Fast l_p–regression in a Data Stream

Christian Sohler (TU Dortmund)

David Woodruff (IBM Almaden)
Overview

- Massive data sets
- Streaming algorithms
- Regression
- Clarkson’s algorithm
- Our results
- Subspace embeddings
- Noisy sampling
Massive data sets

Examples
- Internet traffic logs
- Financial data
- etc.
Streaming algorithms

Scenario
- Data arrives sequentially at a high rate and in arbitrary order
- Data is too large to be stored completely or is stored in secondary memory (where streaming is the fastest way of accessing the data)
- We want some information about the data

Algorithmic requirements
- Data must be processed quickly
- Only a summary of the data can be stored
- Goal: Approximate some statistics of the data
Streaming algorithms

The turnstile model

- Input: A sequence of updates to an object (vector, matrix, database, etc.)
- Output: An approximation of some statistics of the object
- Space: significantly sublinear in input size
- Overall time: near-linear in input size
Streaming algorithms

Example

- Approximating the number of users of a search engine
- Each user has its ID (IP-address)
- Take the vector v of all valid IP-addresses as the object
- Entries of v: #queries submitted to search engine
- Whenever a user submits a query, increment v at the entry corresponding to the submitting IP-address
- Required statistic: # non-zero entries in the current vector
Regression analysis

Regression

- Statistical method to study dependencies between variables in the presence of noise.
Regression analysis

Linear Regression
- Statistical method to study linear dependencies between variables in the presence of noise.
Regression analysis

Linear Regression
- Statistical method to study linear dependencies between variables in the presence of noise.

Example
- Ohm's law $V = R \cdot I$
Regression analysis

Linear Regression
- Statistical method to study linear dependencies between variables in the presence of noise.

Example
- Ohm's law $V = R \cdot I$
- Find linear function that best fits the data
Regression analysis

Linear Regression
- Statistical method to study linear dependencies between variables in the presence of noise.

Standard Setting
- One measured variable y
- A set of predictor variables x_1, \ldots, x_d
- Assumption:
 $$ y = \beta_0 + \beta_1 x_1 + \cdots + \beta_d x_d + \epsilon $$
- ϵ is assumed to be a noise (random) variable and the β_j are model parameters
Regression analysis

Example

- Measured variable is the voltage V
- Predictor variable is the current I
- (Unknown) model parameter is the resistance R
- We get pairs of observations for V and I, i.e. pairs (x_i, y_i) where x is some current and y is some measured voltage

Assumption

- Each pair (x, y) was generated through $y = R \cdot x + \epsilon$, where ϵ is distributed according to some noise distribution, e.g. Gaussian noise

Example Regression

![Example Regression Graph](image-url)
Regression analysis

Setting

- Experimental data is assumed to be generated as pairs \((x_i, y_i)\) with
 \[y_i = b_0 + b_1 x_{i,1} + \ldots + b_d x_{i,d} + e, \]
 where \(e\) is drawn from some noise distribution, e.g., a Gaussian distribution.

Least Squares Method

- Find \(\hat{b}\) that minimizes \((y_i - \hat{b} x_i)^2\)
- Maximizes the (log)-likelihood of \(y_i\), i.e. the probability density of the \(y_i\) given
- Other desirable statistical properties
Regression analysis

Model
- Experimental data is assumed to be generated as pairs \((x_i, y_i)\) with
 \[y_i = b_0 + b_1 x_{i,1} + \ldots + b_d x_{i,d} + e, \]
- where \(e\) is drawn from some noise distribution, e.g. a Gaussian distribution

Method of least absolute deviation
- Find \(b^*\) that minimizes \(|y_i - b^* x_i|\)
- More robust than least squares
Regression analysis

Model
- Experimental data is assumed to be generated as pairs \((x_i, y_i)\) with
 \[y_i = \beta_0 + \beta_1 x_{i,1} + \cdots + \beta_d x_{i,d} + \epsilon, \]
- where \(\epsilon\) is drawn from some noise distribution, e.g. a Gaussian distribution

Method of least absolute deviation (\(l_1\)-regression)
- Find \(\beta^*\) that minimizes \(|y_i - \beta^* x_i|\)
- More robust than least squares
Regression analysis

Model
- Experimental data is assumed to be generated as pairs \((x_i, y_i)\) with
 \[y_i = b_0 + b_1 x_{i,1} + \ldots + b_d x_{i,d} + e, \]
- where \(e\) is drawn from some noise distribution, e.g., a Gaussian distribution

\(L_p\)-regression
- Find \(b^*\) that minimizes \(|y_i - b^*_i x_i|^p\), \(1 < p < 2\)
- More robust than least squares
Regression analysis

Matrix form for l_p-regression, $1 \leq p \leq 2$

- **Input:** $n \times d$-matrix X whose rows are the x_i and a vector $y=(y_1, \ldots, y_n)$

 n is the number of observations; d is the number of predictor variables (We assume that $b_0 = 0$ for all i)

- **Output:** b^* that minimizes $\|X b - y\|_p$
Regression analysis

Geometry of regression

- Assume $n \leq d$
- We want to find a b^* that minimizes $||X^* - y||_p$
- The product X^* can be written as

$$X_{*1} \cdot 1^* + X_{*2} \cdot 2^* + \ldots + X_{*d} \cdot d^*$$

- where X_{*i} is the i-th column of X
- This is a linear k-dimensional subspace ($k \leq d$ is the rank of X)
- The problem is equivalent to computing the point of the column space of X nearest to y in l_p-norm
Regression analysis

\textit{(1+)-approximation algorithm for l_1-regression [Clarkson, SODA'05]}

\textbf{Input:} \hspace{0.5cm} $n \times d$ matrix X, vector y

\textbf{Output:} \hspace{0.5cm} vector b' \hspace{0.5cm} s.t. $||Xb' - y||_1 \leq (1+) \cdot ||X^* - y||_1$

1. Compute $O(1)$-Approximation "

2. Compute the residual $r' = X^* - y$

3. Scale r' such that $||r'||_1 = d$

4. Compute a well-conditioned basis U of the column space of X

5. Sample row i according to $p_i = f_i \cdot \text{poly}(d,1/)$
 where $f_i = \frac{|r'_i| + ||u_i||}{(|r'| + ||U||)}$

6. Assign to each sample row a weight of $1/p_i$

7. Solve the problem on the sample set using linear programming
Regression analysis

\((1+\epsilon)\)-approximation algorithm for \(l_1\)-regression [Clarkson, SODA'05]

Input: \(n \times d\) matrix \(X\), vector \(y\)

Output: vector \(b\) s.t. \(\|Xb - y\|_1 \leq (1+\epsilon) \cdot \|X^* - y\|_1\)

1. Compute \(O(1)\)-Approximation \(b^*\)
2. Compute the residual \(r^* = Xb^* - y\)
3. Scale \(r^*\) such that \(\|r^*\|_1 = d\)
4. Compute a well-conditioned basis \(U\) of the column space of \(X\)
5. Sample row \(i\) according to \(p_i = \frac{f_i \cdot \text{poly}(d,1/\epsilon)}{\|r^*_i\| + \|u^*_i\| / (\|r^*\| + \|U\|)}\)
6. Assign to each sample row a weight of \(1/p_i\)
7. Solve the problem on the sample set using linear programming
Regression analysis

(1+\epsilon)-approximation algorithm for l_1-regression [Clarkson, SODA'05]

Input: $n \times d$ matrix X, vector y

Output: vector b' s.t. $||Xb' - y||_1 \leq (1+\epsilon) \cdot ||Xb^* - y||_1$

1. Compute $O(1)$-Approximation
2. Compute the residual $r' = Xb^* - y$
3. Scale r' such that $||r'||_1 = d$
4. Compute a well-conditioned basis U of the column space of X
5. Sample row i according to $p_i = f_i \cdot \text{poly}(d,1/\epsilon)$
 where $f_i = |r'_i| + ||u_i|| / (|r'| + ||U||)$
6. Assign to each sample row a weight of $1/p_i$
7. Solve the problem on the sample set using linear programming
Regression analysis

\((1+\epsilon)\)-approximation algorithm for \(l_1\) - regression [Clarkson, SODA'05]

Input: \(n \times d\) matrix \(X\), vector \(y\)

Output: vector \(b\) s.t. \(\|Xb - y\|_1 \leq (1+\epsilon) \cdot \|X^*y\|_1\)

1. **Compute \(O(1)\)-Approximation**
2. Compute the residual \(r' = Xb - y\)
3. Scale \(r'\) such that \(\|r'\|_1 = d\)
4. Compute a well-conditioned basis \(U\) of the column space of \(X\)
5. Sample row \(i\) according to \(p_i = f_i \cdot \text{poly}(d,1/\epsilon)\)
 where \(f_i = |r'_i| + \|u_i\|_1 / (|r'| + \|U||)\)
6. Assign to each sample row a weight of \(1/p_i\)
7. Solve the problem on the sample set using linear programming
Regression analysis

\textit{(1+)}-\textit{approximation algorithm for l_1 - regression [Clarkson, SODA'05]}

\textbf{Input:} \hspace{1em} n \times d \text{ matrix } X, \text{ vector } y

\textbf{Output:} vector \ ' s.t. \ ||X ' -y||_1 \leq (1+) \cdot ||X *-y||_1

1. Compute O(1)-Approximation

2. Compute the residual \(r' = X '-'y \)

3. Scale \(r' \) such that \(||r'||_1 = d \)

4. Compute a well-conditioned basis \(U \) of the column space of \(X \)

5. Sample row \(i \) according to \(p_i = f_i \cdot \text{poly}(d,1/) \)
 where \(f_i = |r'_i| + ||u_i|| / (|r'| + ||U||) \)

6. Assign to each sample row a weight of \(1/p_i \)

7. Solve the problem of the sample set using linear programming
Regression analysis

\((1+\epsilon)\)-approximation algorithm for \(l_1\) - regression [Clarkson, SODA'05]

Input: n x d matrix \(X\), vector \(y\)

Output: vector \(\mathbf{b}'\) s.t. \(||X \mathbf{b}' - y||_1 \leq (1+\epsilon) \cdot ||X \mathbf{b}^* - y||_1\)

1. Compute \(O(1)\)-Approximation
2. **Compute the residual** \(\mathbf{r}' = X \mathbf{b}' - y\)
3. Scale \(\mathbf{r}'\) such that \(||\mathbf{r}'||_1 = d\)
4. Compute a well-conditioned basis \(U\) of the column space of \(X\)
5. Sample row \(i\) according to \(p_i = f_i \cdot \text{poly}(d,1/\epsilon)\)
 where \(f_i = |r'_{i,1}| + ||u_{i,1}|| / (||r'|| + ||U||)\)
6. Assign to each sample row a weight of \(1/p_i\)
7. Solve the problem on the sample set using linear programming
Regression analysis

(1+)-approximation algorithm for \(l_1 \)-regression [Clarkson, SODA'05]

Input: \(n \times d \) matrix \(X \), vector \(y \)

Output: vector \(b' \) s.t. \(\|X b' - y\|_1 \leq (1+ \epsilon) \cdot \|X b^* - y\|_1 \)

1. Compute O(1)-Approximation "
2. Compute the residual \(r' = X b' - y \)
3. Scale \(r' \) such that \(\|r'\|_1 = d \)
4. Compute a well-conditioned basis \(U \) of the column space of \(X \)
5. Sample row \(i \) according to \(p_i = f_i \cdot \text{poly}(d,1/\epsilon) \)
 where \(f_i = \|r'_i\| + \|u'_i\| \) / (\(\|r'\| + \|U\| \))
6. Assign to each sample row a weight of \(1/p_i \)
7. Solve the problem on the sample set using linear programming
Regression analysis

(1+\epsilon)-approximation algorithm for l_1 - regression [Clarkson, SODA'05]

Input: n \times d matrix X, vector y
Output: vector b' s.t. ||X' - y||_1 \leq (1+\epsilon) \cdot ||X \ast y||_1

1. Compute O(1)-Approximation "
2. Compute the residual r' = X' - y
3. Scale r' such that ||r'||_1 = d
4. Compute a well-conditioned basis U of the column space of X
5. Sample row i according to p_i = f_i \cdot \text{poly}(d,1/\epsilon)
 where f_i = |r'_i| + ||u_i|| / (||r'|| + ||U||)
6. Assign to each sample row a weight of 1/p_i
7. Solve the problem on the sample set using linear programming

Well-conditioned basis U: Basis with

||z||_1 \cdot ||Uz||_1 \cdot \text{poly}(d)||z||_1
Regression analysis

\((1+\epsilon)\)-approximation algorithm for \(l_1\) - regression [Clarkson, SODA'05]

Input: \(n \times d\) matrix \(X\), vector \(y\)

Output: vector \(b'\) s.t. \(||X \cdot b' - y||_1 \leq (1+\epsilon) \cdot ||X \cdot b^* - y||_1\)

1. Compute \(O(1)\)-Approximation "
2. Compute the residual \(r' = X \cdot b' - y\)
3. Scale \(r'\) such that \(||r'||_1 = d\)
4. Compute a well-conditioned basis \(U\) of the column space of \(X\)
5. Sample row \(i\) according to \(p_i = f_i \cdot \text{poly}(d,1/\epsilon)\) where \(f_i = \frac{||r'_i|| + ||u'_i||}{(||r'|| + ||U||)}\)
6. Assign to each sample row a weight of \(1/p_i\)
7. Solve the problem on the sample set using linear programming

Example Regression

Well-conditioned basis \(U\):

Basis with

\(\frac{||z||_1 \cdot ||Uz||_1}{\text{poly}(d)||z||_1} \cdot ||U||\)
Regression analysis

\((1 + \varepsilon)\)-approximation algorithm for \(l_1\) regression [Clarkson, SODA'05]

Input: \(n \times d\) matrix \(X\), vector \(y\)

Output: vector \(b\) s.t. \(\|Xb - y\|_1 \leq (1 + \varepsilon) \cdot \|X^*y\|_1\)

1. Compute \(O(1)\)-Approximation
2. Compute the residual \(r' = Xb - y\)
3. Scale \(r'\) such that \(\|r'\|_1 = d\)
4. Compute a well-conditioned basis \(U\) of the column space of \(X\)
5. Sample row \(i\) according to \(p_i = f_i \cdot \text{poly}(d, 1/\varepsilon)\)
 where \(f_i = |r'_i| + \|u_i\| / (|r'| + \|U\|)\)
6. Assign to each sample row a weight of \(1/p_i\)
7. Solve the problem on the sample set using linear programming

Well-conditioned basis \(U\):
Basis with

\[\|z\|_1 \cdot \|Uz\|_1 \cdot \text{poly}(d)\|z\|_1 \]
Regression analysis

(1+)-approximation algorithm for l_1-regression [Clarkson, SODA'05]

Input: $n \times d$ matrix X, vector y
Output: vector b s.t. $||X \cdot y||_1 \leq (1+\epsilon) \cdot ||X \cdot y||_1$

1. Compute $O(1)$-Approximation "
2. Compute the residual $r' = X \cdot y$
3. Scale r' such that $||r'||_1 = d$
4. Compute a well-conditioned basis U of the column space of X
5. Sample row i according to $p_i = f_i \cdot \text{poly}(d,1/\epsilon)$ where $f_i = |r'_i| + ||u'_i|| / (|r'| + ||U||)$
6. Assign to each sample row a weight of $1/p_i$
7. Solve the problem on the sample set using linear programming

Well-conditioned basis U:
Basis with $||z||_1 \cdot ||Uz||_1 \cdot \text{poly}(d)||z||_1$
Regression analysis

\textit{(1+ε)-approximation algorithm for l_1-regression [Clarkson, SODA'05]}

\textbf{Input:} $n \times d$ matrix X, vector y

\textbf{Output:} vector b' s.t. $||Xb' - y||_1 \leq (1+\epsilon) \cdot ||X^*y||_1$

1. Compute O(1)-Approximation $\"$ (suggested in the text)
2. Compute the residual $r' = X^* - y$
3. Scale r' such that $||r'||_1 = d$
4. Compute a well-conditioned basis U of the column space of X
5. Sample row i according to $p_i = f_i \cdot \text{poly}(d, 1/\epsilon)$ where $f_i = |r'_i| + ||u_i^*|| / (|r'| + ||U||)$
6. Assign to each sample row a weight of $1/p_i$
7. Solve the problem on the sample set using linear programming

Well-conditioned basis U: Basis with $||z||_1 \cdot ||Uz||_1 \cdot \text{poly}(d)||z||_1$

Example Regression
Regression analysis

_Solving l_1-regression via linear programming_

- Minimize $(1, \ldots, 1) \cdot (^{+} + ^{-})$
- Subject to:
 \[
 X^{+} - ^{-} = y
 \]

 $^{+}, ^{-} \geq 0$
Regression for data streams

\textit{I}_1\text{-regression}
- \(X\): \(n\times d\)-matrix of predictor variables, \(n\) is the number of observations
- \(y\): vector of measured variables
- \(b\): unknown model parameter (this is what we want to optimize)
- Find \(b\) that minimizes \(||Xb - y||_1\)

\textit{Turnstile model}
- We get updates for \(X\) and \(y\)
- Example: \((i, j, c)\) means \(X[i, j] = X[i, j] + c\)
- Heavily overconstrained case: \(n \ll d\)
Regression for data streams

State of the art

- Small space streaming algorithm in the turnstile model for l_p-regression for all p, $1 \leq p \leq 2$; the time to extract the solution is prohibitively large [Feldman, Monemizadeh, Sohler, W; SODA'10]
- Efficient streaming algorithm in the turnstile model for l_2-regression [Clarkson, W, STOC'09]
- Somewhat efficient non-streaming $(1+\varepsilon)$-approximations for l_p-regression [Clarkson, SODA'05; Drineas, Mahoney, Muthukrishnan; SODA'06; Sarlos; FOCS'06; Dasgupta, Drineas, Harb, Kumar, Mahoney; SICOMP'09]
Our Results

- A \((1+\varepsilon)\)-approximation algorithm for \(l_p\)-regression problem for any \(p\) in \([1, 2]\)
 - First 1-pass algorithm in the turnstile model
 - Space complexity \(\text{poly}(d \log n / \varepsilon)\)
 - Time complexity \(nd^{1.376} \text{poly}(\log n / \varepsilon)\)
 - Improves earlier \(nd^5 \log n\) time algorithms for every \(p\)

- New linear oblivious embeddings from \(l_p^n\) to \(l_p^r\)
 - \(r = \text{poly}(d \log n)\)
 - Preserve \(d\)-dimensional subspaces
 - Distortion is \(\text{poly}(d)\)

- This talk will focus on the case \(p = 1\)
Regression for data streams

First approach

- Leverage Clarkson's algorithm

Sequential structure is hard to implement in streaming

Compute $O(1)$-approximation

Compute well-conditioned basis

Sample rows from the well-conditioned basis and the residual
Regression for data streams

Theorem 1 (\(l_1\) -subspace embedding)

- Let \(r \geq \text{poly}(d, \ln n)\). There is a probability space over \(r \times n\) matrices \(R\) such that for any \(n \times d\)-matrix \(A\) with probability at least 99/100 we have for all \(b \in \mathbb{R}^d\):
 \[
 \|A\|_1 \leq \|RA\|_1 \leq O(d^2) \cdot \|A\|_1
 \]

- \(R\) is a scaled matrix of i.i.d. Cauchy random variables

- Argues through the existence of well-conditioned bases
 - Uses "well-conditioned nets"

- Generalizes to \(p > 1\)
Regression for data streams

The algorithm – part 1

- Pick random matrix R according to the distribution from the previous theorem
- Maintain RX and Ry during the stream
- Find b' that minimizes $\|RXb' - Ry\|$ using linear programming
- Compute a well-conditioned basis U for RX
- Compute Y such that $U = RXY$

Lemma 2

With probability $99/100$, XY is a well-conditioned basis for the column space of X.
Regression for data streams

The algorithm – part 1

- Pick random matrix R according to the distribution from the previous theorem
- Maintain RX and Ry during the streaming
- Find b' that minimizes $\|RXb' - Ry\|$ using linear programming
- Compute a well-conditioned basis U for RX
- Compute Y such that $U = RXY$

Lemma 2

With probability $99/100$, XY is a well-conditioned basis for the column space of X.
Regression for data streams

The algorithm – part 1

- Pick random matrix R according to the distribution from the previous theorem
- **Maintain RX and Ry during the streaming**
- Find b' that minimizes $||RX\ b' - Ry||$ using linear programming
- Compute a well-conditioned basis U for RX
- Compute Y such that $U = RXY$

Lemma 2

With probability 99/100, XY is a well-conditioned basis for the column space of X.

\[R(X^+) = RX + R \]
Regression for data streams

The algorithm – part 1

- Pick random matrix R according to the distribution from the previous theorem
- Maintain RX and Ry during the streaming
- Find b' that minimizes $||RXb' - Ry||$ using linear programming
- Compute a well-conditioned basis U for RX
- Compute Y such that $U = RX Y$

Lemma 2

With probability 99/100, XY is a well-conditioned basis for the column space of X.
Regression for data streams

The algorithm – part 1

- Pick random matrix R according to the distribution from the previous theorem
- Maintain RX and Ry during the streaming
- Find b' that minimizes $||RXb' - Ry||$ using linear programming
- Compute a well-conditioned basis U for RX
- Compute Y such that $U = RXY$

Lemma 2

With probability $99/100$, XY is a well-conditioned basis for the column space of X.

Using [Clarkson; SODA‘05] or [Dasgupta et. al.; SICOMP09]
Regression for data streams

The algorithm – part 1

- Pick random matrix R according to the distribution from the previous theorem
- Maintain RX and Ry during the streaming
- Find b' that minimizes $\|RXb' - Ry\|$ using linear programming
- Compute a well-conditioned basis U for RX
- **Compute Y such that $U = RXY$**

Lemma 2

With probability $99/100$, XY is a well-conditioned basis for the column space of X.

The span of U equals the span of RX
Regression for data streams

The algorithm – part 1
- Pick random matrix R according to the distribution from the previous theorem
- Maintain RX and Ry during the streaming
- Find b' that minimizes $||RX' - Ry||$ using linear programming
- Compute a well-conditioned basis U for RX
- Compute Y such that $U = RXY$

Lemma 2
With probability $99/100$, XY is a well-conditioned basis for the column space of X.
Regression for data streams

Intermediate summary
- Can compute $\text{poly}(d)$-approximation
- Can compute Y s.t. XY is well-conditioned

- Compute $O(1)$-approximation
- Compute well-conditioned basis
- Sample rows from the well-conditioned basis and the residual
Regression for data streams

We can reduce everything to a new problem

- Updates to matrix B
- Need to sample rows from B with probability according to their l_1-norm
- Assume we know $M = ||B||_1$

Noisy sampling [Extension of Andoni, DoBa, Indyk, W; FOCS'09]

- Subdivide rows into groups

Norm: $\approx M$ $\approx M/2$ $\approx M/4$ $\approx M/8$ ≤ 8 rows
Regression for data streams

Noisy sampling

- Subdivide rows into groups
- Try to sample from each group separately

<table>
<thead>
<tr>
<th>Norm</th>
<th>Prob.</th>
<th>(\approx M)</th>
<th>(\approx M/2)</th>
<th>(\approx M/4)</th>
<th>(\approx M/8)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>1/2</td>
<td>1/4</td>
<td>1/8</td>
</tr>
</tbody>
</table>

\(\leq 8\) rows
Regression for data streams

Noisy sampling

- Subdivide rows into groups
- Try to sample from each group separately
- **Problem:** Can't store the sample in the stream

\[
\text{Norm:} \quad \approx \frac{M}{8} \\
\text{Prob.:} \quad \frac{1}{8}
\]
Regression for data streams

Noisy sampling

- Subdivide rows into groups
- Try to sample from each group separately
- **Problem:** Can't store the sample
- **Instead:** Subsampling

\[
\begin{align*}
\text{Norm:} & \quad \approx M/8 \\
\text{Prob.:} & \quad 1/8
\end{align*}
\]
Regression for data streams

Noisy Sampling
- **Grouping:**
 \[I_j = \{ i : \| B_i \|_1 \in (M/2^j, 2M/2^j) \} \]

- **Sample step (Group I_j):**
 - Subsample rows with probability \(1/2^j \)
 - Hash sampled rows into \(w \) buckets
 - Maintain sum of each bucket
 - Noise in a bucket \(\frac{1}{4}M/(2^jw) \)

- **Verification step:**
 - Check if bucket has norm approx. \(M/2^j \)
 - If yes, then return bucket as noisy sample with weight \(2^j \)
Regression for data streams

Summary of the algorithm

- Maintain RX and Ry to obtain poly(d)-approximation and access to matrix B
- Sample rows using our noisy sampling data structure
- Solve the problem on the noisy sample
Regression for data streams

Some simplifications

- Let B be the matrix XY adjunct $r' = X' - y$

- Assume the stream has updates for B
Regression for data streams

Some simplifications

- Let B be the matrix XY adjunct $r' = X^{-}y$
- Assume the stream has updates for B

Why don't we need another pass for this?

- We can treat the entries of Y and r' as formal variables and plug in the values at the end of the stream

Assume we know Y in advance:

$$(X+D)Y = XY + Y$$
Theorem

The above algorithm is a \((1+\epsilon)-\text{approximation to the } l_1\)-regression problem

- uses \(\text{poly}(d, \log n, 1/\epsilon)\) space
- implementable in 1-pass in the turnstile model
- can be implemented in \(nd^{1.376}\text{poly} (\log n / \epsilon)\) time
 - Main point is that well-conditioned basis computed in sketch-space
Conclusion

Main results
- First efficient streaming algorithm for l_p-regression, $1 \cdot p < 2$
- $nd^{1.376}$ running time improves previous nd^5 running time
- First oblivious poly(d) subspace embedding for l_1

Open problems
- Streaming and/or approximation algorithms for even more robust regression problems like least median of squares, etc.
- Regression when $d \gg n$ (redundant parameters, structural restrictions, …)
- Kernel methods
- Algorithms for statistical problems on massive data sets
- Other applications of our subspace embedding