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In mathematical models of phylogenetic trees evolving in time, a labelled
history for a rooted labelled bifurcating tree is a temporal sequence of the
branchings that give rise to the tree. That is, given a leaf-labelled tree withn leaves and n − 1 internal nodes, a labelled history is an identification
between the internal nodes and the set {1, 2, …,n − 1}, such that the label
assigned to a given node is strictly greater than the labels assigned to its
descendants. We generalize the concept of labelled histories to r-furcating
trees. Consider a rooted labelled tree in which each internal node has
exactly r children, r ≥ 2. We first generalize the enumeration of labelled
histories for a bifurcating tree (r = 2) to enumerate labelled histories for
an r-furcating tree with arbitrary r ≥ 2. We formulate a conjecture for the
rooted unlabelled r-furcating tree shape on n internal nodes whose labelled
topologies have the most labelled histories. Finally, we enumerate labelled
histories for r-furcating trees in a setting that allows for simultaneous
branchings. These results advance mathematical phylogenetic modelling
by extending computations concerning fundamental features of bifurcating
phylogenetic trees to a more general class of multifurcating trees.

This article is part of the theme issue ‘“A mathematical theory of
evolution”: phylogenetic models dating back 100 years’.

1. Introduction
Stochastic phylogenetic models describe the evolutionary process, beginning
from a single lineage that eventually gives rise to many lineages [1–5]. Models
tracing back to the foundational 1925 paper of Yule [6] consider stochastic
processes for both the discrete structure of trees and the time intervals
between branchings [7].

Edwards, in a pioneering article [8] that recognized Yule’s contribution
to phylogenetic modelling, and Harding, in a detailed treatment that soon
followed [9], studied the discrete structure of evolving phylogenetic trees
separately from the time intervals separating divergences. Following Yule,
they considered branchings as non-simultaneous bifurcations. Extinction is
disallowed, and throughout the process, each extant lineage is equally likely
to be the next to bifurcate. Conditioning on the appearance of n lineages at the
end of the process, each of the possible sequences of bifurcations is equally
likely to describe the branching history.

The Yule or Yule–Harding model for the discrete branching structure—
or sometimes the Yule–Harding–Kingman model, after its use in Kingman’s
coalescent process for population genetics [10]—has come to serve as a
foundational model for the discrete structure of evolving trees. What is
the probability that the evolutionary process produces a given topological
relationship among n labelled lineages? With what probability does a tree of n
lineages have a specified number of clades of a given size? What are the mean
and variance of measures of ‘tree balance’? Many such questions have been
studied under the Yule–Harding model, providing an understanding of the
features expected for evolutionary trees under simple assumptions [3,11,12].
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A central concept in the study of the discrete structures produced by evolutionary models is that of a labelled history. For a
tree that has n leaves with distinct labels, a labelled history gives the topological relationship of the n leaves together with the
sequence of branchings that has given rise to it [3, p. 47]. The labelled histories describe the discrete outcomes of an evolutionary
model that reaches n labelled leaves. Probabilistic analysis of a phylogenetic model often involves a computation on the discrete
probability space that takes the labelled histories as the set of possible outcomes—with the Yule–Harding model assuming that
each outcome is equally likely. Combinatorial features of the labelled histories provide basic results for application of such
models.

How many labelled histories exist with n leaves? How many share a specific labelled topology? What labelled topologies
possess the largest number of labelled histories? The first question was answered by Edwards [8]. The second was answered
by Brown [13] but reported earlier without a biological context [14, p. 67]. A solution to the third question was presented by
Hammersley & Grimmett [15] based on a conjecture of Harding [9].

Biological scenarios often suggest the importance of models that extend beyond the assumption of non-simultaneous
bifurcations [16]. Multifurcation is relevant to species radiations, in which many lineages can diverge simultaneously. For
pathogen lineages, which can be transmitted from one to many hosts, multifurcation may describe descent more accurately
than a sequence of bifurcations. Multifurcation is also suited to genealogies of marine invertebrates, in which some individuals
possess large numbers of surviving offspring while others have none. Simultaneous bifurcations can be important in popula-
tion-genetic models of large samples in small populations, in which they are too probable to ignore. Mathematical analysis
of models with multifurcation and simultaneity can therefore contribute to understanding evolutionary descent in diverse
biological scenarios.

Here, we study the combinatorics of labelled histories in settings with multifurcation and simultaneity. First, we allowr-furcations, supposing that each internal node is permitted to branch into precisely r descendants, r ≥ 2. Next, we considerr-furcations with simultaneity, allowing multiple concurrent r-furcating divergences. We extend enumerative results that have
been available only in select scenarios beyond non-simultaneous bifurcations [12,17,18]. We also conjecture that aspects of
subtree sizes that give rise to the largest number of labelled histories in the bifurcating case naturally extend to scenarios withr-furcations.

2. Definitions
Definitions largely follow Steel [3] and King & Rosenberg [12]. We consider leaf-labelled, rooted trees T, in which leaves have
unique labels. For a tree T, non-leaf nodes, including the root node, are internal nodes. The labelled topology of T is its topological
structure together with its leaf labels. We indicate the number of leaves of T by |T| and also by n. We also have occasion to refer
to unlabelled topologies; the unlabelled topology of T is its topological structure with its leaf labels omitted.

A node u of T is descended from internal node v if v lies on the path from the root node to u. Node v is ancestral to u; trivially,
a node is both ancestral to and descended from itself. We consider r-furcating trees, in which r is fixed and each internal node has
exactly r immediate descendants, r ≥ 2. Most mathematical phylogenetic studies assume r = 2. For an r-furcating tree T whose
root has immediate subtrees T1,T2, …,Tr, we write T = T1 ⊕ T2 ⊕ … ⊕ Tr.

Given a labelled topology for a rooted tree T with w internal nodes, a labelled history for T is a bijection f from {1, 2, …,w} to
the internal nodes of T, so that if node u is descended from node v in T, then f−1(u) ≤ f−1(v). A labelled history can be viewed as
the temporal sequence of internal nodes, with a convention in this study that the numbers assigned to nodes increase backward
in time along genealogical lines. Note that w, the number of internal nodes, is |T| − 1 for bifurcating trees, and more generally,w = (|T| − 1)/(r − 1) for r-furcating trees. Figure 1a shows two labelled histories for the same bifurcating labelled topology.

The classic Yule–Harding model for bifurcating trees assumes that each internal node occurs at a unique point in time. We
consider r-furcating trees (figure 1c) with non-simultaneous r-furcations; we also allow simultaneity, in which multiple internal
nodes share the same point in time (figure 1b,d). We use the term event to refer to a set of simultaneous internal nodes. If internal
node u is descended from internal node v and u ≠ v, then u and v are not part of the same event. With simultaneity, the temporal
sequence of internal nodes that encodes a labelled history contains simultaneous nodes. For emphasis, we sometimes use the
term tie-permitting to refer to labelled histories that allow simultaneity, as such labelled histories allow ‘ties’ in node times.

For a given scenario with a fixed number of leaves, a maximally probable labelled topology is a labelled topology whose
number of labelled histories is greater than or equal to that of all other labelled topologies [19]. Because each labelling of
an unlabelled topology by a distinct set of leaf labels gives rise to the same number of labelled histories, we use unlabelled
topologies to indicate the maximally probable labelled topologies.

3. Results
We investigate three aspects of labelled histories in four settings. In particular, we examine (i) the number of labelled histories
across all labelled topologies with a given number of leaves, (ii) the number of labelled histories for a specific labelled topology,
including cases of fully symmetric trees and (iii) the characterization of maximally probable labelled topologies. The four
settings are (i) bifurcating trees with non-simultaneous branching, (ii) bifurcating trees allowing simultaneous branching, (iii)r-furcating trees with non-simultaneous branching and (iv) r-furcating trees allowing simultaneous branching. Section 3(a)
reviews known results. Section 3(b) reviews the main result of King & Rosenberg [12] on simultaneous bifurcation, adding one
new result (proposition 5). Sections 3(c) and 3(d) contain the main new results of the study.

2

royalsocietypublishing.org/journal/rstb 
Phil. Trans. R. Soc. B 380: 20230307

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

20
 F

eb
ru

ar
y 

20
25

 



(a) Bifurcating trees, non-simultaneous branching
Consider bifurcating trees with non-simultaneous bifurcations and n ≥ 2 leaves; we also include the trivial tree with n = 1 that
consists of a single leaf.

(i) Total number of labelled histories

Let A2(n) denote the total number of labelled histories across all labelled topologies with n leaves. Trivially, A2(1) = 1. To count
labelled histories, we proceed backward in time from the n lineages. For n ≥ 2, each of n

2  pairs can be the first pair to coalesce,
leaving n − 1 lineages. Recursively, A2(n) = n

2 A2(n − 1). After the first coalescence, each of n − 1
2  pairs can be next to coalesce, and

so on, until only a single pair of lineages remains.

Proposition 1 ([8]). Permitting only non-simultaneous bifurcations, the total number of labelled histories on n leaves, A2(n), satisfiesA2(1) = 1, and for n ≥ 2,

A2(n) = n
2

n − 1
2 … 3

2
2
2 = n! (n − 1)!

2n − 1 .

Sequence A2(n) begins 1, 1, 3, 18, 180, 2700 and is sequence A006472 in OEIS, the On-Line Encyclopedia of Integer Sequences
[20].

(ii) Number of labelled histories for a specific labelled topology

Next, consider a labelled topology T for a bifurcating tree with non-simultaneous bifurcations and n leaves. Denote by T1 and T2

the two immediate subtrees of the root of T, with |T1| and |T2| leaves, respectively. For n ≥ 2, the number of labelled histories forT, N(T), is obtained recursively:

(3.1)N(T) = |T| − 2|T1| − 1 N(T1)N(T2),

with N(T) = 1 for n = 1. To obtain a non-recursive formula, define V0(T) as the set of internal nodes of T, including the root.
Furthermore, define for internal nodes v of T the function m : V0(T) ℕ, with m(v) denoting the number of leaves contained in
the subtree rooted at node v. By definition, 2 ≤ m(v) ≤ n. We expand the recursive equation (3.1) and multiply by (n − 1)/(n − 1) so
that the product in the denominator includes the root node.

Proposition 2 ([13]). Permitting only non-simultaneous bifurcations, the number of labelled histories for a labelled topology T with n
leaves, N(T), satisfies N(T) = 1 for n = 1, and for n ≥ 2,

N(T) = (n − 1)!
∏v ∈ V0(T) m(v) − 1 .

(a) (b)

(c) (d)

A B C D E F A B C D E F A B C D E F

A B C D E F G H I A B C D E F G H I A B C D E F G H I

Figure 1. Labelled topologies. (a) Two labelled histories for the same bifurcating labelled topology. (b) A labelled history for the labelled topology in (a), permitting
simultaneity. (c) Two labelled histories for the same trifurcating labelled topology. (d) A labelled history for the labelled topology in (c), permitting simultaneity.
Tick marks in the bars adjacent to trees indicate the times of events. Using subscripts to label internal nodes from the leaves towards the root, the labelled
histories are (((A, B)1,C)2, (D, (E, F)3)4)5 and (((A, B)2,C)4, (D, (E, F)1)3)5 in (a), (((A, B)1,C)2, (D, (E, F)1)2)3 in (b), (((A, B,C)2,D,E)3, F, (G,H, I)1)4
and (((A, B,C)1,D,E)2, F, (G,H, I)3)4 in (c) and (((A, B,C)1,D,E)2, F, (G,H, I)2)3 in (d).
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Let T2, k denote a fully symmetric bifurcating labelled topology with 2k leaves, k ≥ 1: a tree in which each internal node has
two subtrees with the same unlabelled topology. Denoting by S2(k) the number of labelled histories for T2, k, equation (3.1) gives

S2(k) = 2k − 2
2k − 1 − 1

S2(k − 1)2.

With S2(1) = 1, this recurrence can be solved; the solution can also be obtained from proposition 2 by noting that T2, k has 20

internal nodes with m(v) = 2k, 21 internal nodes with m(v) = 2k − 1, and so on, up to 2k − 2 internal nodes with m(v) = 22 and 2k − 1

internal nodes with m(v) = 21. The sequence S2(k) is OEIS entry A056972.

Corollary 3 ([12]). Permitting only non-simultaneous bifurcations, the number of labelled histories for a fully symmetric labelled
topology T2, k with 2k leaves satisfies

S2(k) = ∏j = 2

k 2j − 2
2j − 1 − 1

2k − j
= (2k − 1)!
∏j = 2
k (2j − 1)2k − j

for k ≥ 2, with S2(1) = 1.

(iii) Maximally probable labelled topologies

For labelled topologies with non-simultaneous bifurcations, let Un* denote the unlabelled topology on n leaves whose labellings
give rise to the largest number of labelled histories. Recall the notation T = T1 ⊕ T2 for a tree T whose root has subtrees T1 andT2.

Theorem 4 ([15]). Permitting only non-simultaneous bifurcations, the unlabelled topology whose labellings have the largest number of
labelled histories among unlabelled topologies with n leaves takes the form Un* = Ut* ⊕ Un − t* , where for n ≥ 3,

t = 2⌊log2(n − 1
3 )⌋ + 1.

The decomposition at the root contains trees of size t and n − t, where t is a specified power of 2. We have (t,n − t) = (1,1) for the
trivial n = 2, and for n = 3 to n = 16, we have (t,n − t) = (1,2), (2,2), (2,3), (2,4), (4,3), (4,4), (4,5), (4,6), (4,7), (4,8), (8,5), (8,6), (8,7) and
(8,8). For n = 2 to n = 14, these topologies can be viewed in figure 2.

Letting G2(n) denote the number of labelled histories for the unlabelled topology whose labellings have the largest number
of labelled histories among unlabelled topologies with n leaves, the proof of theorem 4 finds that the value of t in the theorem
maximizes the recursion G2(n) = [2/(n − 1)] maxt ∈ {1,2, …n − 1} G2(t)G2(n − t) .

(b) Bifurcating trees, simultaneous branching
King & Rosenberg [12] introduced the study of labelled histories in the scenario that allows simultaneous bifurcations. The
labelled histories with simultaneity allowed subsume the labelled histories without simultaneity.

(i) Total number of labelled histories

We provide a new result for the total number of labelled histories across all bifurcating labelled topologies, allowing simultane-
ous bifurcations, denoting this quantity Y2(n). Proceeding recursively backward in time, we choose i pairs of lineages to coalesce
simultaneously in the first ‘event’, with 1 ≤ i ≤ ⌊n/2⌋. The number of ways of choosing i pairs of lineages from among n lineages
is 1i!∏j = 0

i − 1 n − 2j
2 , as there are n

2  choices for the first pair, n − 2
2  for the second pair, and so on, with n − 2(i − 1)

2  choices for the ith pair.
The same i pairs can be chosen in any of i! orders. Once the i pairs coalesce, we are left with n − i lineages.

Proposition 5. Permitting simultaneous bifurcations, the total number of labelled histories on n leaves, Y2(n), satisfies Y2(1) = 1, and forn ≥ 2,

(3.2)Y2(n) = ∑i = 1

⌊n/2⌋ 1i!∏j = 0

i − 1 n − 2j
2 Y2(n − i)

(3.3)= ∑i = 1

⌊n/2⌋ 1i! n!
2i(n − 2i)! Y2(n − i).

If only the i = 1 term in the sum in equation (3.3) is tabulated—so that no simultaneous bifurcations are allowed—then the
recursion reduces to the form in proposition 1, or A2(n) = n

2 A2(n − 1).
The first terms in proposition 5 are Y2(1) = 1, Y2(2) = 1, Y2(3) = 3, Y2(4) = 21, Y2(5) = 255 and Y2(6) = 4815, compared withA2(1) = 1, A2(2) = 1, A2(3) = 3, A2(4) = 18, A2(5) = 180 and A2(6) = 2700. Y2(n) was previously obtained as the solution to a related

problem in graph theory, appearing as OEIS sequence A317059 (see proposition 4.14 of [21]).
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(ii) Number of labelled histories for a specific labelled topology

For a labelled topology T, King & Rosenberg [12] derived a recursion for the number of labelled histories, allowing simultane-
ous bifurcations. Let N(T) denote the number of tie-permitting labelled histories for T, with E(T, z) denoting the number that
have exactly z events, or z separate times at which bifurcations occur. If simultaneity is disallowed, then z = |T| − 1.

Let δ(T) denote the ‘height’ of T, the maximum over leaves of T of the number of edges separating the root of T from the leaf.δ(T) is the minimal number of events in which the coalescences of topology T can occur. We then have N(T) = ∑z = δ(T)
|T| − 1 E(T, z).

For a labelled topology T with at least two leaves, denote by T1 and T2 the labelled topologies for the two immediate subtrees
of the root of T. Theorem 3 of [12] gives the number of tie-permitting labelled histories for T. The theorem sums tie-permitting
labelled histories across all possible numbers of events z; for each z, enumeration proceeds recursively from the root, tabulating
ways that the left and right subtrees can coalesce with a total of z events.

Theorem 6 ([12]). Permitting simultaneous bifurcations, the number of labelled histories for a labelled topology T with n leaves, N(T),
satisfies

N(T) = ∑z = δ(T)

|T| − 1 E(T, z).

The number of tie-permitting labelled histories E(T, z) satisfies

(i) If T is a labelled topology with 1 leaf, then E(T, 0) = 1 and E(T, z) = 0 for z ≠ 0.
(ii) If |T1| = 1 and |T2| = 1, then E(T, 1) = 1 and E(T, z) = 0 for z ≠ 1.

(iii) If at least one of |T1|, |T2| exceeds 1, then

E(T, z) = ∑a = max δ(T1), z − |T2 |
min ( |T1 | − 1, z − 1)

∑b = max δ(T2), z − a − 1

min ( |T2 | − 1, z − 1) F(z, a, b)E(T1, a)E(T2, b),

where F(z, a, b) = z − 1
(z − 1) − b, (z − 1) − a, a + b − (z − 1) .

(c) r-furcating trees, non-simultaneous branching
We now generalize to r-furcating trees, where r ≥ 2 is a fixed value. First, notice that a tree in which each internal node hasr immediate descendants must have n = 1 + w(r − 1) leaves, for some non-negative integer w, which again counts the number
of internal nodes (w = 0 is the case of a single leaf). This result can be understood by noticing that beginning with a singler-furcating root, each sequential replacement of a leaf with an internal node adds r − 1 additional leaves.

(i) Total number of labelled histories

Let Ar(n) denote the total number of labelled histories across all r-furcating trees with non-simultaneous r-furcations. As in the
bifurcating case, Ar(1) = 1, and for larger values of n, Ar(n) = nr Ar(n − r + 1), as each of nr  sets of r can be the first to coalesce.

Proposition 7. For w ≥ 0, let n = 1 + w(r − 1). Permitting only non-simultaneous r-furcations, the total number of labelled histories on n
leaves, Ar(n), satisfies Ar(1) = 1, and for n ≥ r,

Ar(n) = nr n − r + 1r … 3r − 2r 2r − 1r rr = n!
(r!)w∏i = 1

w n − (r − 1)i .

r = 2

n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 11 n = 12 n = 13 n = 14

r = 3

r = 4

r = 5

Figure 2. The maximally probable topology of an r-furcating tree on n leaves with non-simultaneous branching for small r and n. For bifurcating topologies,
the maximally probable unlabelled shape is identified by theorem 4. More generally, for r ≥ 2, the maximally probable unlabelled shapes shown are obtained by
exhaustive computation, and they follow conjecture 13.
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Table 1 provides the total numbers of labelled histories for small r and small n. For r = 2, the proposition recovers the value in
proposition 1. For r = 3, Ar(n) simplifies to

(3.4)A3(n) = n!
6(n − 1)/2 ∏i = 1

(n − 1)/2
(n − 2i) = 2n! (n − 2)!

12(n − 1)/2 (n − 3
2 )!

,

The expression corresponds to OEIS sequence A339411.
More generally, note that ∏i = 1

w [n − (r − 1)i] = (r − 1)w∏i = 1
w nr − 1 − i = (r − 1)wΓ nr − 1 /Γ 1r − 1 , so that

Ar(n) =
n! (r − 1)wΓ nr − 1

(r!)wΓ 1r − 1

.

(ii) Number of labelled histories for a specific labelled topology

We next count labelled histories for a labelled topology T of an r-furcating tree with non-simultaneous r-furcations. For a tree
with |T| = n leaves, starting with a single leaf, each replacement of a leaf by an internal node with r descendants adds r − 1
leaves, so that |T| = 1 + w(r − 1), or

(3.5)w = |T| − 1r − 1 .

Again, we count bijections between internal nodes and node ranks, with the constraint that the rank for an internal node
must exceed those of its descendants. First, N(T) = 1 for |T| = 1. For |T| > 1, the root is assigned rank (|T| − 1)/(r − 1). A multi-
nomial coefficient gives us the number of ways of allocating ranks 1, 2, …, (|T| − 1)/(r − 1) − 1 to the r subtrees T1,T2, …,Tr—
which possess ( |T1 | − 1)/(r − 1), ( |T2 | − 1)/(r − 1), …, ( |Tr | − 1)/(r − 1) internal nodes, respectively. Multiplying by the numbers of
labelled histories for the r subtrees, we obtain

(3.6)N(T) =
|T| − 1r − 1 − 1|T1| − 1r − 1 , |T2| − 1r − 1 , …, |Tr| − 1r − 1

N(T1)N(T2)⋯N(Tr).
Next, N(T1),N(T2), …,N(Tr) can each be defined by the same recursive decomposition of their r immediate subtrees. We
continue the decomposition until we reach subtrees with 1 leaf, obtaining a product of multinomial coefficients, one for each
internal node of T. With V0(T) as the set of all internal nodes of T and m(v) as the number of leaves for the subtree with root v,
we multiply by an additional term |T| − 1r − 1 / |T| − 1r − 1 = n − 1r − 1 /n − 1r − 1 .

Proposition 8. Permitting only non-simultaneous r-furcations, the number of labelled histories for a labelled topology T with n leaves,N(T), satisfies N(T) = 1 for n = 1, and for n = 1 + w(r − 1) with w ≥ 1,

N(T) =
n − 1r − 1 !

∏v ∈ V0(T)
m(v) − 1r − 1

.

With r = 2, we recover proposition 2. That proposition 2 generalizes to multifurcation had been noted by Semple & Steel [17, p.
23], referencing a result of Stanley [22, p. 312] in the context of partially ordered sets.

Let Tr, k denote a fully symmetric r-furcating labelled topology with rk  leaves, k ≥ 1: a tree in which each internal node
has r subtrees with the same unlabelled topology. Denoting by Sr(k) the number of labelled histories for Tr, k, we can
use the recursive equation 3.6 or the closed-form proposition 8 to obtain Sr(k). In applying proposition 8, we have r0

internal nodes with m(v) = rk, r1  internal nodes with m(v) = rk − 1, and so on, until rk − 2  internal nodes with m(v) = r2  andrk − 1  internal nodes with m(v) = r1.

Corollary 9. Permitting only non-simultaneous r-furcations, the number of labelled histories for a fully symmetric labelled topology Tr, k
with rk leaves satisfies

Sr(k) =
rk − 1r − 1 !

∏j = 2
k rj − 1r − 1

rk − j
for k ≥ 2, with Sr(1) = 1.

Table 2 shows the values of Sr(k) for small r and k. With r = 2, the corollary recovers corollary 3. Inserting r = 3 and r = 4, we
obtain the sequences OEIS A273723 and OEIS A273725.

(iii) Maximally probable labelled topologies

With our general formula counting labelled histories for any r-furcating tree, we investigate the unlabelled topology on n leaves
whose labelled topologies have the most labelled histories.
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We first discuss trifurcation (r = 3). Consider a trifurcating tree T with n leaves. For n = 3, only one unlabelled topology is
possible for T. For any labelling of its leaves, only one labelled history is possible. Similarly, for n = 5, only one unlabelled
topology is possible, and only one labelled history for a labelled topology with that unlabelled topology. For each n = |T|, the
maximum is obtained by recursively maximizing equation (3.6):

(3.7)N(T) =
n − 1

2 − 1|T1| − 1
2 , |T2| − 1

2 , |T3| − 1
2

N(T1)N(T2)N(T3).

For fixed |T1|, |T2|, |T3|, this equation is maximal if T1,T2,T3 are the maximally probable subtrees of sizes |T1|, |T2|, |T3|. At what
allocation of |T1|, |T2|, |T3| with |T1| + |T2| + |T3| = n is the product in equation (3.7) maximized?

Following Harding [9], we increment n by 2, starting with n = 7, considering each decomposition (|T1|, |T2|, |T3|) withn = |T1| + |T2| + |T3|. The decompositions that numerically produce the maximally probable labelled topologies appear in table 3;
the associated numbers of labelled histories follow OEIS sequence A178008. A leaf configuration with each subtree at the same
power of 3 increments subtree by subtree to the next power of 3. We formalize a conjecture.

Consider trifurcating tree T = T1 ⊕ T2 ⊕ T3. By equation (3.7), its number of labelled histories satisfies

(3.8)
N(T)|T| − 1

2 !
= 2|T| − 1

N(T1)|T1| − 1
2 !

N(T2)|T2| − 1
2 !

N(T3)|T3| − 1
2 !

.

Let M(T) = N(T)/( |T| − 1
2 )!, so that equation (3.8) becomes M(T) = 2|T| − 1M(T1)M(T2)M(T3). To find the tree T* that maximizes N(T)

across all trifurcating trees with n leaves, we must solve the maximization

max{T1,T2,T3 |T1| + |T2| + |T3| = n}
2n − 1M(T1)M(T2)M(T3).

At this point, it is convenient to recast the maximization over sets of subtrees as a maximization over positive integer vectors;
the tree is recovered from the vectors by recursively noting that the subtrees of a maximally probable tree are each maximally
probable for their size. The maximal number of labelled histories among trees of size n = 1 + w(r − 1) leaves, r = 3, is obtained as

G3(n) = max{t1, t2, t3 t1, t2, t3 > 0, t1 + t2 + t3 = n}
2n − 1G3(t1)G3(t2)G3(t3),

where G3(1) = 1 and (t1, t2, t3) = 1 + (r − 1)(w1,w2,w3) for non-negative integers w1,w2,w3.
Taking the logarithm of both sides, this maximization is equivalent to a minimization of ϕ(n) = −log G3(n):

ϕ(n) = min{t1, t2, t3 t1, t2, t3 > 0, t1 + t2 + t3 = n} ϕ(t1) + ϕ(t2) + ϕ(t3) + log n − 1
2 .

Table 1. The total numbers of labelled histories Ar(n) for small r-furcating trees with non-simultaneous r-furcations. Values of n are obtained fromn = 1 + w(r − 1) and Ar(n) is computed from proposition 7. A2(n) follows OEIS A006472, and A3(n) follows OEIS 339411.

r = 2 r = 3 r = 4 r = 5w n A2(n) n A3(n) n A4(n) n A5(n)

1 2 1 3 1 4 1 5 1

2 3 3 5 10 7 35 9 126

3 4 18 7 350 10 7350 13 162 162

4 5 180 9 29 400 13 5 255 250 17 1 003 458 456

5 6 2700 11 4 851 000 16 9 564 555 000 21 20 419 376 121 144

6 7 56 700 13 1 387 386 000 19 37 072 215 180 000 25 1 084 881 453 316 380 720

Table 2. The number of labelled histories Sr(k) for a fully symmetric r-furcating labelled topology Tr, k with n = rk leaves and non-simultaneous r-furcations, withk ≥ 1. Values are computed from corollary 9. Numbers in scientific notation are approximate. S2(k) follows OEIS A056972, S3(k) follows OEIS A273723, and S4(k)
follows OEIS A273725.

r = 2 r = 3 r = 4k n S2(k) n S3(k) n S4(k)

1 2 1 3 1 4 1

2 4 2 9 6 16 24

3 8 80 27 7 484 400 64 3 892 643 213 082 624

4 16 21 964 800 64 3.542 × 1037 256 1.117 × 10110
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This minimization takes the form of a recursive minimization related to a problem solved by Batty et al. [23]. We restate their
corollary 5.3 as theorem 11. We expand the assertion in their equation 5.1 as lemma 10, indicating that each positive integer has
a unique partition of a certain type; the partition has r terms that are scalar multiples of one of two consecutive powers of r, and
possibly one more term bounded by the difference between the two multiples.

Lemma 10. Choose positive integers q, r ≥ 2. Let k0 = 0 and kp = (q − 1)rp − 1 for integers p ≥ 1, and let jp = kp + 1 − kp for p ≥ 0. Each
integer n ≥ q has a unique decomposition specified by integers (p, s, b) as n = skp + (r − s)kp + 1 + b, where 1 ≤ s ≤ r, p ≥ 0 and 0 ≤ b < jp.

Proof. Existence is verified by finding a suitable decomposition. First, considering all s in [1, r] and b in [0, jp),skp + (r − s)kp + 1 + b ranges in interval I0 = 0, (q − 1)r  for p = 0 and in Ip = (q − 1)rp, (q − 1)rp + 1  for p ≥ 1. The intervals do not
overlap, so that in seeking to decompose n, p is the unique solution of the inequality (q − 1)rp ≤ n < (q − 1)rp + 1, or p = logr nq − 1 .

Next, noting 0 ≤ b < (q − 1)rp − (q − 1)rp − 1, we find s by solving the inequality

s(q − 1)rp − 1 + (r − s)(q − 1)rp ≤ n < s(q − 1)rp − 1 + (r − s)(q − 1)rp + [(q − 1)rp − (q − 1)rp − 1].

The solution is also unique,

s = (q − 1)rp + 1 − n
(q − 1)(rp − rp − 1)

.

We confirm that s ≤ r. Using (q − 1)rp ≤ n, we see that

s ≤ (q − 1)rp + 1 − (q − 1)rp
(q − 1)(rp − rp − 1)

= ⌈r⌉ = r,
as is needed. Finally, b is uniquely specified as b = n − [s(q − 1)rp − 1 + (r − s)(q − 1)rp]. ∎

Theorem 11 ([23]). Choose positive integers q, r ≥ 2. Consider a recursion of the form

f(n) =
g(n), if n < q,

min ∑i = 1
r f(ai) + g(n), if n ≥ q.

where the minimum is over r-tuples a = (a1, a2, …,ar) of integers ai with 0 ≤ ai < n and ∑i = 1
r ai = n.

Consider the special r-tuple σ(n) formed by the unique decomposition (p, s, b) of n ≥ q, with

σi(n) =
kp, 1 ≤ i < s,kp + b, i = s,kp + 1, s < i ≤ r,

Table 3. The division of a tree of n leaves into subtrees with sizes |T1|, |T2| and |T3| leaves that, by numerical computation and by conjecture 12, produces the
maximally probable labelled topology with n leaves. Numbers in scientific notation are approximate. The numbers of labelled histories follow OEIS A178008.

number of leaves (n)
number of labelled
histories

leaf configuration
(|T1|, |T2|, |T3|) number of leaves (n)

number of labelled
histories

leaf configuration
(|T1|, |T2|, |T3|)

3 1 (1,1,1) 35 20 432 412 000 (17, 9, 9)

5 1 (3,1,1) 37 205 837 632 000 (19, 9, 9)

7 2 (3,3,1) 39 2 500 927 228 800 (21, 9, 9)

9 6 (3,3,3) 41 21 598 916 976 000 (23, 9, 9)

11 12 (5,3,3) 43 263 986 763 040 000 (25, 9, 9)

13 40 (7,3,3) 45 3 837 961 401 120 000 (27, 9, 9)

15 180 (9,3,3) 47 3.377 × 1016 (27, 11, 9)

17 630 (9,5,3) 49 4.316 × 1017 (27, 13, 9)

19 3360 (9,7,3) 51 6.658 × 1018 (27, 15, 9)

21 22 680 (9,9,3) 53 7.283 × 1019 (27, 17, 9)

23 113 400 (9,9,5) 55 1.122 × 1021 (27, 19, 9)

25 831 600 (9,9,7) 57 2.045 × 1022 (27, 21, 9)

27 7 484 400 (9,9,9) 59 2.603 × 1023 (27, 23, 9)

29 38 918 880 (11,9,9) 61 4.612 × 1024 (27, 25, 9)

31 302 702 400 (13,9,9) 63 9.580 × 1025 (27, 27, 9)

33 2 918 916 000 (15,9,9) 65 1.188 × 1027 (27, 27, 11)
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where 0 ≤ b < kp + 1 − kp. If g is strictly increasing and strictly concave on each interval kp ≤ n ≤ kp + 1 for p ≥ 0 and g(0) ≥ 0, then the
minimum of f(n) is obtained by a = σ(n).

Theorem 11 does not precisely apply to ϕ(n) in the role of f(n), as our scenario has a number of differences; in particular, the
theorem requires that f(n) be defined for non-negative integers, whereas ϕ(n) is defined only for n = 1 + w(r − 1); in addition, the
theorem allows the ai to range over all non-negative integers less than n, whereas only values 1 + w(r − 1) are permissible for theti. Nevertheless, we find that the minimum of ϕ(n) obtained numerically in table 3 accords with the location of σ(n).

Following theorem 11, with r = 3, we construct σ(n): k0 = 0, kp = 3p − 1 for p ≥ 1, and

jp =
1, p = 0,

3p − 3p − 1, p ≥ 1.

By lemma 10, each integer n ≥ 2 has a unique decomposition as n = skp + (3 − s)kp + 1 + b, where 1 ≤ s ≤ 3, p ≥ 0 and 0 ≤ b < jp.
Vector σ calculated from theorem 11 gives

(3.9)

σi(n) =
kp, 1 ≤ i < s,kp + b, i = s,kp + 1, s < i ≤ 3.

The vector σ accords with table 3. For example, n = 57 has decomposition 57 = 2 ⋅ 9 + 1 ⋅ 27 + 12, with p = 3, s = 2, b = 12, kp = 9
and kp + 1 = 27. We obtain σ1(57) = 9, σ2(57) = 21 and σ3(57) = 27, which, when rearranged, gives the entry for n = 57 in table 3.

Recall the notation ⊕ to indicate subtrees of a tree T; for an unlabelled topology U that consists of k subtrees with identical
unlabelled topology U1 = U2 = … = Uk, we simplify to U = kU1 = U1 ⊕ U1 ⊕ … ⊕ U1. Note that empty subtrees are ignored in
the notation, so that, for example, T1 ⊕ T2 ⊕ ∅ = T1 ⊕ T2. Also recall that Un* denotes the unlabelled topology on n leaves whose
labellings produce the largest number of labelled histories. We use the decomposition σ to provide a conjecture for the form ofUn*.

Conjecture 12. Permitting only non-simultaneous trifurcations, the unlabelled topology whose labellings have the largest number of
labelled histories among unlabelled topologies with n ≥ 3 leaves takes the form Un* = (s − 1)U3p − 1* ⊕ U3p − 1 + b* ⊕ (3 − s)U3p* , wherep = ⌊log3 n⌋,

s = 3p + 1 − n
3p − 3p − 1 ,

b = n − s ⋅ 3p − 1 + (3 − s)3p .

Generalizing to r-furcating trees, we conjecture that the maximally probable tree is decomposed at the root into subtrees of
sizes (rp − 1, …, rp − 1, rp − 1 + b, rp, …, rp).

Conjecture 13. Permitting only non-simultaneous r-furcations, the unlabelled topology whose labellings have the largest number of
labelled histories among unlabelled topologies with n ≥ r leaves takes the form Un* = (s − 1)Urp − 1* ⊕ Urp − 1 + b* ⊕ (r − s)Urp* , wherep = ⌊logrn⌋,s = rp + 1 − nrp − rp − 1 ,

b = n − srp − 1 + (r − s)rp .

If r = 2, then we can see that this conjecture recovers theorem 4. For n ≥ 2, the conjecture gives p = ⌊log2 n⌋,s = ⌈ 2p + 1 − n
2p − 2p − 1 ⌉ = 4 − ⌊ n

2p − 1 ⌋ and b = n − s ⋅ 2p − 1 + (2 − s)2p = n − (4 − s)2p − 1. First, suppose k ≥ 1 and 2k ≤ n ≤ 3 × 2k − 1 − 1. We obtain
(p, s, b) = (k, 2,n − 2k), from which conjecture 13 gives Un* = U2k − 1* ⊕ Un − 2k − 1* . Next, suppose k ≥ 1 and 3 × 2k − 1 ≤ n ≤ 2k + 1 − 1. We
obtain (p, s, b) = (k, 1,n − 3 × 2k − 1), from which the conjecture gives Un* = Un − 2k* ⊕ U2k* .

In theorem 4, we begin with the trivial U2* = U1* ⊕ U1* and U3* = U1* ⊕ U2*; for k ≥ 2, suppose 2k ≤ n ≤ 3 × 2k − 1. We obtain⌊log2(
n − 1

3 )⌋ = k − 2, from which the quantity t in the theorem is t = 2k − 1 and Un* = U2k − 1* ⊕ Un − 2k − 1* . If 3 × 2k − 1 + 1 ≤ n ≤ 2k + 1 − 1,
then we have ⌊log2(

n − 1
3 )⌋ = k − 1, producing t = 2k and Un* = U2k* ⊕ Un − 2k* . Although the intervals of fixed ⌊log2(

n − 1
3 )⌋ defined by

the construction in theorem 4 differ from the intervals defined by the floor and ceiling functions in conjecture 13, they lead to
the same decomposition of a tree into subtrees.

(d) r-furcating trees, simultaneous branching
We next proceed to investigate r-furcating trees with simultaneous branching.
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(i) Total number of labelled histories

We extend our results for labelled histories permitting simultaneous bifurcations (proposition 5) and non-simultaneousr-furcations (proposition 7) to count labelled histories permitting simultaneous r-furcations.

Proposition 14. For w ≥ 0, let n = 1 + w(r − 1). Permitting simultaneous r-furcations, the total number of labelled histories on n leaves,Yr(n), satisfies Yr(1) = 1, and for n ≥ r,
Yr(n) = ∑i = 1

⌊n/r⌋ 1i!∏j = 0

i − 1 n − rjr Yr n − (r − 1)i
= ∑i = 1

⌊n/r⌋ 1i! n!
(r!)i(n − ri)!

Yr n − (r − 1)i .

Proof. We choose i groups of r lineages to coalesce simultaneously in the first event, with 1 ≤ i ≤ ⌊n/r⌋. The number of ways of
choosing i groups of r lineages is 1i!∏j = 0

i − 1 n − rjr . The remaining n − (r − 1)i lineages have Yr n − (r − 1)i  labelled histories. ∎
Table 4 gives the total numbers of labelled histories for small r and the smallest permissible n, starting at Yr(1) = Yr(r) = 1, and

Yr(2r − 1) = (2r − 1)!r! (r − 1)!

Yr(3r − 2) = (2r − 1)(3r − 2)!r!2 (r − 1)!
+ (3r − 2)!

2 r!2 (r − 2)!
.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Event
number

1

2

3

4

5

6

7

8

Event
type

2

6

1

1

2

4

3

-
T

T

T T

1

2 3

Figure 3. Counting labelled histories with simultaneity. A 27-leaf trifurcating labelled topology T  is depicted; the root of T  is indicated, as are the roots of subtreesT1, T2 and T3. Events are numbered backward in time; dashed lines indicate time points and simultaneity. Each event is assigned a type based on simultaneity acrossT1, T2, T3. For a 27-leaf trifurcating tree, the number of possible events z ranges from δ(T) = 3 to (|T| − 1)/(r − 1) = 13; z = 8 is shown. Given z, E(T, z) is
calculated by summing labelled histories across counts (a1, a2, a3) of the numbers of events in subtrees (T1,T2,T3); (a1, a2, a3) = (2,4,3) is depicted. With z and
(a1, a2, a3) fixed, the sum proceeds over compositions C(z + 2r − 2, 2r − 1); composition c = (3,3,2,2,1,2,1) of 14 into 7 parts is shown, or c* = (2,2,1,1,0,1,0).
Thus, for example, c6* = 1 indicates a simultaneous event between subtrees T1 and T2, as the binary representation 1102 for 6 has a 1 in in the leftmost digit (T1),
a 1 in the middle digit (T2) and a 0 in the rightmost digit (T3). The labelled history depicted of a1 = 2 events in subtree T1 is the only arrangement of events inT1 with a1 = 2; the labelled history in subtree T2 is one of six arrangements with a2 = 4, and that in subtree T3 is one of six arrangements with a3 = 3. Once
the simultaneity configuration c* is chosen, the number of ways of assigning the z − 1 = 7 non-root events of T  to its event types is 7

2,2,1,1,0,1,0 = 1260. The total
number of labelled histories for the given z, (a1, a2, a3), and c* equals (1)(6)(6)(1260) = 45360.

Table 4. The total numbers of labelled histories Yr(n) for small r-furcating trees with simultaneous r-furcations. Values of n are obtained from n = 1 + w(r − 1)
and Yr(n) is computed from proposition 14. Y2(n) follows A317059.

r = 2 r = 3 r = 4 r = 5w n Y2(n) n Y3(n) n Y4(n) n Y5(n)

1 2 1 3 1 4 1 5 1

2 3 3 5 10 7 35 9 126

3 4 21 7 420 10 8925 13 198 198

4 5 255 9 43 960 13 8 033 025 17 1 552 358 808

5 6 4815 11 9 347 800 16 19 010 866 875 21 41 269 930 621 920

6 7 130 095 13 3 513 910 400 19 97 622 651 251 125 25 2 917 021 792 126 858 416
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For r = 2, proposition 14 recovers proposition 5. For non-simultaneous multifurcation, i = 1, and proposition 14 recovers the
recursion Ar(n) = nr Ar(n − r + 1) that underlies proposition 7.

(ii) Number of labelled histories for a specific labelled topology

We next count labelled histories for labelled topology T of an r-furcating tree with simultaneous r-furcations, generalizing the
result for simultaneous bifurcations from theorem 6.

Recall that E(T, z) counts tie-permitting labelled histories of labelled topology T with z events. Across all r-furcating treesT, the maximal number of events is (|T| − 1)/(r − 1), if each internal node occurs at a distinct time point. E T, (|T| − 1)/(r − 1)
produces the result of proposition 8, the number of labelled histories for T if only non-simultaneous r-furcations are permitted.

We will also need the minimum number of events permissible for an r-furcating tree T. This quantity is the height δ(T), as
the longest path from a leaf to the root contains δ(T) internal nodes; internal nodes that do not lie on the longest path can all be
made simultaneous with internal nodes that do lie on that path. Hence, for an r-furcating tree T, the number of events, z, must
satisfy

δ(T) ≤ z ≤ |T| − 1r − 1 .

As in theorem 6, the number of labelled histories N(T) satisfies N(T) = ∑z = δ(T)
(|T| − 1)/(r − 1)E(T, z).

The 1-leaf tree has δ(T) = 0, so that E(T, 0) = 1 and E(T, z) = 0 for z ≠ 0. If T has r leaves, then E(T, 1) = 1 and E(T, z) = 0 forz ≠ 1. For the non-trivial case, in which at least one of |T1|, |T2|, …, |Tr| exceeds 1, suppose that for each j, 1 ≤ j ≤ r, aj distinct
events occur in subtree Tj. Each aj is bounded below by δ(Tj) and above by (|Tj| − 1)/(r − 1). The events in different subtrees
are not necessarily distinct. Indeed, considering the r-furcating tree T, there exist 2r − 1 possible sets that could be the set of
subtrees in which a single point in time is associated with a collection of simultaneous nodes. To encode them, write the
number k, 1 ≤ k ≤ 2r − 1, in binary, with r digits. Reading left to right, the jth digit, 1 ≤ j ≤ r, indicates presence or absence of
an event in subtree j. Event type k is an event with simultaneous r-furcations in all the subtrees with entries of 1 in its binary
representation.

Recall that a composition of positive integer n into k parts, 1 ≤ k ≤ n, is an ordered list of k positive integers whose
sum is n. In a labelled history with simultaneity and z events, the z − 1 non-root events must each have one of the types
1, 2, …, 2r − 1. The simultaneity configuration of a labelled history, counting the numbers of events of different types, can be
encoded c* = (c1 − 1, c2 − 1, …, c2r − 1 − 1), where c = (c1, c2, …, c2r − 1) is a composition of (z − 1) + (2r − 1) into 2r − 1 positive integer
parts. Subtracting 1 element-wise to obtain c* from c, with ck* = ck − 1 for each k, we decompose z − 1 into 2r − 1 non-negative
integers.

Write I(c, j) = ∑k = 1
2r − 1ck*f(k, j), where f(k, j) = 1 if the r-digit binary representation of k has a 1 in position j. I(c, j) counts

internal nodes of subtree j for a simultaneity configuration c* encoded by composition c. Given that subtree j has aj distinct
events, for a composition c in the set C(z + 2r − 2, 2r − 1) of compositions of (z − 1) + (2r − 1) into 2r − 1 parts, labelled histories with
the simultaneity configuration c* are possible if and only if for each j from 1 to r, I(c, j) = aj.

For a simultaneity configuration c* that has the specified numbers of subtree events a1,a2, …,ar, the number of labelled
histories for subtree j is E(Tj,aj). Given the labelled histories for the subtrees, the number of ways of assigning the z − 1 non-root
events of T across the 2r − 1 entries in the configuration is z − 1c1

∗, c2
∗, …, c2r − 1

∗ . We assign events in the 2r − 1 categories to the z − 1
sequential positions in the list of events; once events are assigned, the a1,a2, …,ar subsequences follow based on the orders of
events in the subtrees. The derivation is depicted in figure 3. We have obtained the following theorem.

Theorem 15. Permitting simultaneous r-furcations, the number of labelled histories for a labelled topology T with n leaves, N(T),
satisfies

N(T) = ∑z = δ(T)

|T| − 1r − 1 E(T, z).

The number of tie-permitting labelled histories E(T, z) satisfies

(i) If T is a labelled topology with 1 leaf, then E(T, 0) = 1 and E(T, z) = 0 for z ≠ 0.
(ii) If |Tj| = 1 for all j, 1 ≤ j ≤ r, then E(T, 1) = 1 and E(T, z) = 0 for z ≠ 1.

(iii) If |Tj| exceeds 1 for at least one index j, 1 ≤ j ≤ r, then

E(T, z) = ∑a1 = δ(T1)

min |T1 | − 1r − 1 , z − 1

∑a2 = δ(T2)

min |T2 | − 1r − 1 , z − 1

… ∑ar = δ(Tr)
min |Tr | − 1r − 1 , z − 1

∑c ∈ C(z + 2r − 2, 2r − 1)
∏j = 1

r ⟦I(c, j) = aj⟧
× ∏j = 1

r E(Tj, aj) z − 1c1
∗, c2

∗, …, c2r − 1
∗ .

⟦ ⋅ ⟧ denotes the Iverson bracket, equalling 1 if the statement in the brackets holds and 0 otherwise.
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The theorem collapses in two different ways to results we have already obtained. First, if only non-simultaneous r-furcations
are allowed, then z = (|T| − 1)/(r − 1) and aj = (|Tj| − 1)/(r − 1). All terms in the modified compositions c* equal 0 except those
corresponding to non-simultaneous coalescences, so that

N(T) = E T, (|T| − 1)/(r − 1) = ∏j = 1
r E(Tj,aj) z − 1a1,a2, …,ar .

Noting that N(Tj) = E(Tj, aj), this equation accords with the recursive equation (3.6) and hence with the non-recursive proposi-
tion 8.

Second, if r = 2 and simultaneous bifurcations are allowed, then

E(T, z) = ∑a1 = δ(T1)

min |T1 | − 1r − 1 , z − 1

∑a2 = δ(T2)

min |T2 | − 1r − 1 , z − 1

∑c ∈ C(z + 2, 3)
⟦I(c, 1) = a1⟧⟦I(c, 2) = a2⟧

E(T1,a2)E(T2, a2) z − 1c1
∗, c2

∗, c3
∗ .

Because c1* + c2* + c3* = z − 1 by construction, non-zero terms in the sum must have I(c, 1) = c2* + c3* = a1 and I(c, 2) = c1* + c3* = a2.
Considering vectors (c1*, c2*, c3*) with c1* + c2* + c3* = z − 1, c2* + c3* = a1 and c1* + c3* = a2, one can obtain the same lower limits of
summation as in theorem 6.

In the earlier theorem, we require that a1 + a2 ≥ z − 1, as the sum of the numbers of events in the subsequences a1

and a2 for the two subtrees T1 and T2 is at least the number of non-root events z − 1 for the full tree T. Hence,a1 ≥ (z − 1) − a2 ≥ (z − 1) − (|T2| − 1) = z − |T2|; also, a2 ≥ (z − 1) − a1. Here, terms with a1 + a2 < z − 1 are not summed; to verify this
fact, suppose such a term is summed as a nonzero quantity. A requirement for the Iverson brackets in the summation to both
equal 1 is for a1 + a2 = (c2* + c3*) + (c1* + c3*), so that z − 1 + c3* < z − 1 and c3* < 0, contradicting the fact that c3* is a non-negative count.
Finally, the trinomial coefficient is z − 1

(z − 1) − a1, (z − 1) − a2, a1 + a2 − (z − 1) , verifying the equivalence to the earlier theorem.
We compute the numbers of labelled histories for fully symmetric trees with simultaneous r-furcations in table 5. The values

quickly become substantially larger than the corresponding quantities in table 2 with only non-simultaneous r-furcations.

4. Discussion
We have enumerated labelled histories in a variety of settings, generalizing classic results on the enumeration of labelled
histories with non-simultaneous bifurcations across all bifurcating labelled topologies (proposition 1) and for a specific
bifurcating labelled topology (proposition 2). Our generalizations proceed in two directions. In particular, we allow simulta-
neity. In proposition 5, we count labelled histories, allowing for simultaneous bifurcations, across all bifurcating labelled
topologies. In theorem 6, we report the recently derived number of labelled histories for a specific bifurcating labelled topology,
allowing simultaneous bifurcations.

The other direction of generalization is to allow r-furcations. In proposition 7, we count labelled histories across all r-furcat-
ing labelled topologies, without simultaneity. In proposition 8, we report an earlier result counting labelled topologies for

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

(b)

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

Figure 4. Two labelled histories for a 27-leaf labelled topology. (a) Labelled history for the 2022−2023 tournament of Celebrity Jeopardy. (b) Labelled history for the
2023−2024 tournament of Celebrity Jeopardy. Labels 1−54 represent distinct contestants.

Table 5. The number of labelled histories Lr(k) for a fully symmetric r-furcating labelled topology Tr, k with n = rk leaves and simultaneous r-furcations, withk ≥ 1. Values are computed from theorem 15. Numbers in scientific notation are approximate.

r = 2 r = 3 r = 4k n L2(k) n L3(k) n L4(k)

1 2 1 3 1 4 1

2 4 3 9 13 16 75

3 8 365 27 308 682 013 64 3.017 × 1018

4 16 1 323 338 487 81 2.044 × 1043 256 9.402 × 10122
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a specific r-furcating labelled topology, without simultaneity. In conjecture 13, we suggest a candidate for the r-furcating
unlabelled topology whose labelled topologies have the largest number of labelled histories.

Finally, we consider both simultaneity and r-furcations, enumerating in proposition 14 the total number of labelled histories
across all r-furcating labelled topologies, allowing simultaneity, and in theorem 15 the number of labelled histories for a specificr-furcating labelled topology, allowing simultaneity. The results are examined numerically in tables 1–5 and summarized in
table 6.

Enumerative phylogenetic results, which appear in such domains as phylogenetic encodings, probabilistic computations
on tree spaces and computational complexity calculations, have generally focused on non-simultaneous bifurcating trees.
Simultaneity results are suited to settings in which time intervals are discretized, such as in discrete-generation population-
genetic models with large samples in relation to the population size [24–26]. Recent mathematical–phylogenetic interest in
multifurcation [18,27,28] has potential for application in settings such as pathogen transmission.

The results connect to other settings that use structures that correspond to labelled histories. In computer science, a binary
heap is a complete binary tree whose nodes store keys according to a total order; in a max-heap, the key of a parent node must
exceed the keys of its children. Binary heaps extend to r-ary heaps, where each parent has r children, so that labelled history
enumerations have an analogous meaning in counting r-ary heaps. S2(k) in corollary 3, which counts labelled histories for fully
symmetric bifurcating trees, counts binary heaps on k levels (OEIS A056972). Similarly, S3(k) and S4(k) (table 2) count labelled
histories for fully symmetric trifurcating and quadfurcating trees—and associated ternary and quaternary heaps (OEIS A273723
and A273725). The connection expands the links between phylogenetic enumeration and associated structures in computer
science [5].

As an example of labelled histories beyond phylogenetics, King & Rosenberg [12] counted game sequences for single-elimi-
nation sports tournaments. A bifurcating tree structure is specified, with teams at the leaves. Teams play games pairwise, the
winner advancing in the tree until only one team remains. The analogy extends to multifurcation, in which games involver players, with r not necessarily equal to 2. For r = 3, the television game show Celebrity Jeopardy provides an example. A
tournament has 27 players who compete in groups of 3 (figure 4). In the 2022−2023 season, the tournament used a sequence
in which the finalist of each subtree of nine players was determined before the next subtree competed (figure 4a, [29]). In
2023−2024, each player played one game before any player played two (figure 4b, [30]). If they had used the same players, then
the two seasons would be possible to regard as two of 7 484 400 possibilities (table 2), or 308 682 013 if simultaneous matches are
allowed (table 5).

As it is unlikely for biological lineages to always diverge in groups of exactly r lineages, a natural extension is to at-most-r-furcating trees, where a parent can have at least 2 and at most r children [28]. Analogous problems can be considered for the
total number of labelled histories across all at-most-r-furcating trees and for specific at-most-r-furcating trees on n leaves, both
for non-simultaneous and for simultaneous branching. A related setting examines at-most-n-furcating trees on n leaves [18] (see
also [31, p. 30]). We have conjectured a characterization of maximally probable labelled topologies for r-furcating trees; this
problem, and the characterization of the maximally probable topologies with simultaneity, for r-furcating trees and even forr = 2, remain open.

The Yule–Harding tree shape model has been important to the field of mathematical phylogenetics for decades. This
work relaxes two of its assumptions: that divergences involve bifurcations and that they are non-simultaneous. Extended
phylogenetic models can make use of our relaxed assumptions in order to accommodate r-furcations and simultaneity.
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Table 6. Summary of the main mathematical results.

number of labelled histories
across all possible labelled
topologies

number of labelled histories for
specific labelled topologies

labelled topology with the most
labelled histories

bifurcating, non-simultaneous proposition 1 [8], table 1, OEIS
A006472

proposition 2 [13], table 2 theorem 4 [15], figure 2

bifurcating with simultaneity proposition 5, table 4, OEIS A317059 theorem 6 [12], table 5 open problemr-furcating, non-simultaneous proposition 7, table 1 proposition 8, table 2 open problem, conjecture 13, figure 2r-furcating with simultaneity proposition 14, table 4 theorem 15, table 5 open problem
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