Statistical Ranking Problem

Tong Zhang
Yahoo! Inc. New York City

Joint work with

David Cossock
Yahoo! Inc. Santa Clara
Agenda

- Some massive data analysis problems on the internet.
- Earlier work on ranking.
- Web-search ranking: some theoretical issues.
 - relation to matrix reconstruction.
 - relating reconstruction error to ranking error.
 - statistical error: derive bounds independent of massive web-size.
 - learning method: importance weighted regression.
Some Massive Data Analysis Problems at Yahoo

- Straight forward applications of basic classification.
- Community, social network and user behavior analysis.
- Advertizing.
- Ranking problems and applications.
Some Basic Classification Problems

- Classification of text-documents.
 - email spam, web-page spam.
 - web-page content classification, document type classification, etc.
 - adversarial scenario; dynamic nature.

- Basic algorithms: linear classification, kernels, boosting, etc.

- Feature engineering very important: text + structured non-text features.

- Some problems need more complicated modeling:
 - methods to use link information (classification with web-graph structure)
 - methods to take advantage of community effect.
Community analysis

• Social network (web 2.0): users help each other.
 – tagging, blogging, reviews, user provided content, etc
 – methods to encourage users to interact and provide contents.
 – methods to help users finding quality information more easily.
 – methods to analyze user behavior/intention.

• Classification: determine content quality, user expertise on topics, etc

• Ranking: rank content based on user intention (question answering, ads).

• Social network connectivity graphs with typed (tagged) edges.
 – link prediction and tag prediction.
 – hidden community discovery.
 – Personalized recommender system (ranking).
Advertizing

- What ads to put on what page:
 - click through rate prediction.
 - user intention analysis.
 - personalization (predict future behavior based on historic behavior).

- Matching:
 - closeness between keywords, queries, contents.
 - suggest better keywords or summaries for advertisers.

- Predict quality of advertisers.

- Predict quality of user clicks.
Ranking Problems

• Rank a set of items and display to users in corresponding order.

• Important in web-search:
 – web-page ranking
 * display ranked pages for a query
 – query-refinement and spelling correction
 * display ranked suggestions and candidate corrections
 – web-page summary
 * display ranked sentence segments
 – related: select advertisements to display for a query.
 – related: crawling/indexing:
 * which page to crawl first
 * pages to keep in the index: priority/quality
Earlier Work on Statistical Ranking

- Statistics: most related is ordinal regression (ordered output)
 - in ranking, we want to order inputs.

- Machine learning: pairwise preference learning (local and global)
 - learn a local scoring function f for items to preserve preference \prec.
 * two items x and x': $f(x) < f(x')$ when $x \prec x'$.
 * ordering inputs according to x.
 - learn a pair-wise decision function f
 * $f(x, x') \rightarrow \{0, 1\}$: whether $x \prec x'$.
 * need method to order x using $f(x, x')$ (related: sorting with noise).
 - learn a global rank-list decision function f
 * two ordered rank-list $I = \{x_{i1}, \ldots, x_{im}\}$ and $I' = \{x'_{i1}, \ldots, x'_{im}\}$.
 * learn a global scoring function for rank-list: $f(I) < f(I')$ when $I \prec I'$.
 * modeling and search issues (related to structured-output prediction)
Theoretical Results on Ranking

– Global ranking criterion:
 * number of mis-ordered pairs: \(\mathbb{E}_x \mathbb{E}_{x'} I(x < x' \& f(x) \geq f(x')) \).
 * related to AUC (area under ROC) in binary classification.
 * studied by many authors: Agarwal, Graepel, Herbrich, Har-Peled, Roth, Rudin, Clemencon, Lugosi, Vayatis, Rosset ...

– Practical ranking (e.g. web-search):
 * require subset ranking model
 * focus quality on top (not studied except a related paper [Rudin, COLT 06]).

– Our goal:
 * introduce the sub-set ranking model.
 * theoretically analyze how to solve a large scale ranking problem
 · learnability and error bounds.
 · importance sampling/weighting crucial in the analysis.
Web-Search Problem

- User types a query, search engine returns a result page:
 - selects from billions of pages.
 - assign a score for each page, and return pages ranked by the scores.

- Quality of search engine:
 - relevance (whether returned pages are on topic and authoritative)
 - presentation issues (diversity, perceived relevance, etc)
 - personalization (predict user specific intention)
 - coverage (size and quality of index).
 - freshness (whether contents are timely).
 - responsiveness (how quickly search engine responds to the query).
Relevance Ranking as Matrix Reconstruction

• Massive size matrix
 – rows: all possible queries
 – columns: all web-pages (Yahoo index size disclosed last year: 20 billion)

• Question: can we reconstruct the whole matrix from a few rows?
 – no if treated as matrix reconstruction without additional information
 ∗ why: singular value decays slowly.
 – yes if given additional features characterizing each matrix entry
 ∗ treat as a statistical learning problem.
 ∗ require more complicated learning theory analysis.
 ∗ Frobenius norm (least squares error) not good reconstruction measure.

• Learning theory can give error/concentration bounds for matrix reconstruction.
 – some ideas from matrix reconstruction may be applicable in learning.
Relevance Ranking: Statistical Learning Formulation

- **Training:**
 - randomly select queries q, and web-pages p for each query.
 - use editorial judgment to assign relevance grade $y(p, q)$.
 - construct a feature $x(p, q)$ for each query/page pair.
 - learn scoring function $\hat{f}(x(p, q))$ to preserve the order of $y(p, q)$ for each q.

- **Deployment:**
 - query q comes in.
 - return pages p_1, \ldots, p_m in descending order of $\hat{f}(x(p, q))$.
Measuring Ranking Quality

• Given scoring function \hat{f}, return ordered page-list p_1, \ldots, p_m for a query q.
 – only the order information is important.
 – should focus on the relevance of returned pages near the top.

• DCG (discounted cumulative gain) with decreasing weight c_i

$$DCG(\hat{f}, q) = \sum_{j=1}^{m} c_i r(p_i, q).$$

• c_i: reflects effort (or likelihood) of user clicking on the i-th position.
Subset Ranking Model

- $x \in \mathcal{X}$: feature $(x(p, q) \in \mathcal{X})$

- $S \in S$: subset of \mathcal{X} ($\{x_1, \ldots, x_m\} = \{x(p, q) : p \in S\}$
 - each subset corresponds to a fixed query q.
 - assume each subset of size m for convenience: m is large.

- y: quality grade of each $x \in \mathcal{X}$ ($y(p, q)$).

- scoring function $f : \mathcal{X} \times S \rightarrow \mathbb{R}$.
 - ranking function $r(f(S)) = \{j_i\}$: ordering of $S \in S$ based on scoring function f.

- quality: $\text{DCG}(f, S) = \sum_{i=1}^{m} c_i E_{y_{j_i}|(x_{j_i}, S)} y_{j_i}$.
Some Theoretical Questions

- **Learnability:**
 - subset size m is huge: do we need many samples (rows) to learn.
 - focusing quality on top.

- **Learning method:**
 - regression.
 - pair-wise learning? other methods?

- **Limited goal to address here:**
 - can we learn ranking by using regression when m is large.
 - massive data size (more than 20 billion)
 - want to derive: error bounds independent of m.
 - what are some feasible algorithms and statistical implications.
Bayes Optimal Scoring

- Given a set \(S \in S \), for each \(x_j \in S \), we define the Bayes-scoring function as

\[
f_B(x_j, S) = \mathbb{E}_{y_j|(x_j, S)} y_j
\]

- The optimal Bayes ranking function \(r_{f_B} \) that maximizes DCG
 - induced by \(f_B \)
 - returns a rank list \(J = [j_1, \ldots, j_m] \) in descending order of \(f_B(x_{j_i}, S) \).
 - not necessarily unique (depending on \(c_j \))

- The function is subset dependent: require appropriate result set features.
Simple Regression

• Given subsets \(S_i = \{x_{i,1}, \ldots, x_{i,m}\} \) and corresponding relevance score \(\{y_{i,1}, \ldots, y_{i,m}\} \).

• We can estimate \(f_B(x_j, S) \) using regression in a family \(F \):

\[
\hat{f} = \arg \min_{f \in F} \sum_{i=1}^{n} \sum_{j=1}^{m} (f(x_{i,j}, S_i) - y_{i,j})^2
\]

• Problem: \(m \) is massive (\(> 20 \) billion)
 – computationally inefficient
 – statistically slow convergence
 * ranking error bounded by \(O(\sqrt{m}) \times \text{root-mean-squared-error} \).

• Solution: should emphasize estimation quality on top.
Importance Weighted Regression

- Some samples are more important than other samples (focus on top).

- A revised formulation: \(\hat{f} = \arg \min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} L(f, S_i, \{y_{i,j}\}_j) \), with

\[
L(f, S, \{y_j\}_j) = \sum_{j=1}^{m} w(x_j, S)(f(x_j, S) - y_j)^2 + u \sup_{j} w'(x_j, S)(f(x_j, S) - \delta(x_j, S))^2
\]

- weight \(w \): importance weighting focusing regression error on top
 - zero for irrelevant pages

- weight \(w' \): large for irrelevant pages
 - for which \(f(x_j, S) \) should be less than threshold \(\delta \).

- importance weighting can be implemented through importance sampling.
Relationship of Regression and Ranking

Let \(Q(f) = \mathbb{E}_S L(f, S) \), where

\[
L(f, S) = \mathbb{E}_{\{y_j\}_j\mid S} L(f, S, \{y_j\}_j)
= \sum_{j=1}^{m} w(x_j, S) \mathbb{E}_{y_j\mid (x_j, S)} (f(x_j, S) - y_j)^2 + u \sup_j w'(x_j, S) (f(x_j, S) - \delta(x_j, S))^2_+.
\]

Theorem 1. Assume that \(c_i = 0 \) for all \(i > k \). Under appropriate parameter choices with some constants \(u \) and \(\gamma \), for all \(f \):

\[
\text{DCG}(r_B) - \text{DCG}(r_f) \leq C(\gamma, u)(Q(f) - \inf_{f'} Q(f'))^{1/2}.
\]
Appropriate Parameter Choice (for previous Theorem)

• One possible theoretical choice:
 – Optimal ranking order: \(J_B = [j^*_1, \ldots, j^*_m] \), where \(f_B(x_{j^*_i}) \) is arranged in non-increasing order.
 – Pick \(\delta \) such that \(\exists \gamma \in [0, 1) \) with \(\delta(x_j, S) \leq \gamma f_B(x_{j^*_k}, S) \).
 – Pick \(w \) such that for \(f_B(x_j, S') > \delta(x_j, S') \), we have \(w(x_j, S') \geq 1 \).
 – Pick \(w' \) such that \(w'(x_j, S') \geq I(w(x_j, S') < 1) \).

• Key in this analysis:
 – focus on relevant documents on top.
 – \(\sum_j w(x_j, S') \) is much smaller than \(m \).
Generalization Performance with Square Regularization

Consider scoring $f_\hat{\beta}(x, S) = \hat{\beta}^T \psi(x, S)$, with feature vector $\psi(x, S)$:

$$\hat{\beta} = \arg\min_{\beta \in \mathcal{H}} \left[\frac{1}{n} \sum_{i=1}^{n} L(\beta, S_i, \{y_{i,j}\}_j) + \lambda \beta^T \beta \right],$$ \hspace{1cm} (1)

$L(\beta, S, \{y_j\}_j) = \sum_{j=1}^{m} w(x_j, S)(f_\beta(x_j, S) - y_j)^2 + u \sup_j w'(x_j, S)(f_\beta(x_j, S) - \delta(x_j, S))^2$.

Theorem 2. Let $M = \sup_{x, S} \|\phi(x, S)\|_2$ and $W = \sup_S[\sum_{x_j \in S} w(x_j, S) + u \sup_{x_j \in S} w'(x_j, S)]$. Let $f_\hat{\beta}$ be the estimator defined in (1). Then we have

$$\text{DCG}(r_B) - \mathbb{E}_{\{S_i, \{y_{i,j}\}_j\}_i} \sum_{i=1}^{n} \text{DCG}(r_{f_\hat{\beta}}) \leq C(\gamma, u) \left[\left(1 + \frac{WM}{\sqrt{2} \lambda n} \right)^2 \inf_{\beta \in \mathcal{H}} (Q(f_\beta) + \lambda \beta^T \beta) - \inf_{f} Q(f) \right]^{1/2}.$$

Interpretation of Results

• Result does not depend on m, but the much smaller quantity quantity $W = \sup_S [\sum_{x_j \in S} w(x_j, S) + u \sup_{x_j \in S} w'(x_j, S)]$

 – emphasize relevant samples on top.
 – a refined analysis can replace \sup over S by some p-norm over S.

• Can control generalization for the top portion of the rank-list even with large m.

 – learning complexity does not depend on the majority of items near the bottom of the rank-list.
 – the bottom items are usually easy to estimate.
Some Conclusions

• Web-search ranking problem can be viewed as a more sophisticated matrix reconstruction problem with a different error criterion.

• Ranking quality near the top is most important.

• Solving ranking problem using regression:
 – small least squares error does not imply good ranking error.
 – theoretically solvable using importance weighted regression: can prove error bounds independent of the massive web-size.

• Subset features are important.