GP265/EE355 HOMEWORK SET NO. 1

1) a) Using a spread sheet of the form given in Handout no. 3, page 11, calculate the signal to noise ratio for the following system:

Transmit power: 2500 w

Cable losses: 1 dB

Antenna efficiency: 50%Antenna size: $1 \times 0.5 \text{ m}$ Noise temperature: 900 KSystem bandwidth: 1 MHz

Wavelength: 24 cm Distance: 15 Km

Object size: $10 \times 5 \text{ m}$ Object σ^0 : -15 dB

- b) Keeping the other system parameters the same, reevaluate the SNR for a wavelength of 3 cm. Why the difference?
- 2) Design a radar (that is, generate a dB table spreadsheet) that can map a 5000 m wide swath from an aircraft flying at an 8000 m altitude. Set the incidence angle at the center of the swath to 45° . Use a fixed antenna length of 2 m. Let σ^0 be 15 dB, and use a transmitted pulse length of 1.0 μ s. Assume cable and other losses of 1 dB, and use reasonable values for transmit power, noise temperature, and antenna efficiencies.
 - a) Design an L-band ($\lambda = 24$ cm) system first. Achieve an SNR of > 10 dB.
 - b) Reevaluate system performance at $\,$ C -band ($\lambda = 6$ cm) and at $\,$ K $_{U}$ -band ($\lambda = 2$ cm), keeping as many of the system parameters as possible unchanged from the values used in part (a). However, ensure that the swath width remains 5000 m.
 - c) Contrast changes in SNR vs. frequency with the frequency sensitivity you found in question (1).