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MGRS System Overview 
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• picometer sensing for science signal 
• High sensitivity, low dynamic range • Nanoradian level angular sensing 

• nanometer sensing for drag free signal 
• Lower resolution, high dynamic range 

• Solid state 255nm light source 
• Charge control of proof mass and housing  
   potential 

• 700 g clamping of proof mass during launch 
• Minimal residual velocity on release 
• No damage to proof mass surface 

• 2.9 kg 70mm dia 70-30 Au-Pt sphere 
• Carbide coated sphere 
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Charging sources and effects 

• The spacecraft and housing protect the proof mass from many 
disturbances: solar, atmospheric, micrometeoroids, etc. 
 

• However, direct and secondary charging of the proof mass is still 
possible leading to a potential imbalance between the proof mass 
and housing walls 
– Direct: High energy particles pass through the shielding and directly 

accumulate on either proof mass or housing 
– Secondary: High energy particles interact with spacecraft materials, knocking 

off electrons which then accumulate on the proof mass or housing 
– Approx 50-200 electrons/second expected charging rate 
 

• Potential imbalance leads to an electrostatic force on the proof 
mass 
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UV LED Properties 
• UV LEDs are: 

– AlGaN based wide-bandgap (4.86eV) device with 255 nm line (12 nm FWHM) 
– Small power consumption (< 1W) for a full system, small mass (< 1kg) 
– Wide range of output powers (<1nW to >100 µW) 
– High dynamic range (> 1 kHz modulation is possible) 

• Operate CM outside the science band 
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UV LED Space Qual Level Testing 

• Extensive campaign with to test LEDs to MIL-
1540 (E) levels of thermal and vibe 
– 27 cycles of -34 to +71 under vacuum 
– 14 g RMS vibration, 3 minutes per axis, 3 axes 
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N2 filled LED functional test results, V-I
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N2 filled LED functional test results, I-P
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N2 filled LED functional test results, spectrum
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No change seen in I-V and spectrum, minimal change in output power 
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Charge Management Overview 

“Positive Charge Transfer” “Negative Charge Transfer” 
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  Charge management experimental setup 
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Charge management results 

•System capacitance to ground is 17 pF 

•10 µW incident UV power (255 nm), modulated at 100hz, 50% duty cycle, 3.0 Vpp bias 

•Sphere potential was measured using non-contact probe relative to housing 

Peak charging rates are 0.53 pA (positive) and 0.40 pA (negative) 
 (Approx. 3e6 e-/sec) 
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Proof mass coatings –alternative to Au 

• The traditional choice for proof mass coatings has been gold (or Au-Pt alloy) 
– High reflectivity 
– Standard coating and cleaning processes 
– Well characterized and understood material 
 

• Problem with gold: soft and prone to sticking, scratching, and deforming 
– During caging, 100 g’s preload on proof mass 
– Want proof mass surface to be robust in the event it contacts housing walls 
– Alternatives: carbide coatings 
– Very tough, wide bandgap (close to AlGaN) 

 

• Desired properties at 255 nm 
– Sufficient QE at 255 nm (> approx. 1E-9) 
– Reflectivity > 5% 
– Workfunction near or lower than 4.86 eV (can be slightly higher due to Fermi Tail) 
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Coatings – samples 

Top row (from left): Au, Nb, Ir, SiC 
Bottom row (from left): TiC, MoC, ZrC, TaC 

• Test: carbide pellets coated on to aluminum substrates via e-beam deposition 
– Substrate material: Al 6061-T6 machined into 1” squares, with a machine finish of Ra 64 
– Pellets: 2-4 mm diameter 
– Samples cleaned via HF etch prior to coating, then immediately vacuum bagged for cleanliness 
– Samples immediately vacuum bagged after coating for cleanliness 

 

• Sample materials: 
– Carbides: SiC, TiC, MoC, ZrC, TaC 
– Metals: Au (traditional proof mass coating), Nb (GP-B) 
– Ir – reflectivity standard 

SiC coated Al sphere 
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Proof mass coating measurements 
• Measurements: 

– Quantum efficiency (λcent =255 nm) 
• Measured twice: 2 weeks after coating, and 16 months after coating 
• Used an integrating sphere with 10 V bias between coated sample and sphere 
• Samples isolated from ground via 1014 Ω Ultem tubes 
• 50 µW UV incident power 
• Current measured using Keithley 6485 Picoemmeter 

– Reflectivity (λcent =255 nm, θ=45°) 
• Used Newport 918D head connected to Newport 1931-C power meter 

Material QE (2 wk) QE (16 mos) R (255 nm) φ (eV)* 

Au 3.40E-07 4.4E-07 0.17 4.57 

Nb 5.64E-07 2.4E-07 0.17 4.30 

SiC 4.34E-07 1.4E-07 0.12 4.80 

TiC 4.48E-07 1.3E-07 0.15 3.80 

ZrC 3.85E-07 2.1E-07 0.11 3.70 

MoC 6.82E-07 1.1E-07 0.15 4.74 

TaC 6.35E-07 1.4E-07 0.13 5.0 

Ir -- -- 0.6 -- 
QE measurement setup 
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Small satellite demonstration 

• 16 total LEDs 
• Four bias plates  
• Gold coated sphere (e-beam dep’n) 
• Contact probe 
• Gold coated Ultem tubes - shielding 

• Electronics currently in a “flatsat” 
configuration – easier to debug 
• Shown are: 

• 1 charge amp set 
• 1 power board 
• 1 main processing board 
• UV LED holder + amplifiers 

• Scheduled for launch in June 2013 
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Questions? 

Construction of satellite engineering model ongoing at NASA Ames 
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