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1E. L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
2Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106, USA
*These authors contributed equally to this work
†e-mail: jela@stanford.edu

Published online: 21 September 2008; doi:10.1038/nphys1078

Quantum dots in photonic crystals are interesting because of
their potential in quantum information processing1,2 and as a
testbed for cavity quantum electrodynamics. Recent advances in
controlling3,4 and coherent probing5,6 of such systems open the
possibility of realizing quantum networks originally proposed
for atomic systems7–9. Here, we demonstrate that non-classical
states of light can be coherently generated using a quantum
dot strongly coupled to a photonic crystal resonator10,11. We
show that the capture of a single photon into the cavity
affects the probability that a second photon is admitted. This
probability drops when the probe is positioned at one of the two
energy eigenstates corresponding to the vacuum Rabi splitting, a
phenomenon known as photon blockade, the signature of which
is photon antibunching12,13. In addition, we show that when the
probe is positioned between the two eigenstates, the probability
of admitting subsequent photons increases, resulting in photon
bunching. We call this process photon-induced tunnelling. This
system represents an ultimate limit for solid-state nonlinear
optics at the single-photon level. Along with demonstrating
the generation of non-classical photon states, we propose an
implementation of a single-photon transistor14 in this system.

The optical system consists of a self-assembled InAs quantum
dot with decay rate γ/2π≈ 0.1 GHz coupled to a three-hole defect
cavity15 in a two-dimensional GaAs photonic crystal, as described
in ref. 5. The quantum-dot/cavity coupling rate g/2π= 16 GHz
equals the cavity field decay rate κ/2π= 16 GHz (corresponding
to a cavity quality factor Q = 10,000), which puts the system
in the strong coupling regime10,11. We first characterize the
system in photoluminescence by pumping the structure above the
GaAs bandgap. The photoluminescence scans in Fig. 1b show the
anticrossing characteristic of strong coupling between the quantum
dot and the cavity. Here, the quantum dot is tuned into resonance
using local temperature tuning16 around an average temperature
of 20 K maintained in a continuous He flow cryostat. To generate
non-classical light, we coherently probe the system with linearly
polarized laser beams (Fig. 1a) and observe the cross-polarized
output, as described in our previous work5. The cross-polarized
set-up enables us to separate the cavity-coupled signal from the
direct probe reflection, which is essential for achieving large
signal-to-noise ratios needed in autocorrelation measurements.
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Figure 1 Schematic diagram of the experimental set-up. a, Laser pulses (40 ps
FWHM) are reflected from a photonic crystal cavity that is linearly polarized at 45◦

relative to the input polarization set by the polarizing beam splitter (PBS). The output
light, observed in cross-polarization and carrying the cavity-coupled signal, is
analysed using an HBT set-up that measures second-order correlation. The inset
shows the suspended structure with the photonic crystal cavity and the metal pad
for local temperature tuning16. BS: beam splitter; QD: quantum dot; D1 and D2:
single-photon detectors. b, Anticrossing observed in photoluminescence as the
quantum dot is tuned into resonance with the cavity. The temperature tuning is done
by linearly increasing the power (P ) of the heating laser16. The right panel shows the
spectrum at the anticrossing point marked by the blue line. The red lines mark the
cavity and quantum-dot resonance as if they were decoupled.

Our set-up is such that the measurement on the reflected port from
this single-sided cavity is analogous to a transmission measurement
in a Fabry–Perot arrangement.
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The energy eigenstates of a two-level system strongly coupled
on resonance to an optical resonator are grouped into two-level
manifolds denoted |n,±〉, with energies h̄ωn,± = h̄(nω0 ± g

√
n),

where n is the number of energy quanta in the system and
ω0 is the bare-cavity frequency (Fig. 2a). The anharmonic
energy-level spacing causes phenomena such as photon blockade12

or photon-induced tunnelling. To observe photon blockade, a
coherent probe beam (frequency ωp) tuned to ω1,± = ω0 ± g is
coupled to the cavity. This probe is resonant with the first-order
manifold, but detuned from transitions to the second manifold,
ω1→2 = ω0 ± g(

√
2 − 1), as shown in Fig. 2a. Consequently, once

a photon is coupled into the system, it suppresses the probability
of coupling a second photon with the same frequency. As a result,
the output field acquires sub-Poissonian statistics. In addition to
photon blockade, photon-induced tunnelling is expected near the
bare-cavity resonance (ωp − ω0 = 1ωp → 0): the absorption of
a first photon enhances the absorption of subsequent photons
owing to resonance with higher-order manifolds, so the output
consists of ‘photon bunches’. These phenomena are purely quantum
effects that cannot be explained using semi-classical theories. These
effects can be probed by measuring the second-order correlation
function, g (2)(τ). The signature of the photon blockade effect is
the antibunching in g (2)(τ) (that is, g (2)(0) is a local minimum,
g (2)(0) < g (2)(τ)), as recently demonstrated by Birnbaum et al.12 in
an experiment with neutral atoms. In the case of photon-induced
tunnelling, g (2)(0) is a local maximum.

In Fig. 2b, we simulate the theoretical output spectrum as
a single-frequency probe beam is tuned through the cavity
and indicate the resonance of the transitions |0〉 → |1,+〉 and
|1,+〉 → |2,+〉. The simulated driving field injects an average
cavity photon number 〈n〉∼ 0.4 when resonant with the polaritons
in the first manifold, and slightly saturates the quantum dot.
The expected second-order correlation function for our system is
shown in Fig. 2c, where we plot the dependence of g (2)(0) on the
detuning 1ωp of the probe from the anticrossing frequency ω0.
As expected from the intuitive argument above, the simulation
predicts photon bunching as 1ωp → 0. Photon blockade is evident
in the antibunched region near 1ωp ∼ ±1.5g (Fig. 2c, inset). The
blockade does not occur at 1ωp = ±g as previously explained
because the linewidth of the eigenstates (∼κ) is comparable
to the splitting of the manifolds (∼2g), which results in a
significant overlap of the allowed transitions between consecutive
manifolds. As 1ωp → 0, the probability of absorbing the first
photon decreases. However, if a photon is absorbed, it enhances
the probability of capturing subsequent photons, and produces a
photon-bunched output.

We measure the time-dependent autocorrelation g (2)(τ) using
the Hanbury–Brown–Twiss (HBT) set-up shown in Fig. 1a and
described in refs 17 and 18. The relevant features occur at
timescales that correspond to the quantum-dot/cavity coupling rate
g , enveloped by the coherence time19, as shown in Fig. 2d. The
coherence time for our system is given by the cavity photon lifetime
1/2κ ∼ 5 ps. Hence, the time-dependent features in g (2)(τ) occur
much faster than the 300 ps time-resolution of the single-photon
counting modules in the HBT set-up. To resolve the relevant
features, we sample the autocorrelation function by short pulses
(1tFWHM ∼ 40 ps, 1ωFWHM/2π ∼ 12 GHz, where FWHM stands
for full-width at half-maximum) with a repetition rate of 12.5 ns.
This probe pulse duration represents a compromise between fast
sampling and a linewidth that is narrow enough to resolve the
relevant spectral features. In the remainder of this letter, we present
the measurements of g (2)(τ) for different detunings of the probe
beam, denoted as g (2)(τ,1ωp/g).

To observe photon blockade and photon-induced tunnelling,
we measured the unnormalized second-order correlation function
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Figure 2 Theoretical analysis of the optical field reflected from the cavity.
a, Energy diagram showing the first- and second-order manifolds of the strongly
coupled cavity/quantum-dot system. The energy difference between consecutive
manifolds is not constant, as shown by the blue and the red arrows. This
anharmonic spacing of the levels causes phenomena such as photon blockade12 and
photon-induced tunnelling. b, Simulated output intensity for a probe beam frequency
tuned through the strongly coupled cavity/quantum-dot system (solid line). The
dotted line shows the bare-cavity reflectivity corresponding to the quantum dot in
the dark state. The blue and red lines indicate the frequencies for the |0〉 → |1,+〉

and |1,+〉 →|2,+〉 transitions. c, Computed second-order correlation g (2) (0) for a
coherent laser probe reflected from the cavity. The inset shows that photon blockade
is expected when the probe detuning is 1ωp/g∼ 1.5 because the absorption of a
photon into |1,+〉 suppresses the probability of absorbing a second photon of the
same energy for a transition to |2,+〉. The blockade does not occur exactly at
1ωp/g= 1 because of the finite linewidth of the polaritons. As 1ωp → 0, the
absorption of a photon into the first manifold enhances the absorption probability
into higher-order manifolds (photon-induced tunnelling) and results in a bunched
output field. d, Simulated time dependence of the second-order correlation for
1ωp = 0. The value for g (2) (τ ) drops rapidly for time delays greater than ∼5 ps,
corresponding to the cavity photon lifetime.

at detunings 1ωp/g = 1.5 and 1ωp/g = 0 as shown in Fig. 3.
The expected photon antibunching and bunching behaviour is
clearly visible at zero time delay (Fig. 3b,d). The histograms also
show bunching over timescales of hundreds of nanoseconds. This
bunching is a purely classical effect that results from the Poissonian
blinking of the quantum dot. As reported by Santori et al.20, such
blinking is caused by quantum-dot transitions between a bright
and a dark state, and results in bunching near τ = 0 that falls
off with the mean switching rate. Our observations indicate that
the blinking rates vary for different quantum dots. The quantum
dot measured in this experiment spends ∼80% of the time in the
bright state.

Photon blockade and photon-induced tunnelling are
quantified by the normalized second-order correlation function
g (2)(τ,1ωp/g). Each peak in the histogram of Fig. 3 represents the
unnormalized value of the second-order correlation averaged over
the pulse duration of 40 ps. We express this time averaging by using
the notation g (2)(τ,1ωp/g). The data are normalized such that
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Figure 3 Measurement of the second-order correlation (G
(2)

0 (τ,1ωp/g ))
function for coherent laser pulses reflected from the photonic crystal cavity
with a strongly coupled quantum dot. a, Photon blockade, manifested here in the
sub-Poissonian statistics, observed when the probe is detuned by 1ωp/g= 1.5.
b, The same data set as in a plotted for longer time delays. Along with the
antibunching at τ = 0, bunching due to quantum-dot blinking can be observed over
timescales of hundreds of nanoseconds. The red solid line marks the normalization
level G

(2)

∞
for the correlation function. The blue dashed line indicates the classical

bunching caused by quantum-dot blinking. The second-order correlation was
computed as g (2) (0,1.5)= G

(2)
(0)/G

(2)

∞
= 0.912. c, Photon-induced tunnelling is

observed when the laser pulse is tuned to the anticrossing point 1ωp/g= 0.
d, The same data set as in c plotted for longer time delays to make the classical
blinking effects more visible. For this data set, the normalized second-order
correlation was g (2) (0,0)= 1.37.

g (2)(τ → ∞,1ωp/g) = 1. We stress that g (2)(τ,1ωp/g) captures
both the quantum and classical nature (blinking) of the output
field. To find the normalization constant G

(2)

∞
, we fit the histogram

with the function G
(2)

(mT0) = (G
(2)

0 − G
(2)

∞
)exp[−mT0/T]+ G

(2)

∞

for m ≥ 1. The quantity G
(2)

(mT0) represents the number of
counts at time mT0, where m indexes the peak number with m = 0
corresponding to τ = 0 and T0 = 12.5 ns is the pulse repetition
period. The normalized second-order correlation at τ = 0 is
g (2)(0, 1ωp/g) = G

(2)
(0)/G

(2)

∞
(see Fig. 3 for details). In the

case of photon blockade, g (2)(0,1.5) = 0.912 ± 0.005, showing
the antibunched quantum nature of the system. For photon-
induced tunnelling, g (2)(0, 0) = 1.37 ± 0.02 (Fig. 3d), which
indicates bunching.

There are several factors that account for the difference between
the theoretically predicted (Fig. 2c) and measured values for
g (2)(0,1ωp/g): background due to imperfect extinction of the
cross-polarized experimental set-up (signal-to-noise ratio ∼6:1),
quantum-dot blinking and finite bandwidth of the probe that
affects the spectral resolution. Both the background and the output
signal when the quantum dot is in the dark state result in a flat
second-order correlation with g (2)(τ,1ωp/g) = 1 (coherent light).
With the quantum dot in the dark state, the cavity reflectivity
becomes that of an empty cavity, as shown by the dashed line in
Fig. 2b. Near 1ωp/g = 0, the empty cavity (quantum dot in dark
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Figure 4 Measured normalized second-order correlation function
g (2)
0 (0,1ωp/g ) for different detunings between the probe and the

anticrossing frequency. As the probe is tuned through the resonance of the
quantum-dot/cavity system, the output field shows either antibunched or bunched
behaviour as it transitions from the photon blockade regime to the photon-induced
tunnelling regime. For comparison, we also plot the quantity g (2)

blinking = G
(2)

0 /G
(2)

∞
,

which corresponds to the bunching caused by quantum-dot blinking (blue dashed
line). The red solid line shows the expected values of g (2)

0 (0,1ωp/g ) determined
through a simulation that takes into account the finite pulse width of the probe,
quantum-dot blinking and background due to the imperfect extinction of the
cross-polarized set-up. In the bottom right corner, we show the relative width of the
pulsed laser probe. The vertical error bars are computed from the uncertainties in
the fit of the histogram data sets. The horizontal error bars are given by the
uncertainty in the measurement of the laser wavelength.

state) has high transmission, so the observed signal has a large
coherent-state component. As a result, the region near 1ωp/g = 0
is expected to show the largest deviation in g (2)(0) compared with
the ideal (non-blinking) dot in Fig. 2c. This deviation will bring
the observed g (2)(0) closer to g (2)(0) = 1 of a coherent beam. At
the blockade frequency (1ωp/g ∼ 1.5), the transmitted intensity
in the dark state decreases relative to the bright-state intensity
(Fig. 2b), and coherent light represents a smaller fraction of the
collected signal.

We repeated the autocorrelation measurements for a large
set of detunings to map the full spectrum of g (2)(0,1ωp/g).
The measurement of the full autocorrelation spectrum entails
several challenges such as sample drift resulting in fluctuating
coupling intensity into the cavity, and fluctuating temperature.
To map the dependence of g (2)(0,1ωp/g) on probe detuning,
we maintained constant coupling into the cavity mode for the
full duration of the experiment. In Fig. 4 we plot g (2)(0,1ωp/g)
for different detunings of the probe frequency. To emphasize
the non-classicality of the signal, we plot in the same figure
g (2)

blinking(0, 1ωp/g), the bunched second-order correlation
resulting from quantum-dot blinking. For every autocorrelation
measurement, the non-classical and classical contributions were
easily distinguished by their greatly differing timescales as in
Fig. 3c,d. The plots in Fig. 4 show the transition from the blockade
regime (g (2) < g (2)

blinking) to the photon-induced tunnelling regime
g (2) > g (2)

blinking. The values for the classical bunching were obtained
by taking the ratio g (2)

blinking(0,1ωp/g) = G
(2)

0 /G
(2)

∞
(see Fig. 3). As

expected, g (2)

blinking(0,1ωp/g) is higher as 1ωp/g → 0 because
the intensity fluctuations due to blinking are largest at this
detuning. While taking the data, we kept a constant probe power
of ∼1.0 nW before the objective lens (〈n〉 ∼ 0.4 at the polariton
frequency), and the coupling was re-optimized for every data
point. The lowest value for g (2)(0, 1ωp/g) obtained in this
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Figure 5 Expected photon blockade effect for various parameters of the
strongly coupled system. a, Colour map plot for g (2) (0) obtained in the photon
blockade regime for 1.6< κ/2π[GHz] < 16 (that is, 104 < Q < 105) and
16< g/2π[GHz] < 64. b, Plot of g (2) (0) versus probe laser detuning for four
relevant cases. κ/2π= 16 GHz (Q= 104), g/2π= 16 GHz (red line) corresponds to
the system reported in this letter. κ/2π= 6.37 GHz (Q= 25,000), g/2π= 16 GHz
(black dotted line) is for a system with coupling strength similar to the one in this
letter but with the highest Q measured in our laboratory. κ/2π= 6.37 GHz
(Q= 25,000), g/2π= 48 GHz (green dashed line) corresponds to the highest
measured Q and the highest achievable g with this type of cavity and quantum dot.
κ/2π= 1.6 GHz, (Q= 105), g/2π= 48 GHz (blue dashed–dotted line) is for the
highest achievable g in this system and a quality factor four times higher than what
has been currently achieved in GaAs photonic crystals at this wavelength.

data set is not as antibunched as the value g (2)(0,1.5) = 0.912
reported in Fig. 3b, because we could not reproduce exactly the
same coupling conditions. We found that the experimental data is
well fitted by a numerical model that takes into account pulses of
finite bandwidth, quantum-dot blinking and background from the
imperfect extinction of the cross-polarized set-up (see Fig. 4 and
the Methods section for details).

The experimental data in Fig. 4 show that, starting from
a coherent state, the strongly coupled system enables control
of the statistics of the output field from sub-Poissonian to
super-Poissonian. Thus, by engineering the parameters of the
system and by choosing the appropriate probe frequency, various
non-classical states of light could be generated on demand. One
of the most useful states is the single-photon state that has
applications in quantum cryptography and distributed quantum
networking. To achieve efficient single-photon sources based on
photon blockade in strongly coupled solid-state systems, the quality
factor (Q) and the coupling strength (g) need to be higher than
those in our current work. In Fig. 5a, we show the expected
second-order coherence g (2)(0) when operating in the blockade
regime for the range of parameters 1.6 < κ/2π[GHz] < 16 (that
is, 104 < Q < 105) and 16 < g/2π[GHz] < 64. These estimations

show that with Q = 25,000 and g/2π= 48 GHz, values achievable
in photonic crystals with InAs quantum dots21, the single-photon
source should exhibit antibunching with g (2)(0) ∼ 0.15 (Fig. 5b).
For even higher quality factors (Q = 105), almost complete
antibunching is expected (g (2)(0) ∼ 0.01). These simulations were
carried out assuming continuous-wave weak excitation (average
cavity photon number 〈n〉 ∼ 0.01) of the system.

Using the anharmonicity of the eigenenergy spacing in this
system, a single-photon transistor14 could be implemented. In our
transistor scheme, the frequency of the gate field is resonant with
one of the polaritons in the first-order manifold, say ω0 + g . A
photon injected at ω0 + g increases the probability of absorbing
photons that are resonant with the |1,+〉 → |2,+〉 transition at
ω0 +g(

√
2−1). If the signal is tuned to this frequency, the presence

of the gate field enhances the transmission of the signal field22.
The photonic crystal architecture enables easy integration of such
a single-photon transistor with photonic crystal waveguides23,24 so
the single-photon switching is done directly on the chip. The most
straightforward configuration would be a photonic crystal cavity
butt-coupled in between two photonic crystal waveguides25. For a
practical implementation, it is desirable that both the single-photon
source and the single-photon transistor operate in pulsed mode,
with one photon emitted (or switched) per pulse. The performance
of the device depends on the coupling efficiencies in and out
of the cavity, the bandwidth and the intensity of the pulse (a
detailed analysis of the device performance will be the subject of
further publications).

METHODS

AUTOCORRELATION MEASUREMENT
We scan several cavities until we find one that contains a strongly
coupled quantum dot, as determined by the anticrossing behaviour in
photoluminescence between the quantum dot and the cavity during
temperature tuning. Then we direct the pulsed laser beam at the cavity and
observe the reflected beam in cross-polarization. While tuning the local
temperature with an extra heating beam, we adjust the probe beam coupling
to optimize the quantum-dot-induced reflectivity drop, as described for the
continuous-wave beam in ref. 5. Then we stop scanning and temperature-tune
the quantum dot and cavity into resonance. With the pulsed probe beam at
different detunings with respect to the anticrossing point, we measure the
autocorrelation signal by passing the reflected probe through a grating filter
(to remove stray light) followed by the HBT set-up. To limit sample drift, the
alignment procedure is repeated for every data point in Fig. 4.

DATA ANALYSIS
The numerical model for the second-order coherence in Fig. 4 is based on
numerical integration of the quantum master equation. A time-dependent
driving term in the Hamiltonian represents the 40 ps excitation pulses. The
intensity of the drive field matches the intensity used in the experiment,
representing one-third of the quantum-dot saturation intensity. In our
experiment, this intensity was ∼1 nW for the incident beam, measured before
the objective lens. The state of the quantum dot/cavity is time-evolved using a
quantum Monte Carlo approach, which we based on the qotoolbox of ref. 26.
The Hamiltonian is given by

H = (ωd −ω)σ+σ− + (ωc −ω)a†a+ ig(a†σ− −σ+a)

+ E(t)(a†
+a),

where the field E(t) represents the time-dependent driving field (frequency ω)
of the cavity and is given by a sequence of Gaussian pulses. a,a† denote
the annihilation and creation operators of the cavity mode, and σ+,− are
the raising and lowering operators of the quantum dot. The quantum
dot can emit into free space or into the cavity mode, which in turn leaks
photons into the output channel at the loss rate ω/Q. We then compute the
autocorrelation on the output channel, as described in greater detail in ref. 27.
The simulation also accounts for quantum-dot blinking and laser background.
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The full second-order coherence is calculated as a weighted sum of the
different contributions,

G(2)(τ) = 〈a†(t)a†(t + τ)a(t + τ)a(t)ρ〉

= pBG(2)
B (τ)+pBGG(2)

BG (τ)+pDG(2)
D (τ),

where the autocorrelation function G(2)
B (τ) accounts for the quantum-

dot bright state, G(2)
D (τ) for the quantum-dot dark state (calculated

using g → 0), G(2)
BG (τ) for background laser signal (a coherent

state) and pB, pD, pBG are the corresponding probabilities. The
second-order correlation function for zero time delay is computed as
g (2)(0) = G(2)(0)/G(2)(1) · [G(2)(1)/G(2)(∞)]experiment. Here, G(2)(1) is the
autocorrelation of the nearest-neighbour peak to τ =0 in the simulation. Owing
to computational constraints, this is not evaluated at the actual pulse repetition
time τ = 12.5 ns but at τ = 300 ps, a sufficient separation that amounts to nearly
60 coherence lengths. The factor [G(2)(1)/G(2)(∞)]experiment is estimated from
each autocorrelation measurement as G(2)(τ = 12.5 ns)/G(2)(∞).

Received 7 February 2008; accepted 22 August 2008; published 21 September 2008.
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