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Abstract—This paper presents the theory of the k-space
method generalized to model elastic wave propagation in hetero-
geneous anisotropic media. The k-space methods are promising
time integration techniques giving, in conjunction with colloca-
tion spectral methods, accurate and efficient numerical schemes
for problems in heterogeneous media. In this study, the k-space
operator is derived in a spatially continuous form using the
Fourier analysis of the displacement formalism of elastodynamics.
An efficient numerical algorithm is then constructed by applying
a Fourier collocation spectral method, leading to define the
discrete k-space scheme. The proposed method is temporally
exact for homogeneous media, unconditionally stable for het-
erogeneous media, and also allows larger time steps without loss
of accuracy. Implementation of the method is discussed in detail.
The method is validated through a set of numerical tests. The
numerical results show the efficacy of the method compared with
the conventional schemes.

Index Terms—k-space methods, elastic waves, heterogeneous
media, anisotropy, Fourier collocation spectral method, pseu-
dospectral method, explicit time integration

I. INTRODUCTION

Elastic wave propagation has widespread applications in
many different areas of science and technology including
seismology, geophysics and soil mechanics [1], [2], non-
destructive testing [3], condensed matter physics [4], design
of sensors and transducers [5], [6] and biomedical ultrasound
[7]. Therefore, efficient and accurate numerical methods are
of great importance. A number of different numerical methods
have been used to solve the elastic wave equations but among
the more commonly used are finite elements [8], boundary
elements [9], finite volume [10], [11], spectral elements [12],
[13], integral equations [14], finite-differences [15]–[17], or
pseudospectral models [18]–[21]. This paper presents the
theory of the k-space method for modeling elastic wave
propagation in heterogeneous anisotropic media.

The dominant conventional methods such as finite elements
or finite-differences with the standard time integration schemes
are cumbersome and slow as they require many points per
minimum wavelength (PPMW) for a satisfactory accuracy.
They may also exhibit a poor performance for problems in
heterogeneous media. Spectral methods are excellent alterna-
tives for the spatial discretization as they can dramatically
relax the PPMW requirement. For time integration, explicit
schemes are strongly preferred over implicit ones, as spectral
methods produce dense matrices which make implicit schemes
costly. However, the classical explicit schemes are generally
conditionally stable and sensitive to dispersion errors. We
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present a k-space pseudospectral method which (1) uses a
spectral discretization technique, (2) introduces an integration
scheme that is unconditionally stable and can be parameterized
to minimize the dispersion error, (3) can be efficiently imple-
mented using the fast Fourier transform algorithm, and (4)
handles propagation in heterogeneous media very efficiently.
k-space methods can be viewed as a class of integrating

factors originated from scattering problems in the computa-
tional wave theory [22], [23]. The k-space integrating factor
in its core stabilizes the numerical integration beyond what
can be achieved using the classical time integration stencils.
It has been traditionally intertwined with collocation spectral
methods and mainly understood as a variation on the spectral
theme. A time-explicit integration implies a conditional stabil-
ity demanding for very small time steps. The k-space schemes
are constructed based upon explicit schemes and attempt to
improve the stability. k-space methods are typically used for
hyperbolic problems for which an exact solution is known
in the homogeneous (i.e., constant coefficient) case. In some
cases, this allows an adjustment to be made to either the (finite
difference) time derivative or the (spectral) spatial derivatives
which converts the time stepping pseudospectral model into
an exact model for homogeneous media, and stable for larger
time steps (for a given level of accuracy) in heterogeneous
media.

A brief history of the k-space methods is as follows: An
early use of a k-space adjustment to a gradient calculation to
improve a pseudospectral method was made by Fornberg and
Whitham [24] who applied it to a nonlinear wave equation.
Bojarski and others [19], [20], [25]–[30] applied similar ideas
to linear scalar wave equations, with applications in acoustics
and ultrasound. Liu [31] and Firouzi et al. [32] applied the
k-space modifier to the isotropic elastic wave equation. Jing
et al. [33] and Treeby et al. [34] applied the k-space corrector
to the nonlinear acoustic wave equation.

The method to be presented can be viewed as the anisotropic
generalization of the method of Firouzi et al. [32]. However,
in [32] the base of the algorithm is upon field splitting
(into compressional and shear parts) at each time step which
increases the run-time memory as each split must be stored at
each time step. Here, the concept of splitting is described and
applied to formulate the final algorithm without field splitting.
Several numerical examples are given, in which the efficacy
of the method is evaluated and benchmarked against the
classical schemes. This work was partially presented in [35]
without in-detail analysis and full explanation of the method.
This manuscript is meant to provide the theory, analysis, and
features of the method in-depth.
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The organization of this paper is as follows. The equations
governing the propagation of elastic waves in anisotropic
media are described in section II. The k-space exact solution
is constructed based upon the wave equation in homogeneous
media in section III. In section IV, the k-space operators
are introduced, and upon that, a k-space scheme is presented
for heterogeneous media. In section V, the discrete k-space
scheme is presented using a Fourier collocation spectral
method. Analysis of the discrete scheme is discussed in section
VI. Details of the numerical implementation, including the
matrix representations, staggered grid, and absorbing boundary
conditions are described in section VII. Examples and bench-
mark results are given in VIII, and a summary concludes the
paper.

In this study, the following notations are adopted: i, j, k
represent the spatial dimensions. I, J,K indicate the colloca-
tion grid points associated with the discretized domain. (·)i
and (·)ij indicate the components of vector and tensor fields
whereas (·),i and (·),ij represent the partial derivatives in
Euclidean coordinates. Throughout this paper, the summation
convention is used for i, j, k unless otherwise specified. If an
index is represented in parentheses, i.e., (·)(i), it is counted as
a free index (i.e., there is no summation over this index). ·, :
indicate the tensor single and double contractions.⊗ represents
the dyadic (outer) product of vectors and tensors. i represents
the imaginary number (i.e., i =

√
−1). The vectors and tensors

are bold-faced whereas the components are written italic.
(·)
∣∣
(·) indicates restriction of a variable to a point. |·| represent

the Euclidean norm of a vector. Throughout the paper, we
assume that field components such as velocities and stresses
are square integrable in an infinite space of dimensions 1− 3.
However, for non-square integrable fields, with a proper care,
all the concepts are applicable.

II. GOVERNING EQUATIONS

Wave propagation in general d-dimensional linear
anisotropic elastic media is governed by the linearized
momentum balance law and a linear constitutive relation
between the stress and strain. The governing equations are as
follows.

ρüi = σij,j + fi, (1a)
σij = Cijklu(k,l), (1b)

u(k,l) =
1

2
(uk,l + ul,k), (1c)

in Rd × (0, T ], with u and σ being the displacement and
stress field components, respectively. The radiation condition
is specified as |x| → ∞, with x = (x1, . . . , xd). The initial
conditions are given as

ui(x, 0) = ϕi(x), u̇i(x, 0) = ψi(x), in Rd. (2)

C is the fourth-order elasticity tensor with the major and minor
symmetries, i.e., Cijkl = Cklij and Cijkl = Cjikl = Cijlk.
We also assume that C is uniformly positive definite, that is,
there exists a constant c > 0 such that γijCijklγkl ≥ c for
all γ ∈ Sym(Rd×d)\{0}, the space of nontrivial symmetric
second order tensors.

III. CONSTRUCTION OF THE k-SPACE SOLUTION

Consider a source free homogeneous medium (i.e., the
elasticity tensor C and the density ρ are spatially uniform).
Using the symmetry of C, equations (1a), (1b), and (1c) can
be combined to write the one-field displacement formalism as

ρüi = Cijkluk,lj , in Rd × (0, T ], (3a)

ui(x, t = 0) = ϕi(x), in Rd, (3b)

u̇i(x, t = 0) = ψi(x), in Rd. (3c)

Consider the field components ui and σij , then we write the
Fourier transform and its inverse as

ûi(ξ) = (Fui)(ξ) =

∫
Rd

uie
−iξ·xdx, (4a)

ui(x) = (F−1ûi)(x) = (2π)−d
∫
Rd

ûie
iξ·xdξ, (4b)

σ̂ij(ξ) = (Fσij)(ξ) =

∫
Rd

σije
−iξ·xdx, (4c)

σij(x) = (F−1σ̂ij)(x) = (2π)−d
∫
Rd

σ̂ije
iξ·xdξ, (4d)

and recall the differentiation property in the Fourier space that
is Fx→ξui,j = iξj ûi. F ,F−1 represent the Fourier and the
inverse Fourier transforms, respectively. Equation (3) in the
Fourier space is given as

ρ¨̂ui + ξjCijklξlûk = 0, (5)

with
ûi(ξ, 0) = ϕ̂i(ξ), ˆ̇ui(ξ, 0) = ψ̂i(ξ). (6)

Let n̂ be the normalized wave number vector, i.e., n̂ = 1
|ξ|ξ,

which leads to

ρ¨̂ui + |ξ|2n̂jCijkln̂lûk = 0. (7)

Let Γ = 1
ρ̄ n̂ · C · n̂. It is then easy to check that Γ, also

known as the Christoffel matrix, is symmetric positive definite.
Equation (7) is now a system of ordinary differential equations
coupled in terms of the components of the wave number vector
ξ (even though they are point-wise decoupled).

Since Γ is symmetric positive definite, it has a unique
spectral decomposition of the form Γ =

∑d
i=1 λ

2
iNi ⊗Ni,

where λ2
i ’s are the eigenvalues and Ni’s are the eigenvectors

of Γ, with Ni ·Nj = δij , where δij is the Kronecker delta.
The symbol ⊗ indicates the dyadic (outer) product, i.e., for
two vectors u and v, (u⊗ v)ij = uivj .

We may alternatively write this as Γ = QΛQT , where
Q is an orthogonal tensor (i.e., Q−1 = QT , with QT

indicating the transpose of Q) whose columns are Ni’s. Λ
is a diagonal tensor with λ2

i ’s being the entries. Note that
QQT =

∑d
i=1 Ni ⊗Ni = I, the identity tensor. By defining

ϑ̂i = Qij ûj , we can rewrite equation (7) as

¨̂
ϑi + λ2

(i)|ξ|
2ϑ̂i = 0, (8)

with

ϑ̂i(ξ, 0) = Qijϕ̂j(ξ),
˙̂
ϑi(ξ, 0) = Qijψ̂j(ξ). (9)
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This is now a system of uncoupled equations for each
ξ, each of which with a general solution ϑ̂i(ξ, t) =
A cos(λi|ξ|t) + B sin(λi|ξ|t). Enforcing the initial con-
ditions, we get ϑ̂i(ξ, t) = Qijϕ̂j(ξ) cos(λ(i)|ξ|t) +

1
λ(i)|ξ|

Qijψ̂j(ξ) sin(λ(i)|ξ|t).
Next, we proceed with integrating equation (8) using a

standard scheme. This is the base strategy for constructing
the k-space integrator [28], [29], [32]. Explicit schemes are of
practical interest due to their efficiency. They may, however,
suffer from conditional stability. We thus focus our construc-
tion on the standard leapfrog scheme as a well-established
explicit scheme for wave problems, aiming to improve the
stability and accuracy of the resulting scheme. The standard
leapfrog scheme is written

ϑ̂
(n+1)
i − 2ϑ̂

(n)
i + ϑ̂

(n−1)
i

∆t2
= −λ2

(i)|ξ|2ϑ̂
(n)
i , ∆t = tn+1−tn. (10)

It would be useful to introduce a more compact notation.
Define the following linear forward and backward differencing
operators.

∂̄ϑ̂ni :=
ϑ̂

(n)
i − ϑ̂(n−1)

i

∆t
, ∂ϑ̂ni :=

ϑ̂
(n+1)
i − ϑ̂(n)

i

∆t
. (11)

Equation (10) can now be expressed as

∂∂̄ϑ̂
(n)
i = −λ2

(i)|ξ|
2ϑ̂

(n)
i . (12)

Next, we construct the leapfrog stencil using the exact
solution, which by the trigonometric identities leads to

∂∂̄ϑ̂
(n)
i = −λ2

(i)|ξ|
2 sinc2(λ(i)|ξ|∆t/2)ϑ̂

(n)
i , (13)

where sinc(·) = sin(·)/(·). Note that the summation convec-
tion is not used in equation (13). We rewrite equation (13) in
the invariant form for simplicity as

∂∂̄Θ̂(n) = Λ̃Θ̂(n), (14)

where Θ = (ϑ1, . . . , ϑd) and Λ̃ij =
−λ2

(i)|ξ|
2 sinc2(λ(i)|ξ|∆t/2)δij . Recall Θ̂ = Qû. Replacing

this in equation (14) and using the orthogonality of Q, we
construct the exact time integration in terms of û as

∂∂̄û(n) = Γ̃û(n). (15)

where Γ̃ = −QΛ̃QT = −
∑d
i=1 λ̃

2
i (λi)Ni ⊗Ni, λ̃(i) :=

λ(i)|ξ| sinc(λ(i)|ξ|∆t/2). Hence, we can write

∂∂̄u(n) =Mu(n), (16)

where

M := (2π)−d
∫
Rd×Rd

Γ̃(ξ)eiξ·(x−y)dydξ. (17)

Note that equation (17) is exact for the model problem
equation (3).

IV. HETEROGENEOUS MEDIA AND THE k-SPACE
OPERATORS

When the medium is heterogeneous, the elasticity tensor C
and the density ρ are spatial coordinates dependent, i.e.,

Cijkl = Cijkl(x), ρ = ρ(x). (18)

So, the problem is governed by the following system of
equations.

üi(x, t) =
1

ρ(x)
(Cijkl(x)u(k,l)),j + fi(x, t). (19)

In such cases, the direct application of the Fourier tech-
nique results in global coupling of the equations (which is a
consequence of changing multiplication to convolution). One
possibility is realized by enforcing the heterogeneity as a
contrast source and using Green’s theorem to formulate an
integral solution, which can thereby be discretized in short
time intervals [31]. Alternatively, a more abstract treatment
is by constructing the paramatrix of the problem [36], [37].
In either case, construction of the exact solution involves a
kernel that typically requires O(N3 − N4) operations when
discretized, where N is the number of unknowns. In this
section, we attempt to construct an accurate and efficient time
integrator which along with a collocation Fourier spectral
discretization will bring down the cost of computation to
O(N log(N)).

For this we proceed with integrating the so-called stress-
velocity formalism, which can be achieved by re-arranging
the time derivatives over the constitutive equation and the
conservation of momentum. This can be written as

ρv̇i = σij,j + fi, (20a)
σ̇ij = Cijklv(k,l), (20b)

where v is the velocity vector field. Introducing a time-
staggered leapfrog scheme [29], [38], it is then possible to
write equation (20) in a predictor-corrector form of

∂̄v
n+1/2
i =

1

ρ
σnij,j +

1

ρ
fni , (21a)

∂̄σn+1
ij = Cijklv

n+1/2
(k,l) . (21b)

Let fi = 0. Then it is easy to verify that the predictor-
corrector form of equation (21) and the leapfrog scheme are
equivalent.

The action of a generic operator A can be expressed using
its Fourier symbol (kernel) a(ξ) as A = F−1a(ξ)F , e.g.,

∂j = Id ∂j Id = F−1F∂jF−1F = F−1iξjF .

Application of the k-space method to the case of the non-
constant coefficients model can be motivated by noting that
for a function w(x)

∂kw(x) = F−1iξkFw(x),

∂iw(x)∂j = F−1iξiFw(x)F−1iξjF ,

where Id is the identity operator. This motivates to introduce
a modification to the wave number vector using the k-space
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operator such that the numerical scheme becomes exact for ho-
mogeneous media. This leads to the k-space gradient defined
as below.

Consider a model homogeneous medium with the elasticity
tensor C̄, density ρ̄, and Christoffel matrix Γ̄ = 1/ρ̄n̂ · C̄ · n̂.
Let Γ̄ =

∑d
i=1 λ̄

2
i N̄i ⊗ N̄i be the spectral decomposition of

Γ̄. Then for a vector field v, the k-space gradient D is defined
as

(Dv)ij(x) = (2π)−d
∫
Rd×Rd

iΞijk(ξ)vk(y)eiξ·(x−y)dydξ, (22)

where

Ξ := ξ ⊗Υ(ξ), Υ(ξ) :=

d∑
i=1

sinc(λ̄(i)|ξ|∆t/2)N̄i ⊗ N̄i. (23)

Note that the k-space gradient operator D is a third order
tensor operator that is symmetric in the last two indices. The
k-space divergence is henceforth defined as the adjoint of the
gradient operator, similar to the ordinary one, that is D† such
that 〈D†T,v) = 〈T, Dv〉, for any square-integrable vector
field v and tensor field T. 〈·, ·〉 represents the standard inner
product over the space of square integrable functions. This
gives

(D†T)k = D†ijkTij = F−1iΞijkT̂ij . (24)

We remark that, given a vector field v, the k-space gra-
dient can be equivalently expressed in terms of the spectral
decomposition of Γ̄ as

Dv =
d∑

α=1

Pαvα, (25)

where vα = F−1(N̄α ⊗ N̄α)Fv, i.e., the projection of the
vector field onto the normalized Eigen-vectors of Γ̄, with
the projection coefficients Pα = F−1g(λ̄α)iξ ⊗ F , and
g(λ̄α) = sinc(λ̄α|ξ|∆t/2). This can be viewed as the splitting
operator of the vector field v. In the isotropic case, the eigen-
vector associated to the compressional polarization is ξ, hence
N1 ⊗ N1 = n̂ ⊗ n̂. Also, the eigenvalues are c2p and c2s
(note that there are repeated shear eigenvalues). cp, cs are the
compressional and shear speeds of the isotropic medium. This,
along with equation (25), implies the splitting operator for the
shear split is N2 ⊗N2 + N3 ⊗N3 = I− n̂⊗ n̂, which is in
accordance with the Helmholtz decomposition used in [32].

We shall now construct the k-space scheme by replacing the
differential operators in equation (21) by the corresponding k-
space operators. This becomes

∂̄vn+1/2 =
1

ρ
D†σ

n
+

1

ρ
fn, (26a)

∂̄σn+1 = C : Dsvn+1/2, (26b)

where Ds is the symmetric k-space gradient, i.e.,

Dsv =
1

2

(
Dv + (Dv)

T
)
.

Note that here, as opposed to the methods of [31], [32], the
velocity field is not split at each iteration. In fact, the splitting
is lumped inside the k-space operators.

Note that the k-space scheme is exact for homogeneous
media, equation (3). See the Appendix for the proof. For

heterogeneous media, the model homogeneous problem is de-
signed to achieve certain properties such as improved stability
or accuracy (see section VI).

V. SPECTRAL SPATIAL DISCRETIZATION

In the previous sections, only time discretization was in-
troduced and the spatial derivatives were kept continuous. A
convenient and efficient choice for the spatial discretization of
the k-space scheme, equation (22), is the collocation spectral
method. Spectral methods are in general efficient and accurate
numerical algorithms with widespread applications in fluid
mechanics, acoustics, geophysics, etc. Efficiency follows from
the fact that typically they can be implemented using fast
algorithms such as the fast Fourier transform (FFT). They
are spectrally accurate methods since they construct the ap-
proximate solution using a spectral basis, which often comes
with with a spectral convergence. Among them, Galerkin and
tau spectral methods are well-suited for constant coefficients
problems. On other hand, collocation methods are suitable
candidates for non-constant coefficients problems [39], such as
the case of interest in this paper; they allow fast evaluation if
an explicit time integrator is applied. However, they may suffer
from aliasing and Gibbs phenomenon (these will be addressed
in the subsequent section). Here, we consider a Fourier based
collocation method to spatially discretize the k-space scheme,
equation (26).

Let Vi, Tij be the approximations to vi, σij , i.e., V niI ≈
v(XI, tn), TnijI ≈ σij(X

I, tn), where W ∈ Zd is the
d-dimensional periodic integer lattice. (·)I or (·)|I denote
the field at the collocation grid points XI. The collocation
expansions are given as ViI =

∑
K V̂iφK(XI), TijI =∑

K T̂ijφK(XI), with φK(XI) = eiK·XI

, the Fourier basis
function, and K, I ∈ W. XI = (2πI1/L1, · · · , 2πId/Ld),
where Li is the size of the lattice along xi. The k-space
collocation scheme is then written as

∂̄Vn+1/2
∣∣∣
I

= (
1

ρ
D†Tn)

∣∣∣
I

+
1

ρ
FnI , (27a)

∂̄Tn+1
∣∣∣
I

= C : DsVn+1/2
∣∣∣
I
, (27b)

where FnI = f(XI, tn). D and D† denote the discrete k-space
gradient operator and its adjoint, respectively. Ds indicates the
discrete symmetric k-space gradient. The k-space gradient is
defined as

(DV)ij

∣∣∣
I

:=
∑
K∈W

Ξijk(K)V̂k(K)eiK·XI

, (28a)

(D†T)i

∣∣∣
I

:=
∑
K∈W

Ξjki(K)T̂jk(K)eiK·XI

, (28b)

where

V̂i(K) = |W|−1
∑
I∈W

Vi(X
I)e−iK·XI

, (29a)

T̂ij(K) = |W|−1
∑
I∈W

Tij(X
I)e−iK·XI

. (29b)
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|W| indicates the cardinality (i.e., number of elements in a set)
of W and the discrete symbol is given as

Ξijk(K) := iKiΥjk(K). (30)

The discrete k-space gradient and its adjoint can be evaluated
by means of the discrete Fourier transform (DFT). This further
allows the application of the fast Fourier transform (FFT),
which in turn makes the computation very efficient.

Since practically modeling an infinite domain is not feasible,
we truncate the domain at an assumed size and instead add
perfectly matched layer (PML) terms to attenuate the incoming
wave energy in narrow strips close to the truncated boundaries,
in order to avoid the wrapping effects appearing because of
periodicity of the discrete Fourier transform. The precise forms
of the PML attenuation terms are given in section VII-B.

VI. ANALYSIS OF THE DISCRETE SCHEME

A. Stability and dispersion error

It can be shown that, in the Von-Neumann sense, the
presented algorithm is unconditionally stable under a properly
chosen reference homogeneous medium. In a similar way, it
can be shown that in homogeneous media it is dispersionless.
The proof is somewhat sophisticated and requires substantial
mathematical preliminaries. Here, only the sketch of the proof
is given for the stability. For the detailed poof, see the
Appendix. A similar procedure applies to the dispersion error.
To show the Von-Neumann stability, it must be shown that the
time evolution of an ansatz of the form Vi = V̂i exp(iK ·X)
stays bounded for all times. Upon replacing these in the k-
space scheme, one would arrive at a Fourier representation of
the k-space operator. Upon spectral decomposition, one can
determine a condition under which the operator has bounded
Eigen-values in a unit sphere, for all time intervals. This in turn
concludes that the k-space scheme is unconditionally stable in
heterogeneous media provided

λ̄i(K) = sup
X∈Rd

λi(X,K), N̄i = Ni(λ̄(i)). (31)

B. Aliasing error

It is well-known that collocation schemes for non-constant
coefficients (i.e., heterogeneous) problems lead to the aliasing
error. Aliasing is introduced whenever a field variable (or
its derivative) is multiplied by a coefficient. To remove the
aliasing error, the products are either de-aliased using the
zero-padding approach or controlled using the phase shifting
technique [39].

C. Discontinuities and the Gibbs phenomenon

Problems with coefficients with discontinuities are central to
wave problems (e.g., transmission through a layered medium).
Spectral methods generally approximate the solution by a lin-
ear combination of continuously differentiable basis functions,
which exhibit poor rate of convergence at discontinuities and
also may lead to spurious oscillations known as the Gibbs
phenomenon. In order to address this issue, one can smooth
the coefficients in space through convolution with a suitable
kernel, such as a Gaussian or Hamming.

VII. IMPLEMENTATION

A. Matrix formulation

A tractable implementation of the fourth order elasticity
tensor C, the second order stress and strain tensors σ, ε,
and the k-space symbol Ξ(K) can be realized through the
corresponding matrix representations. For the formers, the
commonly applied technique is the Voigt notation, which
stores the elasticity tensor in a 3×3 matrix in two dimensions
and a 6× 6 matrix in three dimensions, and lumps the stress
and strain tensors into 3×1 or 6×1 column vectors, in two or
three dimensions, respectively. That is to write the constitutive
equation (1b) as

{σ} = [C]{ε}, (32)

where

{σ} = 〈σ11, σ22, σ33, σ23, σ13, σ12〉T ,
{ε} = 〈ε11, ε22, ε33, 2ε23, 2ε13, 2ε12〉T ,

[C]αβ = Cijkl,

such that

α, β =


i = j if i = j,
4 if i = 2, j = 3,
5 if i = 1, j = 3,
6 if i = 1, j = 2.

In order to compute the k-space symbol Ξ, one should first
determine the eigenvalues and eigenvectors of Γ for all the
directions of interest pre-computation. For each wave number,
Γ can be computed as Γ = [n̂][C][n̂]T, where

[n̂] =

(
n̂1 0 n̂2

0 n̂2 n̂1

)
, in 2-d,

[n̂] =

 n̂1 0 0 0 n̂3 n̂2

0 n̂2 0 n̂3 0 n̂1

0 0 n̂3 n̂2 n̂1 0

 , in 3-d.

Upon computing Γ, one determines its spectral decomposition
of the form QΛQT . Next, the k-space tensor Υ(K) is
computed as

Υ(K) := Qg(Λ̄)QT , g(Λ̄)ij := sinc(λ̄(i)|K|∆t/2)δij ,
(34)

Recall that Υ(K) is symmetric, hence it can be stored using
the Voigt convention, similar to the stress tensor. The k-space
tensors Ξ(K) can consequently be lumped in to a 2×3 matrix
in two dimensions and a 3×6 matrix in three-dimension. Using
the Voigt notation define [Υ]α = Υij such that

[Υ] =

(
Υ1 Υ3

Υ3 Υ2

)
, in 2-d,

[Υ] =

 Υ1 Υ6 Υ5

Υ6 Υ2 Υ4

Υ5 Υ4 Υ3

 , in 3-d.
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The k-space symbol is can then be written as [Ξ(K)] =
|K|[n̂][Υ(K)], which respectively in 2-d and 3-d, results in

[Ξ] = |K|

 n̂1Υ1 n̂1Υ3

n̂2Υ3 n̂2Υ2

n̂1Υ3 + n̂2Υ1 n̂1Υ2 + n̂2Υ3

 ,

[Ξ] = |K|



n̂1Υ1 n̂1Υ6 n̂1Υ1

n̂2Υ6 n̂2Υ2 n̂3Υ4

n̂3Υ5 n̂2Υ6 n̂3Υ5

n̂2Υ5 + n̂3Υ6 n̂2Υ4 + n̂3Υ2 n̂2Υ3 + n̂3Υ4

n̂1Υ5 + n̂3Υ1 n̂1Υ4 + n̂2Υ6 n̂1Υ3 + n̂3Υ5

n̂1Υ6 + n̂2Υ1 n̂1Υ2 + n̂2Υ6 n̂1Υ4 + n̂2Υ5


,

and

[Ξ]s = |K|

 n̂1Υ1 n̂1Υ3

n̂2Υ3 n̂2Υ2
1
2 (n̂1Υ3 + n̂2Υ1) 1

2 (n̂1Υ2 + n̂2Υ3)

 ,

[Ξ]s = |K|



n̂1Υ1 n̂1Υ6 n̂1Υ1

n̂2Υ6 n̂2Υ2 n̂3Υ4

n̂3Υ5 n̂2Υ6 n̂3Υ5
n̂2Υ5+n̂3Υ6

2
n̂2Υ4+n̂3Υ2

2
n̂2Υ3+n̂3Υ4

2
n̂1Υ5+n̂3Υ1

2
n̂1Υ4+n̂2Υ6

2
n̂1Υ3+n̂3Υ5

2
n̂1Υ6+n̂2Υ1

2
n̂1Υ2+n̂2Υ6

2
n̂1Υ4+n̂2Υ5

2

 ,

where [Ξ] and [Ξ]s are, respectively, the associated symbols
of the discrete k-space operators D and Ds. Note that the
standard operators can be retrieved upon replacing [Υ] with
the identity matrix, in which case Υ1 = Υ2 = 1, Υ3 = 0,
in 2-d, and Υ1 = Υ2 = Υ3 = 1, Υ4 = Υ5 = Υ6 = 0,
in 3-d. We remark that the direct calculation of the k-space
adjustment requires solving an Eigen value problem for each
direction of the wave number supported by the computational
grid. A similar calculation is often performed in the calculation
of slowness surfaces of anisotropic media, and for standard
crystal structures, the Eigen values and vectors are generally
known and well-documented. Thus, a prior knowledge of the
slowness surfaces can provide an efficient way to compute the
k-space operators.

B. Absorbing boundary conditions

Perfectly matched layers (PML) are material absorbing
boundary conditions widely used in numerical simulations of
wave propagation in unbounded or partially bounded media,
where the wave energy is attenuated based on adjusted atten-
uation coefficients in narrow regions close to the edges of the
numerical domain. This can be realized by replacing the model
problem, equation (20), by

ρv̇i + α(i)vi = σij,j + fi, (35a)
σ̇ij + β(ij)σij = Cijklv(k,l), (35b)

where αi, βij are the attenuation terms and are zero inside
the computational domain and monotonically increasing over
specific regions of the PML (depending on i, j). Generally,
αi, βij are direction-dependent and intended to attenuate the
vector and tensor components impinging normal on the edges

of the PML [29]. In the case of elastic waves, they may
however require field splitting for effective imposition of the
radiation condition, in which case the attenuation coefficients
are optimized based on the incoming compressional or shear
waves. This in essence leads to an additional computational
burden [32]. Additional complications are furthermore intro-
duced upon dealing with anisotropy. The optimal design of
the PML is beyond the scope of this paper and is left to
the future works. In this section, with consider a simplified,
yet efficient and effective implementation that is sufficient for
practical purposes. Consider the partition Ai of W such that

Ai =
{

X ∈W,
∣∣Xi −X0i

∣∣ ≥ 0
}
.

One possible choice for the PML attenuation coefficients is

αi(X) = 1Ai

αmaxλ̄max
∆Xmax

(Xi −X0i

∆PML

)n
, α =

d∏
i=1

αi, (36a)

where ∆PML is the PML thickness and X0i is the Xi coordi-
nate of the inner edge of the PML. 1Ai is the characteristic
function that is 1 in Ai and 0 outside. n is the tuning parameter
to achieve the desirable performance. We set αi = βij = α in
equations (35). Furthermore, equations (35) are in the form
of ∂R

∂t = αR + Q, which can be equivalently written as
∂
∂t (e

−αtR) = e−αtQ. This, upon having the time discretiza-
tion scheme, leads to Rn+1 = eα∆t(Rn+∆tQn). Combining
equations (27) and (35), the PML-augmented k-space discrete
scheme is written as

V
n+1/2
i

∣∣∣
I

= eα∆t
{
V
n−1/2
i

∣∣∣
I

+
∆t

ρ

(
DjkiTnjk

∣∣∣
I

+ Fni

∣∣∣
I

)}
, (37a)

Tn+1
ij

∣∣∣
I

= eα∆t
{
Tnij
∣∣
I

+ ∆tCijklDklmV n+1/2
m

∣∣∣
I

}
. (37b)

Numerical experiments suggest the choices of n, αmax ∈ [4, 8]
can effectively impose the radiation condition on the wavefield.

C. Sketch of the final algorithm

The collocation implementation is as follows. Compute the
discrete k-space symbol [Ξ(K)]. Given the initial conditions
for the stress and velocities, at each time step,
(1) calculate the divergence of the stress field:

(D†Tn)
∣∣
I

= FFT−1
{

i[Ξ(K)]TFFT
{
Tn}}∣∣∣

I
, (38)

(2) update the velocity field components:

Vn+1/2
∣∣
I

= eα(XI)∆t
{

Vn−1/2
∣∣
I

+
∆t

ρ(XI)

((
D†Tn)∣∣

I
+ FnI

)}
,

(39)

(*) de-alias the product using zero-padding,
(3) calculate the gradient of the velocity field:

(DsVn+1/2)
∣∣
I

= FFT−1
{

i[Ξ(K)]sFFT
{
Vn+1/2}}∣∣∣

I
, (40)

(4) update the stress field components (note that DsVn+1/2
∣∣
I

should be stored as a Voigt vector):

Tn+1
∣∣
I

= eα(XI)∆t
{

Tn
∣∣
I

+ ∆t[C(XI)]
{
DsVn+1/2}∣∣∣

I

}
, (41)
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(*) de-alias the product using zero-padding,
(5) add the stress source terms,
(6) go to step (1).

Apart from the non-homogeneous source term F, upon the
context of application, a variety of source types may be of
interest such as stress, strain, pressure, displacement, moment,
velocities, etc. The common approach is to transform the
sources to equivalent stresses and velocities, and incorporate
them as point constraints when these variables are updated
(through steps 2 and 4).

D. Spatial grid staggering

Grid staggering is a technique commonly applied to collo-
cation schemes such as finite difference [15], [40] or pseudo-
spectral [40] methods to achieve a better stability. Moreover,
it can reduce the aliasing error [39]. One advantage of the
Fourier spectral method is the convenience of implementing
the staggered variables using the shift property of the Fourier
transform. In the case of elastic waves using the stress-velocity
formulation, a conventional grid staggering is realized through
updating the normal stresses at the regular grid points and the
velocities and shear stresses at the staggered ones (see figure 1
in [32]). Using the shift property of the Fourier transform, the
staggered k-space derivative operator is defined via a phase
factor as

D±
{
·
}

= FFT−1
{

i[Ξ(K)]e±iK·∆XFFT
{
·
}}

. (42)

Note that the the material properties should be interpolated at
the staggered grid, at which the corresponding field variable
is updated. We remark that the grid-staggering scheme herein
may not be at its optimal design for general anisotropic media.
Furthermore, the material properties should be cautiously
interpolated to ensure the symmetry class of the material is
preserved. These both are beyond the scope of this paper and
left as future directions.

VIII. EXAMPLES

A. Stability and accuracy measure

We showed (see section VI) that the k-space scheme is
unconditionally stable and also minimizes the dispersion error
upon a proper choice of the reference homogeneous domain.
Numerical examples provided below are meant to validate the
method under different conditions. For the sake of comparison,
we define the Courant-Friedrichs-Lewy (CFL) condition for a
general anisotropic domain as

CFL = max
i

sup
X∈Rd

∆t

∆X
λi(X), (43)

as a measure of accuracy.

B. A quantitative evaluation of a point disturbance in a three-
dimensional homogeneous transversely isotropic media

As the first example, consider a point force source pulsating
in an infinite homogeneous transversely isotropic media made
of Mesaverde clay shale in three dimensions. This problem
has been studied by [13], [41]. The analytical solution to this

problem for the displacement component along the axis of
crystal symmetry is given in [41]. We use the simulation
setting of [13] (table I). The input waveform is a Ricker
wavelet of the form h(t) = 23/4π1/4

√
fo/3(1 − (πfo)

2(t −
to)) exp(−(πfo)

2(t − to)
2), with the center frequency of

fo = 16 Hz and the time delay of to = 70 ms. The source term
is given as Fi(X, t) = δi2δ(X−Xs)h(t). Note that δ(X) is the
Dirac delta whereas δij is the Kronecker delta. The Maximum
frequency of the source profile corresponding to −40 dB of
the peak amplitude is fmax = 45 Hz. The initial conditions are
set to zero. The computational domain is a 256 × 256 × 256
rectangular grid. The grid spacing is 12.5 m in each direction,
which corresponds to 4 points per wavelength at 45 Hz. The
time profile of the arrived wavefronts at 728.9 m from the
source is shown side by side the analytical solution in Fig. 1a.
The l2 error of the displacement field component along the
axis of symmetry is computed as

e =
‖V − Vex‖l2
‖Vex‖l2

,

for the k-space enhanced and the classical leapfrog pseu-
dospectral (PSTD) schemes (see Fig. 1b) at different CFL’s.
As can be seen, the k-space solution is stable far in the
region in which the leapfrog scheme is unstable. Furthermore,
the k-space adjustment achieves a better accuracy over the
stable region of the leapfrog scheme. Recall that the k-
space scheme is temporally exact for source-free homogeneous
media, whereas the leapfrog scheme is only up to second
order accurate. In a forced propagation, however, temporal
errors might be introduced since a convolution type integral is
approximated by a discrete summation. Furthermore, the error
in the k-space solution may also be due to the truncation of the
collocation expansion, higher frequencies in the source profile
that are not captured by the grid resolution, and inclusion
of the PML terms. As can be observed, this error grows
approximately linearly, with the slope determined by the grid
resolution. A snapshot of the velocity vector projected over
the coordinate planes are shown in Fig. 2 at CFL= 0.25. The
wavefronts are in excellent agreement with the analytical ones
[41].

TABLE I: Simulation parameters of example 1.

Parameter ρ C11 C33

Value 2590 kg/m3 66.6 GPa 39.9 GPa
Parameter C44 C12 C13

Value 10.9 GPa 19.7 GPa 39.4 GPa

C. A qualitative evaluation of wave propagation in two-
dimensional joint half-spaces

We provide an evaluation of wave propagation in joint
halfspaces made of zinc and the isotropic version of zinc
in two dimensions. This problem has been studied by [12],
[13]. Consider two homogeneous halfspaces in contact with
each other. The medium on the top is anisotropic and the
bottom one is isotropic. The material properties are given
in table II. A horizontal point force (parallel to the material
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(a)

(b)

Fig. 1: (a) The displacement profile along the axis of symmetry as
a function time at 728.9 m away from the source in a homogeneous
three-dimensional transversely isotropic medium, at ∆t = 1 ms,
CFL=0.25. Analytical solution (solid), k-space solution (circles). (b)
l2 error of the numerical solutions vs. the analytical one at different
CFL’s at a fixed grid spacing. The PSTD solution is unstable beyond
CFL= 0.35.

interface) with the same profile as in the previous example,
with to = 6µs, f0 = 170 kHz is placed in the anisotropic
region at 2 cm above the interface. The maximum frequency
of the source profile corresponding to −40 dB of the peak
amplitude is 500 kHz. The initial conditions are set to zero.
The computational domain is a 320×320 rectangular grid. The
grid spacing is 2 mm in each direction, which corresponds
to 4.8 points per wavelength at 500 kHz. A snapshot of
propagation of the velocity field at the time the waveforms
are well-developed is shown in Fig. 3, at CFL= 0.25. The
wavefronts are in agreement with the ones reported by [12].
Closed form analytical solutions for heterogeneous anisotropic
media do not generally exist. Hence, we considered a standard
high resolution fourth-order finite-difference (F.D.) solution
with the leapfrog time integration as the reference solution.
The velocity components time profiles at a sensor placed 8 cm
away from the source in the anisotropic region are plotted
in Fig. 4 at two different CFL’s against the reference finite
difference solutions, where in the second set the corresponding
leapfrog pseudospectral solutions, whereas the k-space solu-
tion is stable with an excellent match and error tolerance at
this CFL.

(a) XZ Plane

(b) YZ Plane

(c) XY Plane

Fig. 2: Projection of the absolute value of the displacement field, in a
homogeneous three-dimensional transversely isotropic medium, over
the coordinate plane at the time t=0.3 s, with ∆t = 1 ms, CFL= 0.25.
The colormap is in the dB scale. The wavetypes are in excellent
agreement with the analytical ones [41].

SUMMARY

In this study, we generalized the class of k-space time
integrators to the case of elastic wave propagation in heteroge-
neous anisotropic media. The k-space method is explicit and
unconditionally stable. The method was carefully designed
to achieve a high level of efficiency and accuracy. The for-
mer is by virtue of the FFT-based implementation, where
O(N log(N)) operations are required at each time step to
advance the solution. Furthermore, the k-space operator was
derived from the displacement formalism, which led to an
algorithm without field splitting, as oppose to the conventional
k-space techniques. The method was tested along with a
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Fig. 3: Snapshot of the absolute value of the velocity field in the
two-dimensional joint half-space problem at the time t=70µs, with
∆t = 100 ns, CFL= 0.25. The colormap is in the dB scale. Various
wavetypes are in excellent agreement with the ones of the previous
studies [12], [13].

TABLE II: Simulation parameters of example 2. Note that the upper
medium is isotropic, for which C1

22 = C1
11 and C1

12 = C1
11 − 2C1

33

.

Upper Medium Value Lower Medium Value
C1

11 16.5 GPa C2
11 16.5 GPa

C1
22 16.5 GPa C2

22 6.2 GPa
C1

33 3.96 GPa C2
33 3.96 GPa

C1
12 8.58 GPa C2

12 5.0 GPa
ρ1 7100 kg/m3 ρ2 7100 kg/m3

collocation spectral scheme, which in essence may suffer from
Gibbs phenomenon and low rate of convergence across dis-
continuities. However, as discussed, this can be addressed by
applying proper filtering/smoothing techniques. The spatially
continuous k-space scheme can be discretized using other
general spectral projection methods and this is left open for
further investigations.

There are several natural generalizations of this method:
(a) more general constitutive laws such as thermoelastic-
ity, viscoelasticity, piezoelectricity, fractional viscoelasticity,
etc. (b) nonlinear wave propagation that typically governs
propagation of quadratic nonlinearities. (c) optimal design of
staggered grid, absorbing boundary conditions, and coefficient-
smoothing technique, (d) Application to Maxwell’s equation
of electromagnetism. It should be mentioned that the method
of constructing the k-space time integrator can be applied to
any time integrator of interest and is not limited to the leapfrog
scheme.

APPENDIX A
PROOF OF EXACTNESS OF THE k-SPACE SCHEME IN

HOMOGENEOUS MEDIA

By eliminating the stress updates in equation (26), we arrive
at

∂vn+1 =
1

ρ

(
D† : C : D

)
vn+1/2. (44a)

Now let C̄ = C and ρ̄ = ρ. Using the definition of the

(a) Horizontal component

(b) Vertical component

Fig. 4: The velocity field components as a function time at a
horizontal distance of 8 cm away from the source and a vertical
distance of 2 cm away from the material interface. Analytical solu-
tion (solid,dashed), k-space solution (circles,squares). The numerical
solutions are plotted at ∆t = 100, 200 ns (CFL= 0.25, 0.5) against
the high resolution reference finite difference ones (at a fixed CFL).
Note that in (b) the corresponding leapfrog-pseudospectral solution
is unstable.

k-space operator, the operator D† : C : D is given as

D† : C : D

= −(2π)d
∫
Rd×Rd

ΞT (ξ) : C : Ξ(ξ)eiξ·(x−y)dydξ,

= −(2π)−d
∫
Rd×Rd

Υ(ξ) ·
(
ξ ·C · ξ

)
·Υ(ξ)eiξ·(x−y)dydξ,

= −(2π)−d
∫
Rd×Rd

Υ(ξ) · Γ(ξ) ·Υ(ξ)eiξ·(x−y)dydξ.

(45)

Note that Υ · Γ · Υ = Qg(Λ)QTQΛQTQg(Λ)QT and
QTQ = I. Thus,

D† : C : D

= −(2π)−d
∫
Rd×Rd

Qg(Λ)Λg(Λ)QT eiξ·(x−y)dydξ,

= −(2π)−d
∫
Rd×Rd

QΛ̃QT eiξ·(x−y)dydξ,

= (2π)−d
∫
Rd×Rd

Γ̃(ξ)eiξ·(x−y)dydξ =M.

(46)
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APPENDIX B
PROOF OF THE STABILITY AND DISPERSION ERROR

THEOREMS

Stability

In this section, stability of the k-space scheme is sought
using a Von-Neumann analysis, where stability in investigated
based on the response of the numerical method to an oscil-
lating form of the solution. The following lemmas would be
used in the proof of the stability theorem. The proofs can be
found in [42]. In the following, the l2 norm of a discrete vector
V ∈ Rd is defined as ‖V‖l2 = (

∑d
i=1 |Vi|2)

1
2 .

Lemma B.1. Consider A ∈ Sym(Rd×d), the space of
symmetric d× d matrices, and let σ(A) indicate the spectral
radius of A, then

‖A‖l2 = σ(A),

where

‖A‖l2 = sup
v∈Rd

‖Av‖l2
‖v‖l2

.

Lemma B.2. Consider A ∈ Rd×d and consider Q ∈
Orth(Rd×d), the space of orthogonal d× d matrices, then

‖QAQT ‖l2 = ‖A‖l2 .

Lemma B.3. Consider G ∈ Rn×n and its block decomposi-
tion as

Gn×n =

(
Ak×k Bk×(n−k)

C(n−k)×k D(n−k)×(n−k)

)
, k ∈ N,

then
det(G) = det(A)× det(D−CA−1B).

Theorem B.4. (Von-Neumann stability) The k-space scheme
is unconditionally stable for heterogeneous media if

λ̄i(K) = sup
X∈Rd

λi(X,K), N̄i = Ni(λ̄(i)).

Proof. Von-Neumann stability of the fully discrete equation
can be sought by the method of freezing coefficients. Let
K = (K1, · · · ,Kd) be the discrete wave number vector.
Assume a solution of the form Vi = V̂i exp(iK · X) and
Tij = T̂ij exp(iK ·X). Note then (DV )ij = iΞijk(K)Vk and
(D†T )k = iΞijk(K)Tij . Then, using the Voigt convention for
storing the stress components (see section VII), the discrete
equations may be written as
 I

d′×d′ 0
d′×d

A
d×d′ Id×d




T̂n

V̂n+1/2

 =

 I
d′×d′ B

d′×d

0
d×d′ Id×d




T̂n−1

V̂n−1/2

 ,

where d′ = d(d + 1)/2 and A = −i∆t/ρK̃ and B =
i∆tCK̃T , where K̃ is a 2 × 3 matrix in 2-d, and a 3 × 6
matrix that is stored based upon the Voigt convention. Let M
and N be the left and right matrix multipliers. For stability
the spectral radius of the amplification matrix G = M−1N
is required to be less than 1 (i.e., σ(G) ≤ 1). Note that
det(M) = 1, hence it is always invertible. Also note that

M−1 =

(
Id′×d′ 0d′×d
−Ad×d′ Id×d

)
.

This gives

G = det

(
Id′×d′ i∆tCK̃T

i∆t/ρK̃ Id×d −∆t2/ρK̃CK̃T

)
(d′+d)×(d′+d)

,

Requiring σ(G) ≤ 1 implies maxk |det(G− µkI) = 0| < 1.
Note then

det(G− µkI(d′+d)×(d′+d))

= det

(
(1− µk)Id′×d′ i∆tCK̃T

i∆t/ρK̃ (1− µk)Id×d −∆t2/ρK̃CK̃T

)
.

Using lemma B.3

det(G−µkI(d′+d)×(d′+d)) =

det((1− µk)Id′×d′)×

det
(

(1− µk)Id×d −∆t2/ρK̃CK̃T

+ (1− µk)−1∆t2/ρK̃CK̃T
)
,

= det((1− µk)Id′×d′)×

det
(

(1− µk)Id×d + µk(1− µk)−1∆t2/ρK̃CK̃T
)

= 0.

(47)

First consider the standard leapfrog scheme, i.e., K̃ =
|K|[n̂]. Using the spectral decomposition, i.e., 1

ρK̃CK̃T =

|K|2QΛQT =
∑d
i=1 λ

2
i |K|2Ni ⊗Ni, one gets

det((1− µk)Id×d + µk(1− µk)−1∆t2|K|2QΛQT ) = 0. (48)

Note that we can write I = QQT =
∑d
i=1 Ni ⊗Ni, which

leads to

det
( d∑
i=1

((1−µk)+µk(1−µk)−1∆t2λ2
i |K|2)Ni⊗Ni

)
= 0. (49)

As Ni ⊗Ni’s form independent bases for the space of d× d
matrices, the equation above holds if and only if (1 − µk) +
µk(1 − µk)−1∆t2λ2

i |K|2 = 0, which is a quadratic equation
in terms of µk and can be solved to achieve

µk = 1− ∆t2λ2
i |K|2

2
±
√

∆t2λ2
i |K|2 −

∆tλi|K|
2

, (50)

which, for a general leapfrog scheme, may give |µk| > 1
if the time step is not controlled. Now consider the k-space
enhancement, i.e., K̃ = [Ξ(K)], where [Ξ(K)] is a matrix
representation of the k-space symbol Ξ, which is again a 2×3
or 3×6 matrix that is stored based upon the Voigt convention
and can be written as [Ξ(K)] = |K|[n̂][Υ(K)]. Thus,

det
(

(1− µk)Id×d + µk(1− µk)−1∆t2|K|2/ρΥ
(
n̂Cn̂T

)
Υ
)

= 0.

(51)
Recall Υ = Q̄g(Λ̄)Q̄T =

∑d
i=1 g(λ̄i)Ni ⊗ Ni, and

1/ρn̂Cn̂T = Γ = QΛQT , hence,

det
(

(1− µk)Id×d + µk(1− µk)−1∆t2|K|2

× Q̄g(Λ̄)Q̄TQΛQT Q̄g(Λ̄)Q̄T
)

= 0.
(52)

Let S = ∆t2|K|2Q̄g(Λ̄)Q̄TQΛQT Q̄g(Λ̄)Q̄T . Note that S
is also s.p.d., hence has the spectral decomposition of the form
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S = UΣUT, for which, according to the approach above, one
can write

µk = 1− σi
2
±
√
σ2
i

2
− σi, (53)

where σi’s are the diagonal entries of Σ. On the other hand,
according to lemmas B.1 and B.2, deduce that

σ(S) = ‖S‖l2 = ∆t|K|‖g(Λ̄)Λg(Λ̄)‖l2

= max
i

λ2
i

λ̄2
i

sin2(λ̄i|K|∆t/2) ≤ 1.
(54)

Hence, σi ≤ 1, for all 1 ≤ i ≤ d, from which it follows that
|µk| ≤ 1, for all k.

Dispersion error

A similar proof to the stability one can be sought to
investigate the dispersion error. Let ω be the angular frequency
and K = (K1, · · · ,Kd) be the discrete wave number vector.
Assume a solution of the form Vi = V̂i exp(iK ·X− iωt) and
Tij = T̂ij exp(iK · X − iωt). Upon replacement of these in
the k-space scheme, one can write

A

{
T̂n

V̂n+1/2

}
= 0,

where

A =

(
(1− eiω∆t)I(d+1)×(d+1) −i∆tCK̃T

−i∆t/ρK̃ (e−iω∆t − 1)Id×d

)
,

for which, in order to have a nontrivial solution, we require
det(A) = 0. Upon applying lemma B.3, one can write

det(A) = det
(
(1− eiω∆t)I(d+1)×(d+1)

)
×

det
(
(e−iω∆t − 1)Id×d + (1− eiω∆t)−1∆t2/ρK̃CK̃T

)
= 0,

(55)

which gives

det
(
− 4 sin2(ω∆t/2)Id×d + ∆t2/ρK̃CK̃T

)
= 0. (56)

Consider the case of the leapfrog scheme in a homogeneous
medium, which, by a similar approach to the stability result,
leads to a dispersion relation of the form

λi|K|∆t = sin(ω∆t/2), for all 1 ≤ i ≤ d. (57)

For the k-space scheme in a homogeneous medium one gets

sin(λ̄i|K|∆t/2) = sin(ω∆t/2), for all 1 ≤ i ≤ d, (58)

which gives λ̄i|K| = ω, for all 1 ≤ i ≤ d. Hence, the
k-space method is dispersionless in homogeneous domains.
The dispersion error for the heterogeneous case depends how
the domain properties deviate from the homogeneous problem.
This suggests the k-space scheme is optimal for the dispersion
error if the model homogeneous problem is chosen according
to theorem B.4.
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