findings. The
soma has fast Na# (gNa) and delayed rectifier K# (gKv) conductances. Both
compartments have leak, T, Ca2#-activated K# (SK), and HVA Ca2# conduc-
tances. Synaptic inputs arrive stochastically, leading to nondeterministic dy-
namics. D: voltage dependence of the activation (dashed red curve) and
inactivation (solid blue curve) gating variables for the T-type conductance in
DCN neurons. At the resting potential (about &58 mV, dashed vertical line),
T-currents are largely inactivated. Hyperpolarization deinactivates T-currents,
allowing activation during subsequent depolarization. E: voltage dependence
of the T-channel activation (dashed red curve) and inactivation (solid blue
curve) time constants. Parameter dependencies in D and E are based on Gauck
et al. (2001) and McRory et al. (2001).
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and C). Rebound generation in the DCN cell required biphasic
Purkinje cell spiking, with both a sufficient elevation and
subsequent decline in spiking needed for large-amplitude re-
bounds ($50 mV). Ample levels of both LTP and LTD would
thus be needed to induce sufficient biphasic variation in Pur-
kinje cell spiking. These findings held across a broad range of
T-channel densities, opening the possibility that DCN cell
T-currents help shape the differences in conditioned reflex
expression following backward and forward training (Ohyama
et al. 2003b).

Readout mechanisms of rebound depolarization
and correspondence to conditioned behavior

If rebounds induce learned motor action, how do DCN cells
convey rebound magnitudes via the rate of Na# spikes sent to
premotor areas? The graded amplitude of pure T-current-mediated
rebounds indicates these low-voltage-activated events are not
stereotyped Ca2# spikes. Real DCN neurons do exhibit Ca2#

spikes, mediated by high-voltage-activated Ca2# channels and, as
in other cell types, dendritic Ca2# spikes may be good triggers of
somatic Na# spike bursts (Jahnsen 1986b; Llinás and Muhlethaler
1988). We reasoned that the amplitude of T-current-mediated
rebounds should set the likelihood of crossing the voltage thresh-
old for Ca2# spike generation, with membrane potential fluctua-
tions influencing the degree of variability. Smaller-amplitude
rebounds that occur with shorter ISI values would be less likely to
cross the Ca2# spike threshold. Within this framework we inter-
pret a Ca2# spike as the initiator of signals sent downstream to
drive a conditioned motor response.

To test whether this readout mechanism would be able to
convert the amplitude of rebound depolarization into the
probability of Ca2# spike generation, we examined an
enhanced one-compartment model that included high-voltage-
activated Ca2# channels (Model 2, Fig. 3B) and membrane
potential fluctuations due to stochastic arrival of synaptic inputs
(METHODS). This contrasts with Model 1, in which both synaptic
inputs and membrane voltage followed deterministic time
courses. In Model 2 a biphasic pattern of Purkinje cell input
resulting from forward training with a long ISI value led
reliably to a T-current-mediated rebound of sufficient magni-
tude to trigger a Ca2# spike. These Ca2# spikes were properly
timed, prior to the expected US. Backward training led to small
rebounds and virtually no Ca2# spiking. Forward training with
a short ISI value led to unreliable Ca2# spiking, with the
amplitude of the T-current-mediated rebound being sufficient
to trigger a Ca2# spike on some trials but not others (Fig. 5A).
Thus, as the ISI value varied, the amplitude of T-current-driven
rebounds set the probability of crossing the Ca2# spike thresh-
old (Fig. 5B, closed green triangles). Of prime interest, the
shape of the curve describing this response probability as a
function of the ISI closely resembles that obtained in rabbit
eyeblink conditioning studies (Fig. 5B, open red squares, dia-
monds, and downward facing triangles), validating the plausibility
of a rebound-based recall mechanism. The sum of tLTD and the
T-channel inactivation time constant determine the temporal off-
set of the curve from the origin. It follows that experimental
manipulations lengthening the time needed for T-channel deinac-
tivation during the ISI are predicted by our theory to cause a
rightward shift of the behavioral data curve (DISCUSSION).

We examined readout issues in greater depth using a two-
compartment model DCN cell (Model 3, Fig. 3C) that included
a dendrite and soma, as well as channels mediating dendritic
Ca2# and somatic Na# spikes (see METHODS). The somatic and
dendritic compartments were only weakly coupled, which was
intended to mimic the electrotonic isolation between the cell
body and the long distal dendrites of DCN cells where T-
channels appear to be most dense, !100 "m from the cell body
(Gauck et al. 2001). This is consistent with the observation that
Purkinje cell input triggers DCN cell rebounds much more
effectively than somatic hyperpolarization of comparable mag-
nitude (Aizenman and Linden 1999). Synaptic inputs in Model
3 arrived stochastically, inducing membrane potential fluctua-
tions. As in real DCN cells, a tonic cation current induced a
basal rate of somatic spiking at about 25 Hz (Aksenov et al.
2005; Jahnsen 1986a; Raman et al. 2000). Simulations revealed
that a dendritic rebound induces a Ca2# spike, which in turn
drives a corresponding increase in the rate of somatic Na#

spikes (Fig. 5, C–E). This increase represents a plausible signal
from the DCN cell to downstream pathways for driving learned
motor output (Fig. 1A). Forward training with an ISI !100 ms
virtually always led to such a spike burst. Na# spike bursts
occurred with lower probability under the same conditions that
failed to produce large-amplitude rebounds in Model 1, such as
backward training or forward training with a short ISI. Across
ISI values the probability of a Na# spike burst closely matched
the behavioral dependence of conditioned blinking on the ISI
value as observed in rabbits (Fig. 5B, closed blue circles).
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FIG. 5. Readout of rebounds via Ca2# spikes leads to a dependence of the
response reliability on the CS–US ISI. A: sample voltage traces during CS
presentation in Model 2 (Fig. 3B) in the presence of membrane potential
fluctuations from noisy synaptic inputs. At an intermediate ISI of 100 ms, a
T-current-mediated rebound depolarization triggers a Ca2# spike during one
trial (dashed red line) but not another (solid blue line). B: the reliability of
learned responses in Model 2 (closed green triangles) and Model 3 (closed blue
circles), defined as the probability of generating a dendritic Ca2# spike in
response to a test CS, plotted as a function of the ISI. Classic data on the
reliability of conditioned blinks in trained rabbits are replotted from Fig. 1
(open red symbols) (Salafia et al. 1980; Smith 1968; Smith et al. 1969),
showing the similarity to the model data. A tLTD of 75 ms was used for the
model data, consistent with empirical data indicating tLTD is in the range of
about 50–200 ms (Wang et al. 2000). C and D: example voltage traces from
the dendritic and somatic compartments of Model 3 (Fig. 3C) during CS
presentation with an ISI of 200 ms. A T-mediated rebound depolarization leads
to a high-voltage-activated dendritic Ca2# spike (C) that drives a rise in the
somatic Na# spike rate (D). E: the corresponding time courses of the activation
(n, solid red curve) and inactivation (l, dashed blue curve) gating variables
during the Ca2# spike.
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Phase plane analysis of rebound generation as a robust
mechanism for recall

To further explore the basic dynamics and robustness of
rebound mechanisms, we studied DCN neuronal dynamics
using a phase plane analysis of Model 1. Prior applications of
such analysis to other neuron types have provided considerable
insight into Ca2# spike generation, spike bursting, and transi-
tions between “up” and “down” activity states (Fitzhugh 1960;
Loewenstein et al. 2005; Rinzel and Ermentrout 2001; Rush
and Rinzel 1994). As is common in phase plane analysis, we
focused on the slow dynamic variables that set the relevant
timescale. Here, these variables are membrane voltage (V) and
the T-type channel inactivation variable (l). The latter has a
voltage-dependent time constant of about 10–100 ms (Fig.
3E), close to the minimum ISI for reliable memory retrieval
(Fig. 1B). By comparison, the time constant for T-current
activation is about 1–10 ms, considerably faster than motor
memory recall and rebound depolarization. Because of this
separation of timescales we approximated T-type activation as
occurring instantaneously and thus restricted to the (V, l) plane.
Rebounds may then be viewed as trajectories in this two-
dimensional (2-D) phase plane (Fig. 6).

Phase plane analysis of Model 1 revealed the key ingredients
for rebounds. The analysis can best be understood by breaking
a CS presentation into three stages: the initial resting condition,
the ISI, and the remainder of the CS following the ISI (Fig.
6A). During each stage, the system has a unique attractive
fixed-point at the intersection of the V and l nullclines, the
curves on which the time derivatives dV/dt and dl/dt, respec-
tively, vanish (Fig. 6B). The three fixed-points and the ISI
value are the chief determinants of the dynamics. At rest (stage
1), the system resides at a fixed-point location at which the
T-current is mainly inactivated (open black circle in Fig. 6B
and Movies S1 and S2). At CS onset and during the ISI (stage
2), mossy fiber and Purkinje cell input to the DCN cell shift the
fixed-point location to a potential at which the T-channel
deinactivates (open green triangle in Fig. 6B and Movies S1
and S2). The system approaches the stage 2 fixed-point during
the ISI, starting from the resting position (Fig. 6B; Movies S1
and S2). The ISI value determines the duration and proximity
of the system’s approach. At about tLTD prior to the moment of
the expected US (stage 3), Purkinje cell activity declines and
the fixed-point shifts to a third location that is depolarized
relative to rest (open red square in Fig. 6B and Movies S1 and
S2). This initiates a rebound that is well timed for driving an
anticipatory reflex. More precisely, there is a family of trajec-
tories that undergo rebound depolarization during stage 3, with
rebound amplitude a strict function of the (V, l) values attained
by the end of stage 2. A 2-D color map of rebound amplitude
as a function of (V, l) reveals the basis for the sharp depen-
dence on the ISI value and the stage 2 and stage 3 fixed-point
locations (Fig. 6C). In turn, these fixed-point locations depend
critically on the degree of biphasic Purkinje cell spiking and
thus on the levels of LTP and LTD attained during training.

Stage 3 rebound trajectories with the greatest depolarization
initiate in a neighborhood of the (V, l) plane that may be
viewed as a memory recall “reliability zone” from which a
large rebound will occur without fail (Fig. 6C, red shaded
region). The level of LTP and the peak Purkinje cell spiking
rate are important because they determine the proximity of the

stage 2 fixed-point to the reliability zone. However, even with
sufficient LTP if the ISI is too brief the system does not have
time to reach the reliability zone during stage 2, leading to a
small or no rebound (Fig. 6C, blue shaded region; Movie S2).
The rebound amplitude also hinges on the location of the stage
3 fixed-point, due to the dependence of T-channel activation on
the reduction in Purkinje spike rate and the level of LTD.

To understand the implications of these observations for a
readout mechanism based on Ca2# spike generation (Fig. 5),
using Model 2 we determined the set of stage 3 trajectories
in the (V, l) plane that lead to a Ca2# spike (see METHODS).
Large-amplitude rebounds that initiated within the reliabil-
ity zone passed furthest above the spiking threshold (Fig.
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FIG. 6. Phase plane analysis of CS-driven rebounds. A: membrane voltage
time course (blue curve) in response to a CS that initiates at time t % 0 in
Model 1, under the approximation of instantaneous relaxation of the T-channel
activation variable to its asymptotic value. The rebound peaks at a time about
40 ms prior to the expected US at 200 ms after CS onset. Dashed vertical lines
delineate 3 stages of the phase plane trajectory in B. B: the state trajectory (blue
curve) in the 2-dimensional (2-D) phase plane defined by the voltage (V) and
T-type inactivation variable (l), corresponding to the voltage trace in A. The
open black circle marks the fixed-point in the resting state (stage 1). The open
green triangle marks the fixed-point from CS onset until approximately tLTD
prior to the expected US (stage 2). The open red square marks the fixed-point
during the remainder of the CS (stage 3). According to longstanding conven-
tion, channels are completely inactivated when l % 0 (Hodgkin and Huxley
1952). C: a color plot conveying the amplitude of the rebound that occurs
during stage 3 for the state trajectory passing through each point in the phase
plane of B and converging toward the stage 3 fixed-point (open red square).
Warmer hues indicate the larger rebounds (color bar) that initiate if during
stage 2 the system has successfully entered the “memory reliability zone” near
the stage 2 fixed-point (open green triangle). White curves are example state
trajectories. D: the addition of high-voltage-activated (HVA) Ca2# channels to
the phase plane analysis of C reveals those stage 3 trajectories that lead to a
Ca2# spike (red trajectories) and those that do not (blue trajectories). All of the
trajectories closely concur with those in Model 1 (C) in the voltage range V "
&35 mV over which the HVA Ca2# channels are largely closed. The red
trajectories, which initiate within the reliability zone near the stage 2 fixed-
point (green triangle), cross the Ca2# spike threshold and allow successful
readout of the rebound (Fig. 5, A and B). Horizontal dotted lines indicate the
resting potential of &58 mV in A–D. Solid and dashed black curves in B, C,
and D are nullclines during the resting state for the l and V variables,
respectively, on which the time derivatives dl/dt and dV/dt, respectively, vanish
during stage 1.
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6D). Rebounds that initiated elsewhere either failed to reach
or just crossed threshold. In the presence of membrane
potential noise, this implies that if the system reaches the
reliability zone the probability of Ca2# spike generation is
high. Much as in our two-compartment simulations, this
probability falls dramatically as the ISI is shortened (Movie
S3 and Fig. 5B). The Ca2# spike voltage threshold does not
vary much across a wide range of HVA Ca2#-channel
density (data not shown), indicating Ca2# spiking is a robust
readout of whether the system has entered the recall reli-
ability zone. Thus the phase plane analysis illuminates key
features of a rebound-based memory recall mechanism,
including conditions for reliable recall.

Role of postinhibitory rebounds in VOR gain adaptation

Because cerebellar circuitry is highly conserved, rebound
depolarization might serve multiple forms of cerebellar
memory recall. For example, floccular Purkinje cells in-
volved in horizontal VOR adaptation project to target cells
in the vestibular nuclei that also exhibit significant rebound
depolarization in vitro mediated by hyperpolarization-acti-
vated currents (Sekirnjak et al. 2003; Serafin et al. 1991).
These currents require further characterization and are ex-
pressed to varying degrees across MVN cell types, but as a

group the MVN neurons receiving input from the floccular
Purkinje cells exhibit exceptionally pronounced rebound
burst spiking (Sekirnjak et al. 2003). The currents involved
seem to include the h-type cation current and probably some
amount of Na# and T-type Ca2# currents (Sekirnjak and du
Lac 2002; Serafin et al. 1991; Smith et al. 2002). Regardless
of the current identities, the empirically determined time
constant ($620 ms) describing the duration of hyperpolar-
ization needed for maximal rebound burst firing is consid-
erably longer than that for DCN cells (Fig. 2E) (Sekirnjak
and du Lac 2002). Might rebound depolarization and the
need for a long period of hyperpolarization underlie some of
the temporal asymmetries seen in behavioral studies of VOR
adaptation?

Well-known primate behavioral studies have shown that the
amplitude of learned VOR responses depends on the relative
timing of vestibular and visual stimuli in a manner resembling
the dependence on CS–US timing in classical conditioning.
Raymond and Lisberger (1996) repeatedly paired a vestibular
stimulus, a 600 ms pulse of head rotation, with a brief visual
stimulus consisting of moving dots. The visual motion stimulus
was presented at one of three different ISI values: a zero ISI
condition analogous to backward conditioning (Fig. 7C, left), a
short forward ISI of 225 ms (Fig. 7C, middle), and a long
forward ISI of 450 ms (Fig. 7C, right). A learned VOR
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FIG. 7. Vestibular nuclei cell rebounds lead to temporally asymmetric vestibulo-ocular reflex (VOR) adaptation. A: vestibulo-cerebellar pathways for VOR
horizontal gain adaptation involve Purkinje cells (Pkj) that project to target neurons within the medial vestibular nucleus (MVN). Neurons in the MVN project
to brain stem motor nuclei (MNs) that drive eye movement. Slip of the visual scene on the retina is conveyed to the cerebellum via climbing fibers (CFs).
Information about head velocity arrives via mossy fibers (MFs) originating in the vestibular ganglia (VG), is processed within the Golgi (Go) and granule (Gr)
cell network, and reaches Purkinje cells by way of parallel fibers (PFs). Conjunctive arrival of CF and PF signals is thought to induce synaptic plasticity at the
PF–Pkj synapse that underlies gain adaptation. B: a one-compartment model of an MVN Purkinje target neuron that contains h- (gh) and leak (gL) conductances
and receives glutamatergic mossy fiber and GABAergic Purkinje cell input. Membrane voltage follows a deterministic time course. C: primate behavioral data
from well-known studies in which pulses of head rotation (top, black bars) were paired during training with moving dot visual stimuli (top, gray bars) at 3 distinct
ISIs. During later testing with pulsed head rotations in the dark, the learned component of VOR expression increased markedly with greater ISI values (bottom,
green, blue, and red curves) (Raymond and Lisberger 1996). D: relative rebound amplitude as a function of the h-current activation time constant 'q. The plot
shows the maximum depolarization from the resting potential following training with zero (green), short (blue), and long (red) ISIs, normalized for each value
of 'q by the maximum depolarization of the zero ISI trajectory (green). Dashed black line indicates 'q of 400 ms used for simulations shown in E. E: voltage
traces (top) and state trajectories (bottom) from the model MVN cell in response to a test pulse of head rotation following training with the 3 different ISI values
shown in C. The 3 state trajectories (bottom) traverse the 2-D phase plane defined by the voltage (V) and the activation level of the h-current relative to that at
rest (h). Horizontal dashed lines in the top panels indicate the resting potential of &58 mV. The solid and dashed black curves in the bottom panels are the
nullclines during the resting state for V and h, respectively, on which their respective time derivatives vanish. Vertical dashed lines in C and E mark the period
of head rotation.
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response developed in all cases, but the response amplitude
grew as the ISI lengthened. Such dependence on the ISI may be
analogous to that seen in eyeblink conditioning. Could re-
bounds underlie this effect? The timescale of the behavioral
effect is similar to that of h-current activation.

To study the issue we created a simple, one-compartment
model of an MVN cell in which h-currents mediated rebounds
(Fig. 7B). The model is analogous to Model 1 of a DCN cell in
that the model has only one compartment and lacks the chan-
nels responsible for the fast spontaneous spiking that MVN
cells exhibit. The single compartment thus better mimics a
dendrite than a soma. As before, we interpreted the rebounds as
signals driving learned motor responses. MVN simulations
used a fixed time constant, 'q, for Ih activation, as in the MVN
cell model of Sekirnjak and du Lac (2002).

We used a stimulus protocol based on the Raymond–Lis-
berger experiments and found the largest rebounds arise when
the visual stimulus occurs during the latter portion of the
vestibular impulse (Fig. 7E). Longer ISI values allow more
time for h-currents to activate at hyperpolarized voltages,
heightening rebound depolarization. Rebound amplitude also
depends on biphasic Purkinje cell spiking and thus on the
levels of LTP and LTD induced during training (data not
shown). By varying 'q over a range of values, we found that a
value of $400 ms generated the largest ratio of rebound
amplitudes between the long ISI condition and the zero ISI
condition (Fig. 7, D and E). This value of $400 ms for 'q at
physiological temperature appears consistent with the empiri-
cal value of about 620 ms measured at 31–33°C by Sekirnjak
and du Lac (2002). Thus, the amplitude dependence of learned
eye movements on the ISI value might stem from variable
levels of current flow through hyperpolarization-activated con-
ductances such as h. However, the component of the learned
response that is independent of the ISI value is unlikely to be
driven by rebounds and is beyond the scope of our present
model, which seeks to account only for the ISI-dependent
component.

D I S C U S S I O N

We have presented a lock-and-key hypothesis on how the
expression of memory responses may undergo filtering via
neurophysiological mechanisms active during memory re-
trieval. This hypothesis and our computational work exploring
a candidate rebound-based lock-and-key mechanism were
prompted by data suggesting that backward-ordered classical
eyeblink conditioning as well as noncerebellar forms of aver-
sion conditioning can lead to latent memory storage or changes
in neural activity, despite a lack of conditioned responses
(Barnet et al. 1997; Gould and Steinmetz 1996). The complex
manner in which plasticity might evolve across a large network
of synaptic connections throughout learning experience also
suggests some constraints on motor memory expression might
be implemented via neurophysiological mechanisms of recall
(Mauk and Ohyama 2004).

We explored these ideas through computational studies of
two cerebellar behaviors by examining whether DCN and
MVN cells can filter signals from Purkinje cells to influence
response timing and prevent certain motor responses. Biophys-
ical models of these two cell types that incorporate rebound
channels lead to consistent explanations for behavioral data on

cerebellar motor learning. These models make direct links
between ion channel kinetics and memory expression and,
particularly for eyeblink conditioning, yield specific predic-
tions of how learning performance varies as a function of the
relative timing of paired training stimuli. Within our lock-and-
key framework for these models, subjects undergo both cere-
bellar LTP and LTD regardless of whether the training stimuli
were presented in forward or backward order. As a result, the
learned sensory cue drives biphasic Purkinje cell activity. Yet,
this biphasic activity triggers rebound depolarization in the
DCN cells and drives well-timed classically conditioned re-
flexes only if the training ISI was sufficiently positive. In this
way, inappropriate motor responses to conditioned stimuli that
do not precede the US sufficiently are avoided. Phase plane
analysis reveals the basic ingredients for reliable reflex expres-
sion, including ample levels of both LTD and LTP. In MVN
cells, rebound currents may underlie the variation of VOR
adaptation magnitude with the relative timing of visual and
vestibular training stimuli. Such effects hinge on the observed
capabilities of both DCN and MVN cells for rebound depolar-
ization.

Electrophysiological properties of DCN neurons are
consistent with the rebound theory

In vitro studies of DCN cells have found that rebounds occur
in both cerebellar slice and isolated cerebellum–brain stem
preparations (Aizenman and Linden 1999; Jahnsen 1986a,b;
Llinás and Muhlethaler 1988). MVN neurons also undergo
rebounds in vitro, but there is more uncertainty about the
channels involved (Sekirnjak and du Lac 2002, 2006). There is
also indirect physiological and pharmacological evidence DCN
cells rebound in vivo (Aksenov et al. 2005; Hesslow 1994a),
including for a class of neurons with blink-related activity
(Chen and Evinger 2006). Input from a single Purkinje cell
induces a large conductance change in the DCN cell
(Pedroarena and Schwarz 2003), which is sufficient to allow a
modest postinhibitory rebound and increase in Na# spike rate
(M. Molineux, personal communication). Multiple Purkinje
cells might drive larger rebounds and spike bursts in concert,
such as through coordinated Purkinje cell spiking (Heck et al.
2002; Thier et al. 2000). The anatomical convergence of many
hundreds of Purkinje cells onto each DCN neuron implies that
the aggregate activity of a population of Purkinje cells influ-
ences DCN cell activity.

The in vivo extracellular recordings performed to date of
DCN neurons during classical conditioning do not provide
strong evidence either for or against our rebound theory.
Single-unit and multi-unit recordings both reveal an increase in
DCN spiking rate that precedes motor output (Berthier and
Moore 1990; Choi and Moore 2003; McCormick and Thomp-
son 1984a,b; McCormick et al. 1982). By comparison, evi-
dence for a pause in spiking during early portions of the ISI is
limited. Berthier and Moore reported some cells with reduced
spiking at the beginning of the CS, although this pattern is not
apparent in all single-unit recordings (Berthier and Moore
1990; Choi and Moore 2003). Multi-unit recordings of DCN
cell activity do not exhibit a pause, but these recordings may
not provide sufficient sensitivity to reveal a partial reduction
in spiking within a subpopulation of recorded neurons
(McCormick and Thompson 1984a,b; McCormick et al. 1982).

2340 D. Z. WETMORE, E. A. MUKAMEL, AND M. J. SCHNITZER

J Neurophysiol • VOL 100 • OCTOBER 2008 • www.jn.org

 on O
ctober 22, 2008 

jn.physiology.org
Downloaded from

 

http://jn.physiology.org


Irrespective of these results, the rebound model does not make
a strong prediction concerning DCN firing during early por-
tions of the CS. During the early portion of the ISI, DCN
neuron spiking might remain virtually unchanged, despite
increased Purkinje input, due to the dendritic location of most
Purkinje synapses and T-type channels (Fig. 5). Technically
difficult in vivo intracellular recordings would be required to
determine how subthreshold responses in DCN cells develop
during conditioning.

Experimental predictions for studies of cerebellum-dependent
motor learning

The lock-and-key hypothesis leads to a clear prediction that
is testable independent of whether rebound depolarization
provides a lock mechanism: Classical conditioning with a short
("100 ms) or backward CS–US interval should lead to plas-
ticity in the cerebellar cortex despite the lack of reflex acqui-
sition. Several experimental tests of this prediction are possi-
ble. Second-order classical conditioning, which can induce
expression of previously latent first-order conditioning, might
be useful for explicitly demonstrating that a memory of back-
ward conditioning is formed (Barnet et al. 1997). Alternatively,
studies of backward eyeblink conditioning using human brain
imaging techniques might be capable of revealing plasticity-
related effects (Cheng et al. 2007). Electrophysiological re-
cordings of Purkinje cell spiking during reflex conditioning in
decerebrate ferrets and guinea pigs have revealed changes in
spiking patterns in response to forward training (Jirenhed et al.
2007; Kotani et al. 2003), and thus might be used to examine
the effects of backward or short-interval conditioning. Record-
ings from rabbit Purkinje cells, but not DCN cells, were
reported to show changes in activity patterns following back-
ward US–CS pairings (Gould and Steinmetz 1996). This lends
support to the lock-and-key hypothesis, but more experimental
data are still needed.

Several other testable predictions emerge from our modeling
of rebound dynamics during memory recall. Removal or block-
ade of DCN cell rebound conductances should hinder expression
of conditioned blinks. To test this idea, T-channel blockers might
be used to prevent rebounds in trained subjects (McDonough and
Bean 1998; Porcello et al. 2003). Failure to impair conditi-
oned blinks would cast serious doubt on our proposed rebound
mechanism. A related test might be performed in trained
animals during recordings of DCN cells that drive conditioned
responses. Transient depolarization of these cells during the ISI
in trained animals should prevent or diminish blink-related
spiking activity by thwarting T-channel deinactivation. Al-
though perturbation of one cell seems unlikely to disrupt the
blink itself, stimulation of many DCN cells might have such an
effect.

A corollary to this logic concerns inhibition of olivary cells
by projections from GABAergic DCN cells that also receive
Purkinje cell inputs and exhibit rebounds (De Zeeuw and
Berrebi 1995; Teune et al. 1998). These connections appear
critical for extinction of conditioned reflexes following un-
paired CS presentations (Medina et al. 2002). Thus, blockade
of rebound channels should hinder both expression and extinc-
tion of conditioned reflexes. A caveat is that rebound channel
blockers or electrical stimulation applied to the DCN might
alter climbing fiber input to the cerebellum through nucleo-

olivary inhibitory feedback (Bengtsson et al. 2004; Hesslow
and Ivarsson 1996). To dissociate the role of rebounds in
excitatory versus inhibitory DCN neurons might require ge-
netic tools for cell-type-specific manipulation, such as optoge-
netic techniques (Zhang et al. 2007).

Another prediction of the rebound theory is that blink-
related Purkinje cells should exhibit, in the aggregate, biphasic
patterns of CS-driven activity in conditioned subjects. This
contrasts with Albus’s proposal that GABAergic Purkinje cells
should drive DCN cells through disinhibition (Albus 1971).
The recordings made to date of the spiking activity of individ-
ual Purkinje neurons in trained animals have revealed a diver-
sity of spiking patterns in response to the CS (Berthier and
Moore 1986; Gould and Steinmetz 1996; Green and Steinmetz
2005; Jirenhed et al. 2007; Kotani et al. 2003, 2006; Tracy and
Steinmetz 1998). Although multiple regions of cerebellar cor-
tex have been implicated in eyeblink conditioning, most stud-
ies of Purkinje cell activity in classical conditioning have
focused on a subset of these areas.

Recordings of Purkinje cell activity in trained rabbits from
the cerebellar anterior lobe (Green and Steinmetz 2005) and
cerebellar lobule HVI (Berthier and Moore 1986; Gould and
Steinmetz 1996), both areas implicated in eyeblink condition-
ing, have revealed a mixture of activity increases and decreases
in response to the CS. Excitatory responses might occur earlier
in the ISI, with activity decreases occurring later (Green and
Steinmetz 2005). Recordings from lobule HVI in decerebrate
guinea pigs and ferrets have also revealed a mixture of re-
sponses (Jirenhed et al. 2007; Kotani et al. 2006). One partic-
ularly careful study, in which Purkinje cells were first identi-
fied as being responsive to the US prior to training, reported
mainly decreases in Purkinje cell spiking in response to the CS
after training (Jirenhed et al. 2007). However, this study also
mentions that after training some cells undergo an increase in
firing during the first 50–100 ms of the CS, followed by an
abrupt drop in spiking. Overall, Purkinje cell recordings in
trained animals are mainly consistent with the rebound theory
but do not provide sufficient evidence to validate the prediction
that aggregate Purkinje cell activity should be biphasic. Given
the central role in the theory of such biphasic aggregate
responses, it seems important that future studies testing this
prediction should record from multiple Purkinje cells concur-
rently using multielectrode techniques.

If rebounds are instrumental in driving classically condi-
tioned responses, the timing of training stimuli needed for
successful conditioning should depend on rebound channel
kinetics. Because the minimum ISI that leads to rebounds is set
by the sum of the inactivation time constant and tLTD, an
increase in the inactivation time constant should increase the
minimum ISI for successful training. Likewise, slowing the
kinetics of hyperpolarization-activated currents in MVN cells
should increase the interval required between vestibular and
visual inputs needed to generate the greatest changes in VOR
gain.

Further predictions of the rebound theory concern classically
conditioned subjects in which cerebellar LTD or LTP is im-
paired. Elimination of both LTD and LTP would prevent
biphasic patterns of Purkinje cell spiking, precluding rebounds.
Our simulations also suggest that if either LTP or LTD is
partially impaired, rebound amplitude decreases and sporadi-
cally triggers readout by Ca2# or Na# spikes (data not shown).
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However, rebound-driven spiking remains well timed when it
occurs. Thus some animals partially deficient in LTD or LTP
might exhibit conditioned responses sporadically or of dimin-
ished amplitude, but with proper timing. Greater disruptions of
cerebellar plasticity would disrupt response timing due to
insufficient biphasic modulation of Purkinje cell spiking.

To date, several groups have studied eyeblink conditioning
in mice with disrupted cerebellar LTD. Four strains of such
mice exhibited blinks that occurred sporadically or with altered
amplitude, but with the same distribution of time courses as
that of wild-type mice (Kishimoto et al. 2001; Koekkoek et al.
2005; Miyata et al. 2001; Shibuki et al. 1996). It was reported
that mice expressing a protein kinase C (PKC) inhibitor that
impaired LTD had ill-timed residual blinks (Koekkoek et al.
2003). However, questions have been raised about this study
regarding the degree to which motor learning was cerebellar in
origin (Christian et al. 2004; Jirenhed et al. 2007; Koekkoek
et al. 2003). It is possible PKC inhibition disrupts more than
just LTD. Although further study is needed, the former four
strains seem consistent with the rebound theory and suggest
normal LTD levels might be unnecessary for normally timed
responses.

Comparison to other work on the role of rebounds in
cerebellar function

Several other authors have considered a potential role for
DCN cell rebounds in cerebellar network function. Inspired by
the observation that Purkinje cell activity effectively triggers
rebounds in vitro (Aizenman and Linden 1999), Kistler and de
Zeeuw (2003) created computational models emphasizing a
potential role for rebounds in reverberatory olivo-cerebellar
network activity through which Purkinje cells can affect their
own subsequent activity and timed motor responses. In exper-
iments on classically conditioned decerebrate cats, Hesslow
(1994a,b) noted that brief electrical stimulation of the cerebel-
lar cortex leads to a delayed activation of muscle fibers as
assessed by electromyography. This finding was explained as
arising from postinhibitory rebound depolarization in the DCN
and supports a basic assumption underlying our models—that
rebound-driven DCN cell activity can trigger motor action.

Aizenman and Linden (1998) found that DCN cell rebound
depolarization and the associated spike burst are important for
determining the polarity of gain changes at the Purkinje cell
to DCN cell synapse. Mauk and collaborators (Mauk and
Donegan 1997; Medina and Mauk 1999) performed extensive
network modeling studies of cerebellar learning and suggested
that the rise in intracellular Ca2# due to DCN cell rebounds
might be a potent trigger for plasticity at the mossy fiber to
DCN cell synapse. A recent experimental study has demon-
strated this effect, confirming the importance of postinhibitory
rebound current for potentiation of mossy fiber to DCN cell
synapses (Pugh and Raman 2006). However, in the original
simulations the inefficacy of brief ISI values for classical
conditioning arises from a minimum time interval for synchro-
nization of granule cell activity following the CS, rather than
from a rebound-based mechanism (Mauk and Donegan 1997).
For ISI values shorter than the minimum for granule cell
synchronization, plasticity in the cerebellar cortex is precluded.
By comparison, our lock-and-key hypothesis is based on the

supposition of at least some plasticity occurring with brief
forward or backward ISI values.

A non-synaptic form of plasticity capable of increasing the
intrinsic excitability of DCN and MVN neurons appears suited
to raise the propensity for rebounds over the course of training.
Bursts of synaptic input can induce DCN and MVN cells to
display long-lasting gains in excitability due to increases in the
maximum rebound current (Aizenman and Linden 2000; Smith
et al. 2002; Zhang et al. 2004). A biphasic burst-and-pause
pattern of Purkinje cell activity may be optimally suited to
induce this increase (Aizenman and Linden 2000; Medina and
Mauk 1999; Pugh and Raman 2006). Thus, rebound generation
might be facilitated during training, perhaps reducing the
number of Purkinje inputs needed to drive motor action.
Overall, multiple cerebellar plasticity mechanisms in addition
to those invoked here at the PF–Purkinje synapse are likely to
occur during motor training and to shape both cerebellar
dynamics and motor learning in a cooperative fashion (Boyden
et al. 2004; D’Angelo et al. 1999; De Zeeuw and Yeo 2005;
Hansel et al. 2001; Mauk and Donegan 1997; Medina and
Mauk 1999; Soler-Llavina and Sabatini 2006). Collectively,
the existing experimental data not only are consistent with our
computational models but also reach well beyond, suggesting
that rebound currents have multiple functions additional to the
temporal filtering role explored here.

A role for rebounds in temporal shaping
of learned responses

A long-standing debate has concerned the issue of whether
cerebellar-mediated memory storage occurs within the cerebel-
lar cortex or within the deep cerebellar or vestibular nuclei (du
Lac et al. 1995; Ito 1982; McCormick and Thompson 1984a;
Miles and Lisberger 1981). Consistent with the identification
of multiple plasticity mechanisms in vitro, recent in vivo
studies indicate both the cortex and the nuclei have a role in
memory storage, but with distinct kinetics for plasticity induc-
tion and with distinct roles in setting the timing of motor
expression (Kassardjian et al. 2005; Medina and Mauk 1999;
Ohyama and Mauk 2001; Perrett et al. 1993; Shutoh et al.
2006). In both eyeblink conditioning and ocular reflex adapta-
tion, shortly after the start of training motor memory is sus-
ceptible to extinction and is impaired by lesion or pharmaco-
logical disconnection of the cerebellar cortex. After a few days,
motor memories are more resistant to extinction and can persist
without Purkinje cell involvement (Kassardjian et al. 2005;
Ohyama and Mauk 2001; Perrett et al. 1993; Shutoh et al.
2006).

However, even long after training, Purkinje cells appear
important for setting the proper timing of learned responses. In
eyeblink conditioning, disconnection of Purkinje cells’ projec-
tions to the DCN leads to ill-timed, short-latency blink re-
sponses to the CS (Ohyama and Mauk 2001; Perrett et al.
1993). These short-latency blinks probably arise because with-
out inhibitory input from Purkinje cells, DCN cells may be
driven strongly by mossy fiber inputs starting from the onset of
the CS. For VOR adaptation, the relative contributions of the
flocullar Purkinje cells and the MVN neurons in shaping the
temporal character of the learned motor response remain less
clear. Our interpretation of the available data are that for VOR
adaptation, a baseline component of the learned motor re-
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sponse that is not as sensitive to the relative timing of vestib-
ular and visual training stimuli arises from mossy fiber-driven
activity in the MVN (Fig. 7C). However, there also appears to
be another component that is sensitive to the relative timing of
the training stimuli (Raymond and Lisberger 1996); it is this
second component that we propose has the proper form and
kinetics to be explained by a rebound-based mechanism using
a slow, hyperpolarization-activated current (Fig. 7E), such as
that identified by Sekirnjak and du Lac (2002). Unlike eyeblink
conditioning, for which there is no learned response with short
ISI values, there is VOR adaptation following short-interval
training, but at reduced amplitude relative to adaptation at
longer ISI values (Raymond and Lisberger 1996). Thus, re-
bound mechanisms cannot quantitatively account for the full
magnitude of VOR adaptation.

Generalizations of the proposed rebound mechanism

Our simulations involved specific choices of cellular param-
eters, but the ideas presented here on rebounds may have
explanatory power surpassing that of our detailed models. One
aspect of generality concerns the channels that mediate re-
bounds. It was first thought mainly T-type channels drive DCN
cell rebounds, but new evidence also suggests a role for Na#

currents (Sangrey and Jaeger 2005). Further, rebound ampli-
tude or kinetics may vary between individual DCN neurons
due to differential expression of T-channel isoforms (Molineux
et al. 2006). Identities of the rebound channels in MVN cells
are still in question, but in addition to the h-type current there
is evidence Na# and low-voltage-activated Ca2# currents play
a role (Sekirnjak and du Lac 2002; Serafin et al. 1991). Further
characterization of rebound channels may be important for
understanding the precise timing relations seen in behavioral
studies. However, the basic idea that rebounds shape tempo-
rally asymmetric behavioral responses is general and may
apply to other cerebellum-dependent learning paradigms. For
example, learned aspects of smooth visual pursuit exhibit
temporal dependencies on the approximately 200 ms scale that
might reflect requirements for rebound generation in cells of
the cerebellar caudal fastigial nucleus (Medina et al. 2005).

Role of synaptic plasticity in memory formation and recall

A prevalent view holds that LTD and LTP are opposing
mechanisms, with one encoding memories and the other eras-
ing (Boyden and Raymond 2003; Coesmans et al. 2004;
Lev-Ram et al. 2003). We are proposing a different view, in
which both cerebellar LTD and LTP are needed for reliable
recall. The lock mechanism based on rebound depolarization
enforces the requirement for forward training, but nevertheless
both LTD and LTP are induced during forward and backward
training.

In our lock-and-key framework, backward conditioning and
forward training at short intervals induces synaptic plasticity at
parallel fiber to Purkinje cell synapses, despite the absence of
behavioral output. In this respect, our work follows several
prior models of cerebellar-mediated learning in which neuronal
plasticity can occur without any change in motor behavior.
Models of learning with two or more stages have been pro-
posed for eyeblink conditioning (Mauk 1997; Mauk and
Donegan 1997), VOR adaptation (Boyden et al. 2004; du Lac

et al. 1995), and other motor behaviors (Smith et al. 2006).
These models involve an intermediate stage of learning during
which plasticity has occurred but learning is not yet expressed.
More generally, any model of learning with two or more serial
stages of plasticity inherently implies the possible existence of
plasticity without expression of learning. We also present a
two-stage model, but here the second stage of processing is
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FIG. 8. A lock-and-key description of memory recall. A: schematic of
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Purkinje cell “key” activity in response to subsequent presentations of the
learned sensory input. B: schematic of memory recall, in which the lock resides
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activity and learned motor responses. The lock prevents inappropriate motor
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implementation of a lock-and-key mechanism using a linear–nonlinear (L-N)
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filtered by a nonlinear threshold function, G(x). D: the L-N model enables
responses, equal to G[K(t) ! F(t)], to be made selectively to only those keys,
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implemented as temporal filtering occurring at memory recall
rather than as plasticity occurring during memory formation.
As with prior two-stage models of plasticity, our model also
predicts the possibility of plasticity without behavior modifi-
cation.

The idea of rebound generation as a temporal filter pertains
to the ongoing debate about mechanisms that shape the depen-
dence of classically conditioned responses on the CS–US ISI
(Fig. 1B). Ideas from recent studies on synaptic plasticity and
animal behavior have suggested conflicting explanations.
Some authors have suggested spike-timing-dependent plastic-
ity can account for the variation in performance with the ISI
value (Wang et al. 2000). A timing-dependent plasticity rule in
which PF activity preceding CF activity is optimal for LTD
induction does create a distinction between backward and
forward training (Fig. 2). However, the recent and older ex-
perimental data show that LTD can occur with forward or
backward timing protocols (Fig. 2A) (Chen and Thompson
1995; Ito and Kano 1982; Wang et al. 2000), so another
mechanism auxiliary to LTD seems needed to create condi-
tioned reflexes selectively following forward but not backward
training. Our model incorporates spike-timing-dependent plas-
ticity, and tLTD is a key factor that causes the conditioned
response to precede the expected US. However, it is rebound
generation that precludes learned responses following back-
ward training. In a sense, a memory of backward training is
formed in the resulting patterns of LTD and LTP, but this
memory is not retrieved in response to the CS.

This statement of the lock-and-key hypothesis fits well with
studies of classical aversion conditioning, which have shown
backward training leads to an associative memory of the
US–CS pairing (Gallistel and Gibbon 2000). CS presentation
alone does not yield conditioned motor responses, but the
associative memory can be demonstrated through second-order
conditioning (Barnet et al. 1997). Thus, at least for this form of
aversion conditioning, mediated outside the cerebellum, the
lock-and-key hypothesis appears to be correct. What mecha-
nism prevents the stored memory from yielding a response to
the CS? For aversion conditioning the answer remains un-
known, but our study points to rebound depolarization as a
candidate mechanism by which such behavioral filtering might
occur for cerebellum-dependent behaviors.

An algorithmic lock-and-key description of memory retrieval

In sensory neuroscience, filters have been fruitfully used to
describe receptive fields and spiking behavior in an algorithmic
manner, apart from physiological details. Our study suggests
an algorithmic lock-and-key description of cerebellar memory
recall (Fig. 8). The “lock” resides in the DCN or MVN as a
temporal filter that requires specific “key” input activity to
drive rebound spiking and a motor response. The key is the
biphasic pattern of Purkinje cell activity that is shaped by
training and driven by a learned sensory cue. Synaptic plastic-
ity does not lead to learned responses unless key activity is
shaped to match the temporal filter of the lock (Fig. 8, A and
B). Backward training induces plasticity, but the resulting key
activity does not fit the lock, precluding conditioned responses.

We found that a simple linear–nonlinear (L-N) filter model,
inspired by those used to describe visual receptive fields
(Baccus and Meister 2002; Korenberg and Hunter 1986), can

accurately predict the responses of our biophysical models and
the behavioral dependence of learned responses on ISI (Fig. 8,
C–E). Thus from an algorithmic standpoint memory retrieval
may involve a temporal filter that excludes certain behaviors
and allows others.

The lock-and-key model of recall might be adaptable to
other nondeclarative forms of memory involving feedforward
networks. Striatal memory for motor sequences shows prom-
ising similarities, since both Purkinje cells and striatal medium
spiny neurons receive diverse sensory information, undergo
bidirectional plasticity, and are GABAergic projection neurons
that trigger motor sequences (Fino et al. 2005). The similarity
between these two GABAergic cell types also extends to their
respective targets, because there is one class of striatal target
neuron in the globus pallidum that is spontaneously active, has
a baseline membrane potential of about &60 mV, and reliably
undergoes postinhibitory rebound depolarization in response to
electrical stimulation of striatal input fibers (Nambu and Llinás
1994). By analogy, corticostriatal plasticity alone may not
represent a memory, since select patterns of striatal input
activity to the globus pallidum may be needed to unlock motor
expression. These ideas challenge classical theories of memory
storage that focus almost exclusively on neuronal plasticity but
avoid mention of how retrieval dynamics may help shape
memory expression.

Neuroscientists have long sought the location and substance
of memories. This quest led to the notion of the engram, the
physical unit of memory, and to the later idea that changes in
synaptic strength constitute a candidate substrate for memory
(Bliss and Lomo 1973; Lashley 1950). Cognitive scientists
have countered that synaptic plasticity alone does not account
for the complex phenomenology of memory recall (Gallistel
1993; Martin et al. 2000). In this opposing view, a memory is
a physical dynamic that occurs exclusively at recall. Plasticity
may help shape this dynamic, but is not by itself a memory.
Our computational models provide concrete examples in which
it is difficult to identify any physically localized engram.
Would the engram include the synapses that have undergone
plasticity, the key activity that triggers a memory, the activity
unlocked at a rebound, or all of the above? By itself plasticity
seems a poor candidate for a complete engram, since it is
insufficient to allow recall. Questions regarding the physical
substance of memory may be misleading, neglecting that recall
occurs due to a sequence of events culminating in a specific
form of neural dynamics. This caveat regarding the substance
of memory in our models might also apply broadly to multiple
memory systems.
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