AT THE CONFLUENCE OF STREAMS; ORDER, INFORMATION & SIGNALS

S. Guha
UPenn

Joint work with P. Indyk and A. McGregor.
Data Streams

- We are given a sequence of input $x_1, \ldots, x_i, \ldots, x_m$ and have to compute some function f
- Computation proceeds in passes
- Space is restricted
- Any x_i not explicitly remembered: inaccessible in the same pass
Example

- Sitting next to the wireless router - delay suffered by every packet
- Interested in the distribution of the delay
 - Pkt 1, 0.2 ms
 - Pkt 2, 0.3
 - ...
 - Pkt ?, 0.2 \(\Rightarrow\) 2 pkts at 0.2 ...

- Stream is specified by Updates.
- Every stream item is a \(\langle i (=\text{delay}),+1\rangle\)
- Assume we normalize somehow. No deletions (this talk).

- Of course we cannot store an explicit vector \(\ldots i \in [n]\)
- Space in \(o(n)\) & input is given is a piece meal fashion.
Data Streams (this talk) …

- Understanding the impact of the order of the input on computation.

- A view of 2 well known problems
 - (dis) Similarity of streams -> 1996
 - Order statistic -> 1978
Distances between 2 streams

- Channel 9 similar to channel 1?
 - Distributions X & Y
 - "I believe the distribution is the same as last Thursday"

- $(1+\epsilon)$ approximation; i.e., $(1+\epsilon) \, D(X,Y)$

- Alon, Matias & Szegedy
- Johnson Lindenstrauss

- Feigenbaum, Kannan, Strauss & Vishwanathan ℓ_1 but in an "aggregate model" $\Rightarrow \ldots$ (i, # of packets) \ldots

- Indyk ℓ_k for $0 < k \leq 2$ \ldots

- Tight results for $k \geq 3$ have since been achieved...
Random Projections

- [Johnson, Lindenstrauss] 1984
- Given a matrix A whose elements are iid Gaussian, and any vector x, with high prob.

$$\|x\|_2 \leq \|Ax\|_2 \leq (1 + \varepsilon)\|x\|_2$$

if $x \in \mathbb{R}^n$ then $A \in \mathbb{R}^{n \times O(\log n)}$

$\Rightarrow Ax \in \mathbb{R}^{O(\log n)}$.

Dimensionality reduction, nearest nbr searches.
What it achieves

- Computes Norm when elements arrive out of order.

Note: A proof that such a pseudorandom generator exists is Necessary – and is not always easy.
A Kaleidoscope of questions

- **Philosophical ...**

 Which other distances are approximable? What property?

 (likely) That is it. The only approximable distances are likely to be norms, i.e., function of \(\{x_i - y_i\} \).

 Stable distributions appear as the key idea in context thing ...

- **Pragmatic ...**
A Kaleidoscope of questions

- Philosophical ...

 Example ... \(D^2 = \sum_i (\sqrt{x_i} - \sqrt{y_i})^2 \)

 (squared) Hellinger distance

- Pragmatic ...
A Kaleidoscope of questions

- Philosophical ...

 Example ... $D^2 = \sum_i (\sqrt{x_i} - \sqrt{y_i})^2$

 (squared) Hellinger distance

 "Aggregate" Model (FKSV) easy ...

 Hard in update models.

 $\sum_i \sqrt{|x_i - y_i|}$ is easy (1/2 stable distribution)

- Pragmatic ...

A Kaleidoscope of questions

○ Philosophical ...

 Example ... \[D^2 = \sum_i (\sqrt{x_i} - \sqrt{y_i})^2 \]

 (squared) Hellinger distance

 Small space embedding (into \(L_2\)) easy
 Hard for streaming

○ Pragmatic ...
A Kaleidoscope of questions

- Philosophical.

- Pragmatic ...
 - What measures of distances are meaningful for distributions?
 - Hypothesis testing:
 - f-divergences or Ali-Silvey-Cziszar divergences
 - Mathematical programming:
 - Bregman divergences
 - Model “Risk” etc.,
A Kaleidoscope of questions

- Philosophical.
- Pragmatic.
 - f-divergences:
 - Pick a j from x and consider the expected likelihood
 $D_f(x,y)=\mathbb{E}_{x,j} f(y_j/x_j)$ provided $f(1)=0, f$ convex...

 - $\text{KL}(x,y) = \sum_j x_j \log (x_j/y_j) \Rightarrow f(u)=-\log u$

 - $\text{Hellinger}^2 = \sum_j (\sqrt{x_j} - \sqrt{y_j})^2 = \sum_j x_j (1-\sqrt{y_j/x_j})^2$ or $f(u)=(1-\sqrt{u})^2$.

 - $\ell_1 = \sum_j |x_j - y_j| = \sum_j x_j \sqrt{1 - (y_j/x_j)}$ or $f(u)=|1-u|$

 - Also arises from loss functions in learning ...
A Kaleidoscope of questions

- Philosophical.
- Pragmatic.
 - The only f-divergence which can be $(1+\varepsilon)$ approximated over update streams is ℓ_1.
 - Bregman divergences:
 - Potential field F
 - Convex F

$$B_F(p,q) = F(p) - F(q) - (\nabla F(q)) \circ (p-q)$$
A Kaleidoscope of questions

- Philosophical.
- Pragmatic.

 Example:

 - $F(x) = x^2 \Rightarrow B(x,y) = x^2 - y^2 - 2y(x-y) = (x-y)^2 \Rightarrow \ell_2$!
 - $F(x) = x \log x \Rightarrow$

 $B(x,y) = x \log x - y \log y - (1 + \log y)(x-y) = x \log (y/x) - x + y$

 \Rightarrow Gen. KL div

\[
B_F(p,q) = F(p) - F(q) - (\nabla F(q)) \circ (p-q)
\]
A Kaleidoscope of questions

- Philosophical.
- Pragmatic.
 - Bregman div.:
 - ℓ_2 is sketchable/estimable in small space.
 - What about the others? Sorry ...
How?

- **Lemma (one part):** \(\rho, c > 0 \), distributions \(x, y \)
 - For all (in some range) \(M, \delta \)

 if \(\min \{ \phi(\delta, 2\delta), \phi(2\delta, \delta) \} \geq c M^\rho \)

 \(\{ \phi(M\delta, (M+1)\delta) + \phi((M+1)\delta, M\delta) \} \)

 then \(\exists \gamma > 0 \) such that to get a \(n^\gamma \) approximation of \(\sum_i \phi(x_i, y_i) \) over \([2n]\) we need \(\Omega(n) \) space.
Consequence ...

- **If** f', f'' exist ...

 $\phi(M\delta, (M+1)\delta) = M\delta f(1+1/M) \leq M\delta \left[f(1) + f'(1)/M + f''(\zeta)/(2M^2) \right]$

Suppose $f'(1)$ exists and $\neq 0$; then consider $g(u) = f(u) - f'(1)(u-1)$.

Well known: the change has no effect ...
Lemma applies ...

Exceptions?
Proof of the Lemma

- Reduction from Communication Complexity of set disjointness.
- Alice and Bob have $\approx \frac{n}{4}$ numbers each from $[n]$. How many bits do they need to exchange to find a common number if such an element exists.
- $\Theta(n/P)$ even with P rounds
- If an efficient streaming algorithm existed then they can communicate the “state” of the algorithm.
 - But dimensionality reduction may be possible...
 - Two copies: critical that you are allowed updates
Other results

- Bregman: F'' vanishes or diverges polynomially at the nbd of 0 \Rightarrow Same conclusion. Note $F''=\text{constant}$ for ℓ_2

- If $f(0)$ is bounded then any symmetric f-divergence can be approximated to $\pm \varepsilon$ using $\sqrt{n \log^O(1) n}$ space

- If one distribution is known \Rightarrow Polylog.
Takeaway …

- Order of the input is important...
- Hellinger: easy in aggregated model can embed in small space hard in update models
- It’s the update which is the problem.
Changing gears…

- Analysis of streaming model is typically worst case.

- What if we consider average case?
 - Average over what?
 - The order. ⇒ Exchangeability ...
Order Statistic – Median finding

- Given a sequence of n numbers, find the median. Space is restricted.

- Munro Paterson 1978
 - For p passes \(n^{1/p} \) space suffices
 - Mention that for random order \(\log \log n \) pass and polylog space appears feasible, but known techniques do not seem to work.

- Manku, Rajagopalan, Lindsay; Greenwald Khanna,
 - error \(\pm \varepsilon \ n \) using \(O((1/\varepsilon) \log n) \) space
Exact Median Finding

- For p passes $n^{1/p}$ space suffices
 - This is best possible $\Rightarrow \Omega(\log n)$ passes.

- Error $\pm \varepsilon n$ using $O((1/\varepsilon) \log n)$ space
 - 1 pass adversarial order $\pm n^\delta$ error $\Rightarrow \Omega(n^{1-\delta})$ space
 - 1 pass random order $\pm n^{1/2+\varepsilon}$ error in polylog space
 - Multipass extension not automatic ...
A new hope in thousand words
Now we do not know the length of the stream anymore - it is $\zeta N \pm O(\sqrt{N})$.

Ignore and repeat. The constant in $O()$ increases but N is already ζN.

A proof is not an idea …
The takeaway …

- Random order gives an exponential speedup in passes.

- Permuting your data might give you a faster algorithm. The question is of course to analyze the benefit.
The road ahead

- A promising idea
 - Assume random order
 - Prove your claim
 - Go back and “fix/simulate” the randomness

- Clustering data streams
 - G., Motwani, Mishra & O’callaghan - $n^{1/p} & 2^{O(p)}$
 - Meyerson: Random order $\log^{O(1)} n & O(1)$
 - Charikar, Panigrahy, O’callaghan: $\log^{O(1)} n & O(1)$

- More examples

- What about SVD?
 - Assume any random order you see fit
 - Can you analyze passes/runtime/space better?
That’s all Folks