

UV LED charge control of an electrically isolated proof mass at 255 nm

Karthik Balakrishnan

Department of Aeronautics and Astronautics Hansen Experimental Physics Labs Stanford University karthikb@stanford.edu

39th COSPAR Scientific Assembly, Mysore, India

MGRS System Overview

• Nanoradian level angular sensing

Proof Mass Caging

- 700 g clamping of proof mass during launch
- Minimal residual velocity on release
- No damage to proof mass surface Eric Hultgren, Chin-Yang Lui

UV LED Charge Management

- Solid state 255nm light source
- Charge control of proof mass and housing potential

Karthik Balakrishnan

- 2.9 kg 70mm dia 70-30 Au-Pt sphere
- Carbide coated sphere

39th COSPAR Scientific Assembly, Mysore, India

- The spacecraft and housing protect the proof mass from many disturbances: solar, atmospheric, micrometeoroids, etc.
- However, direct and secondary charging of the proof mass is still possible leading to a *potential imbalance* between the proof mass and housing walls
 - Direct: High energy particles pass through the shielding and directly accumulate on either proof mass or housing
 - Secondary: High energy particles interact with spacecraft materials, knocking off electrons which then accumulate on the proof mass or housing
 - Approx 50-200 electrons/second expected charging rate
- Potential imbalance leads to an electrostatic force on the proof mass

UV LED Properties

- UV LEDs are:
 - AlGaN based wide-bandgap (4.86eV) device with 255 nm line (12 nm FWHM)
 - Small power consumption (< 1W) for a full system, small mass (< 1kg)
 - Wide range of output powers (<1nW to >100 μ W)
 - High dynamic range (> 1 kHz modulation is possible)
 - Operate CM outside the science band

39th COSPAR Scientific Assembly, Mysore, India

300

320

- Extensive campaign with to test LEDs to MIL-1540 (E) levels of thermal and vibe
 - 27 cycles of -34 to +71 under vacuum
 - 14 g RMS vibration, 3 minutes per axis, 3 axes

No change seen in I-V and spectrum, minimal change in output power

Charge Management Overview

LED and Bias in phase (0°)

"Positive Charge Transfer"

LED and Bias out of phase (180°) photoelectrons transported to PM

"Negative Charge Transfer"

Charge management experimental setup

39th COSPAR Scientific Assembly, Mysore, India

Charge management results

•System capacitance to ground is 17 pF

- •10 μ W incident UV power (255 nm), modulated at 100hz, 50% duty cycle, 3.0 V_{pp} bias
- •Sphere potential was measured using non-contact probe relative to housing

Peak charging rates are 0.53 pA (positive) and 0.40 pA (negative) (Approx. 3e6 e⁻/sec)

Proof mass coatings –alternative to Au

- The traditional choice for proof mass coatings has been gold (or Au-Pt alloy)
 - High reflectivity
 - Standard coating and cleaning processes
 - Well characterized and understood material
- Problem with gold: soft and prone to sticking, scratching, and deforming
 - During caging, 100 g's preload on proof mass
 - Want proof mass surface to be robust in the event it contacts housing walls
 - Alternatives: carbide coatings
 - Very tough, wide bandgap (close to AlGaN)
- Desired properties at 255 nm
 - Sufficient QE at 255 nm (> approx. 1E-9)
 - Reflectivity > 5%
 - Workfunction near or lower than 4.86 eV (can be slightly higher due to Fermi Tail)

Coatings – samples

- Test: carbide pellets coated on to aluminum substrates via e-beam deposition
 - Substrate material: Al 6061-T6 machined into 1" squares, with a machine finish of Ra 64
 - Pellets: 2-4 mm diameter
 - Samples cleaned via HF etch prior to coating, then immediately vacuum bagged for cleanliness
 - Samples immediately vacuum bagged after coating for cleanliness
- Sample materials:
 - Carbides: SiC, TiC, MoC, ZrC, TaC
 - Metals: Au (traditional proof mass coating), Nb (GP-B)
 - Ir reflectivity standard

Top row (from left): Au, Nb, Ir, SiC Bottom row (from left): TiC, MoC, ZrC, TaC

SiC coated Al sphere

39th COSPAR Scientific Assembly, Mysore, India

Proof mass coating measurements

• Measurements:

- Quantum efficiency (λ_{cent} =255 nm)
 - Measured twice: 2 weeks after coating, and 16 months after coating
 - Used an integrating sphere with 10 V bias between coated sample and sphere
 - Samples isolated from ground via $10^{14} \Omega$ Ultem tubes
 - $50 \,\mu\text{W}$ UV incident power
 - Current measured using Keithley 6485 Picoemmeter
- Reflectivity (λ_{cent} =255 nm, θ =45°)
 - Used Newport 918D head connected to Newport 1931-C power meter

Material	QE (2 wk)	QE (16 mos)	R (255 nm)	φ (eV)*
Au	3.40E-07	4.4E-07	0.17	4.57
Nb	5.64E-07	2.4E-07	0.17	4.30
SiC	4.34E-07	1.4E-07	0.12	4.80
TiC	4.48E-07	1.3E-07	0.15	3.80
ZrC	3.85E-07	2.1E-07	0.11	3.70
MoC	6.82E-07	1.1E-07	0.15	4.74
TaC	6.35E-07	1.4E-07	0.13	5.0
lr			0.6	

Small satellite demonstration

- 16 total LEDs
- Four bias plates
- Gold coated sphere (e-beam dep'n)
- Contact probe
- Gold coated Ultem tubes shielding

- Electronics currently in a "flatsat" configuration – easier to debug
- Shown are:
 - 1 charge amp set
 - 1 power board
 - 1 main processing board
 - UV LED holder + amplifiers
- Scheduled for launch in June 2013

39th COSPAR Scientific Assembly, Mysore, India

Questions?

UV LED charge control of an electrically isolated proof mass in a Gravitational Reference Sensor configuration at 255 nm

Karthik Balakrishnan, Ke-Xun Sun, Abdul Alfauwaz, Ahmad Aljadaan, Mohammed Almajeed, Muflih Alrufaydah, Salman Althubiti, Homoud Aljabreen, Sasha Buchman, Robert L Byer, John Conklin, Daniel DeBra, John Hanson, Eric Hultgren, Turki Al Saud, Seiya Shimizu, Michael Soulage, Andreas Zoellner

(Submitted on 3 Feb 2012)

Construction of satellite engineering model ongoing at NASA Ames

39th COSPAR Scientific Assembly, Mysore, India