1. **Numerical Linear Algebra in the Streaming Model**

Ken Clarkson
IBM Almaden

joint with David Woodruff

2. **The Input Data**

- A is an $n \times d$ matrix, B is $n \times d'$
- Matrix entries are given as a sequence of updates
- An update specifies i, j, v, and A or B, so that $A_{ij} \leftarrow A_{ij} + v$, or similarly for B
 - The *turnstile* streaming model
- This is even more demanding than taking one pass over A and B fixed in memory

3. **The General Algorithmic Approach**

- As updates appear: maintain compressed versions of A and B
 - *Sketches*
- When ready: compute output results using sketches
- Key resources: passes (=1 here), space, update time, compute time

4. **The Problems**

We give provably good estimators for:

- **Product:** A^TB
- **Regression:** the matrix X^* minimizing $\|AX - B\|$
 - A slightly generalized version of least-squares regression
 - All norms here Frobenius, so $\|A\| := [\sum_{i,j}A_{ij}^2]^{1/2}$
- **Low Rank Approximation:** the matrix A_k of rank k minimizing $\|A - A_k\|$
 - For k given beforehand
- The rank of A
5. General Properties of Our Algorithms

- Provable error bounds, with high probability
- The error is measured using the Frobenius norm
- For some problems, our sketches as small as possible
 - For a given error
 - When A and B have appropriate-sized integer entries
- Sketches may also be useful in a distributed setting, where matrix entries are scattered
 - ...and one pass \Rightarrow few rounds of communication

6. Randomized Matrix Compression

In a line of similar efforts...
- Elementwise sampling [AM01][AHK06]
- Row/column sampling: pick small random subsets of the rows, columns, or both [DK01][DKM04]
 - Sample probability based on Euclidean norm of row or column
 - Or even: probability based on norm of vector in SVD
 - In general, needs two passes
 - Whole row or column samples are good "examples", and may preserve sparsity
- (Here) Sketching/Random Projection: maintain a small number of random linear combinations of rows or columns [S06]
- Our upper bound work is \approx a followup to [S06]
 - cf. Rokhlin-Szlam-Tygert, Halko-Martinsson-Tropp

7. Approximate Matrix Product

- A and B have n rows, we want to estimate A^TB
- Let S be an $n \times m$ sign matrix
 - A.K.A. Rademacher or Bernoulli
 - Each entry is $+1$ or -1 with probability $1/2$
 - $m = O(1)$, to be specified
 - Independent entries, for now
- Our estimate of A^TB is $A^TS^T B / m = (S^T A)^T S^T B / m$
- That is, sketches are $S^T A$ and $S^T B$
 - Compressing the columns from n down to m
8. **Time and Space Bounds**

- Update time is $O(m)$, since only one column of S^T is needed per update
- Space is $O(md)$ for $S^T A$, $O(md')$ for $S^T B$
 - $O(m)$ space for S, via limiting independence of S entries
- Compute time, for product of sketches, is $O(mdd') = O(mc^2)$, $c := d + d'$
 - Can be done in $O(dd')$ [Coppersmith]
 - That is, we have optimal space, number of passes, and compute time

9. **Expected Error, and a Tail Estimate**

- From $E[SS^T]/m = I$ and linearity of expectation,

 $$E[A^TSS^TB/m] = A^T E[SS^T] B/m = A^T B$$

- So in expectation, sketch product is a good estimate of the product
- This is true also with high probability
- That is, for $\delta, \epsilon > 0$, there is $m = O(\epsilon^{-2} \log(1/\delta))$ so that

 $$\text{Prob}\{|A| > \epsilon|A||B|\} \leq \delta$$

 - Here Λ is the error $A^TSS^TB/m - A^T B$
- This tail estimate seems to be new
 - Bound holds when entries of S are $O(\log(1/\delta))$-wise independent

10. **Lower Bound on Space**

- The sketch size $O(M\epsilon^{-2} \log(1/\delta))$ is only a log c factor improvement, $c = d + d'$
 - Entries are $M = O(\log(nc))$ bit integers
- However: the new upper bound matches our new space lower bound $\Omega(Mc/\epsilon^2)$
 - Failure probability $\delta \leq 1/4$
 - Large enough n and c
11. Framework of Proof of Lower Bound

- Reduction from a communication task
 - Alice has random $x \in \{0, 1\}^s$
 - Bob has random i
 - Alice must send data to Bob so that he can learn x_i
- For even $2/3$ chance of success, Alice must send $\Omega(s)$ bits
 - Even when Bob already knows $x_{i'}$ for $i' > i$ [MNSW]
- Given a product algorithm using small sketches:
 - Alice can encode x in A, send sketch of A to Bob
 - Bob can use B and sketch of A to estimate A^TB, and find x_i

12. Regression

- The problem again: $\min_X \|AX - B\|^2$
- X^* minimizing this has $X^* = A^- B$, where A^- is the pseudo-inverse of A
- The algorithm is:
 - Maintain S^TA and S^TB
 - Return \hat{X} solving $\min_X \|S^T(AX - B)\|$
- Main claim: if A has rank k,
 there is $m = O(k\epsilon^{-1}\log(1/\delta))$ so that with probability at least $1 - \delta$
 $\|A\hat{X} - B\| \leq (1 + \epsilon)\|AX^* - B\|$
 - That is, relative error for \hat{X} is small
13. Regression Analysis Ideas

- Why should \hat{X} be so good?
 - For fixed Y, $||S^T(AY-B)|| \approx ||AY-B||$
 - Just as for a random projection
 - If the norm is preserved for all Y, we're done
 - S^T must preserve norm even of \hat{X}, chosen using S
- The main idea: show that $||S^T A (X^* - \hat{X})||$ is small
 - Using normal equations of sketched problem, matrix mult. results
- Use this to show $||A(X^* - \hat{X})||$ is small
- Use this to show the result
 - Using normal equations of exact problem

14. Best Low-Rank Approximation

- For any matrix A and integer k, there is a matrix A_k of rank k that is closest to A among all matrices of rank k
- Since rank of A_k is k, it is the product CD^T of two k-column matrices C and D
 - $(A_k$ can be found from the SVD (singular value decomposition), where C and D are orthogonal matrices U and $V\Sigma$)
 - This is a good compression of A
 - If entries of A are noisy measurements, often the noise is "compressed out" in this way
 - LSI, PCA, Eigen*, recommender systems, clustering,...

15. Best Low-Rank Approximation and $S^T A$

- The sketch $S^T A$ holds a lot of information about A
- In particular, there is a rank k matrix \hat{A}_k in the rowspace of $S^T A$ nearly as close to A as A_k
 - The rowspace of $S^T A$ is the set of linear combinations of its rows
- That is, $||A - \hat{A}_k|| \leq (1 + \epsilon) ||A - A_k||$
- This is shown using the regression results
16. Nearly Best Nearly-Low-Rank Approximation

- A similar observation applies in transpose
- Suppose R is a $d \times m$ sign matrix (recall A is $n \times d$)
- The columnspace of AR contains a nearly best rank-k approximation to A
- That is, \hat{X} minimizing $\|ARX - A\|$ has $\|AR\hat{X} - A\| \leq (1 + \epsilon)\|A - A_k\|$
- Now minimize sketched version $\|S^T ARX - S^T A\|$
- Solution is $X' = (S^T AR)^- S^T A$ with
 $$\|ARX' - A\| \leq (1 + \epsilon)\|AR\hat{X} - A\| \leq (1 + \epsilon)^2\|A - A_k\|$$
 - Since AR has rank $k\epsilon^{-1}$, S must be $n \times m'$, with $m' = k\epsilon^{-2}$

17. Nearly Best Nearly-Low-Rank Algorithm

- An algorithm: maintain AR and $S^T A$, return $ARX' = AR(S^T AR)^- S^T A$
 - Rank is k/ϵ
 - Distance to A is $(1 + \epsilon)\|A - A_k\|$
- This approximation to A is interesting in its own right
 - No SVD required, only pseudo-inverse of a matrix of constant size

18. Nearly Best Low-Rank Approximation

Still haven't found a good rank k matrix

- To do this, we find the best rank-k approximation to $\frac{AR(S^T AR)^- S^T A}{A}$ in the columnspace of AR
- The resulting upper bound on space is a bigger w.r.t. than our lower bound
- When A is given a column at a time, or a row at a time, we can do better
19. **Concluding Remarks**

- Space bounds are tight for product, regression
 - Faster update times?
- Space bounds are not tight w.r.t. ϵ for low-rank approximation
 - Upper bounds are at fault, probably
 - We have better upper bounds for restricted cases
- The entry-wise r-norm of the error matrix Λ can also be bounded
 - This implies a bound on $||\Lambda||_{\max}$ in terms of $||A||_{1\to 2}$ and $||B||_{1\to 2}$
- Other projection matrices besides sign matrices?
- For what other problems is the full power of the JL transform not needed?

Thank you for your attention