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Nested Approximations

Nonlinear HDM

HDM of interest

dw

dt
(t;µ) = f (w(t;µ),u(t), t;µ)

y(t;µ) = g (w(t;µ),u(t), t;µ)

w ∈ RN : Vector of state variables
u ∈ Rp: Vector of input variables – typically, p � N
y ∈ Rq: Vector of output variables – typically, q � N
µ ∈ Rm: Vector of parameter variables – typically, m� N
f : Nonlinear function

Usually, there is no closed form solution for w(t;µ)
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Nested Approximations

Model Order Reduction by Petrov-Galerkin Projection

Approximation of the state using a right ROB

w(t;µ) ≈ w̃(t;µ) = Vq(t;µ)

Resulting nonlinear ODE

V
dq

dt
(t;µ) = f(Vq(t;µ),u(t), t;µ) + r(t;µ)

Enforcement of the orthogonality of the residual r to a left ROB W

WTV
dq

dt
(t;µ) = WT f(Vq(t;µ),u(t), t;µ)

If WTV is nonsingular, the above equation can be re-written as

dq

dt
(t;µ) = (WTV)−1WT f(Vq(t;µ),u(t), t;µ)
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Nested Approximations

Computational Bottleneck

Petrov-Galerkin PROM

dq

dt
(t;µ) = (WTV)−1WT︸ ︷︷ ︸

k×N

f(Vq(t;µ),u(t), t;µ)︸ ︷︷ ︸
N×1

k equations with k unknowns
For a given reduced state vector q(t;µ), the evaluation of
fk(q(t;µ),u(t), t,µ) = (WTV)−1WT f(Vq(t;µ),u(t), t;µ) at a
given time t and a given parameter vector µ can be performed in 3
steps as follows

1 compute w(t;µ) = Vq(t;µ)
2 evaluate f(Vq(t;µ), u(t), t;µ)
3 left-multiply the result by (WTV)−1WT to obtain

(WTV)−1WT f(Vq(t), t)

The computational cost associated with the three steps described
above scales linearly with the dimension N of the HDM

Hence, for nonlinear problems, dimensional reduction as described so
far does not necessarily lead to significant CPU time reduction
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Nested Approximations

Function Approximations

In this case, an additional level of approximation is required to
ensure that the online cost associated with solving the reduced
nonlinear equations does not scale with the dimension N of the HDM

This leads to nested approximations

state approximation
nonlinear function approximation (approximate-then-project) or
projection approximation (project-then-approximate ← new!)

There are two main classes of nonlinear function approximations

linearization approaches (TPWL, ManiMOR,...)
hyperreduction approaches (DEIM, ECSW, GNAT,...)
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Trajectory PieceWise Linear (TPWL) Method

Linear Approximation of Governing Nonlinear Function

Consider a nonlinear HDM of the form

dw

dt
(t) = f(w(t)) + Bu(t)

stationary system
no parametric dependence for now
separable linear input

For linear HDMs, reduced-order operators of the type

Ar = (WTV)−1WTAV

can be pre-computed offline once for all
Idea: linearize f around an operating point w1

f(w) ≈ f(w1) +
∂f

∂w
(w1)(w −w1) = f(w1) + A(w1)(w −w1)

Then, the resulting approximated system is linear in the state w(t)

dw

dt
(t) ≈ A(w1)w(t) + Bu(t) + f(w1)− A(w1)w1
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Trajectory PieceWise Linear (TPWL) Method

Projection-Based Model Order Reduction

Approximated HDM system

dw

dt
(t) ≈ A(w1)w(t) + Bu(t) + f(w1)− A(w1)w1

Reduced-order system after Petrov-Galerkin projection

dq

dt
(t) = (WTV)−1WTA(w1)Vq(t)

+(WTV)−1WT (Bu(t) + f(w1)− A(w1)w1)

The following linear time-invariant operators can be pre-computed

Ar = (WTV)−1WTA(w1)V ∈ Rk×k

Br = (WTV)−1WTB ∈ Rk×p

Fr = (WTV)−1WT (f(w1)− A(w1)w1) ∈ Rk
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Trajectory PieceWise Linear (TPWL) Method

Piecewise Linear Approximation of Governing Nonlinear Function

Idea: Linearize the nonlinear function at multiple locations in the
state space

Extend the domain of validity of the linearization assumptions

Approximated high-dimensional dynamical system

dw

dt
(t) ≈

s∑
i=1

ωi (w(t))(f(wi ) + Ai (w(t)−wi )) + Bu(t)

y(t) = g(w(t),u(t), t)

the s points {wi}si=1 are linearization points
the s coefficients {ωi}si=1 are weights such that

s∑
i=1

ωi (w) = 1, ∀w ∈ RN
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Trajectory PieceWise Linear (TPWL) Method

Projection-Based Model Order Reduction

For simplicity, assume WTV = Ik : In this case, the PROM obtained
via Petrov-Galerkin projection is

dq

dt
(t) =

s∑
i=1

ω̃i (q(t))(WT f(wi ) + WTAi (Vq(t)−wi )) + WTBu(t)

y(t) = g(Vq(t),u(t), t)

where
s∑

i=1

ω̃i (q) = 1, ∀q ∈ Rk

Equivalently

dq

dt
(t) =

(
s∑

i=1

ω̃i (q(t))Ari

)
q(t) +

(
s∑

i=1

ω̃i (q(t))

)
Fri + Bru(t)

Ari = WTAiV, i = 1, · · · , s
Br = WTB
Fri = WT (f(wi )− Aiwi ), i = 1, · · · , s
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Trajectory PieceWise Linear (TPWL) Method

Projection-Based Model Order Reduction

In this context, a complete Projection-based Model Order Reduction
(PMOR) method should incorporate algorithms for

selecting the linearization points {wi}si=1

selecting the ROBs V and W
determining the weights {ω̃i (q)}si=1, ∀q ∈ Rk
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Trajectory PieceWise Linear (TPWL) Method

Selection of the Linearization Points

Note that each linear approximation of the nonlinear function f is
valid only in a neighborhood of each wi

Note also that, in practice, it is impossible to cover the entire
state-space RN by local linear approximations

The Trajectory PieceWise Linear (TPWL) PMOR method (2001)

uses pre-computed trajectories of the HDM (offline) to select the
linearization regions
selects an additional linearization point from the HDM trajectory if it
is sufficiently far away from the previously selected points
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Trajectory PieceWise Linear (TPWL) Method

Selection of the ROBs

Possible methods for constructing a global basis V include

if the input function is linear in u, constructing Krylov subspaces
Ki = K(A−1

i ,A−1
i B) = range(Vi ) at each linearization point wi and

assembling a global basis V such that

range(V) = range ([V1 · · · Vs ])

ad-hoc methods (Balanced truncation, POD...)

The left ROB W can be chosen based on the output of interest
(two-sided Krylov moment matching), or simply as W = V (Galerkin
projection)
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Trajectory PieceWise Linear (TPWL) Method

Determination of the Weights {ωi}

The weights are used to characterize in the reduced space Rk the
distance of the current point q(t) to the projection of the
linearization points onto range(V) – that is,{

qi =
(
VTV

)−1
VTwi

}s

i=1

one possible choice is

ω̃i (q) =
exp

(
−βd

2
i

m2

)
s∑

j=1

exp

(
−
βd2j
m2

)
where β is a constant, di = ‖q− qi‖2, and m = mins

j=1 dj
other choices can be found in the literature
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Trajectory PieceWise Linear (TPWL) Method

Further Developments

A posteriori error estimators are available when f is negative
monotone

Stability guarantee is possible under some assumptions on f and
specific choices for V and the weights {ω̃i (q)}si=1

Passivity preservation (i.e. no energy creation in a passive system) is
possible under similar assumptions

TPWL using local ROBs (ManiMOR)
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Trajectory PieceWise Linear (TPWL) Method

Analysis of the TPWL Method

Strengths

The cost of the online phase
does not scale with the size
N of the HDM

The online phase is not
software-intrusive

Weaknesses

It is essential to choose good
linearization points offline

Requires the extraction of
Jacobians from the HDM
software

Many parameters to adjust
(number of linearization
points, weights, ...)
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Hyperreduction Methods

Background: The Gappy POD Method

First applied to face recognition (Emerson and Sirovich,
“Karhunen-Loeve Procedure for Gappy Data”, 1996)

Other applications

flow sensing and estimation
flow (approximate) reconstruction
nonlinear model order reduction
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Hyperreduction Methods

Background: The Gappy POD Method

Face recognition

Procedure

1 build a database of Ns faces
(snapshots)

2 construct a POD basis Vf for
the database

3 for a new face f, record a small
number ki of pixels fi1 , · · · , fiki

4 using the POD basis Vf ,
approximately reconstruct the
new face f (in the least-squares
sense)
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Hyperreduction Methods

Nonlinear Function Approximation by Gappy POD

The gappy approach can also be used to approximate the nonlinear
function f in the reduced equations

dq

dt
(t) = WT f(Vq(t), t)

(for simplicity, the input function u(t) is not considered here)

The evaluation of all entries of f(·, t) is computationally intensive
(scales with N)
Gappy approach

evaluate only a small subset of these entries
pre-compute a ROB Vf and use it to approximately reconstruct all
other entries by interpolation or a least-squares strategy
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Hyperreduction Methods

Nonlinear Function Approximation by Gappy POD

A complete PMOR method based on the Gappy approach for
hyperreduction should then provide algorithms for

selecting the evaluation entries I = {i1, · · · , iki }

pre-computing a ROB Vf for the nonlinear function f
approximately reconstructing the nonlinear function at all its other
entries ⇒ f̂(·, t)

20 / 64



AA216/CME345: MODEL REDUCTION

Hyperreduction Methods

Nonlinear Function Approximation by Gappy POD

A complete PMOR method based on the Gappy approach for
hyperreduction should then provide algorithms for

selecting the evaluation entries I = {i1, · · · , iki }
pre-computing a ROB Vf for the nonlinear function f

approximately reconstructing the nonlinear function at all its other
entries ⇒ f̂(·, t)

20 / 64



AA216/CME345: MODEL REDUCTION

Hyperreduction Methods

Nonlinear Function Approximation by Gappy POD

A complete PMOR method based on the Gappy approach for
hyperreduction should then provide algorithms for

selecting the evaluation entries I = {i1, · · · , iki }
pre-computing a ROB Vf for the nonlinear function f
approximately reconstructing the nonlinear function at all its other
entries ⇒ f̂(·, t)

20 / 64



AA216/CME345: MODEL REDUCTION

Hyperreduction Methods

Construction of a POD Basis for f

Construction of a POD basis Vf of dimension kf

1 collect snapshots for the nonlinear function f from one or several
transient simulations

F = [f(w(t1), t1) · · · f(w(tmf ), tmf )] ∈ RN×mf

2 compute a thin SVD
F = UfΣf Z

T
f

3 construct a ROB of dimension kf ≤ mf as the set of first kf vectors
in Uf (truncation)

Vf = [uf,1 · · · uf,kf ]
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Hyperreduction Methods

Approximate Reconstruction of a Nonlinear Function

Assume for now that ki indices (entries of f) have been chosen (see
later for how to choose these indices)

I = {i1, · · · , iki}

Consider the N × ki “mask” matrix

P =
[
ei1 · · · eiki

]
At each time t, given a value of the state approximation
w̃(t) = Vq(t), evaluate only those entries of f corresponding to the
above indices  fi1(w̃(t), t)

...
fiki (w̃(t), t)

 = PT f(w̃(t), t)

This is computationally economical if ki � N

Usually, only a subset of the entries of w̃(t) are required to
construct the above vector (case of a sparse Jacobian)
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At each time t, given a value of the state approximation
w̃(t) = Vq(t), evaluate only those entries of f corresponding to the
above indices  fi1(w̃(t), t)

...
fiki (w̃(t), t)

 = PT f(w̃(t), t)

This is computationally economical if ki � N

Usually, only a subset of the entries of w̃(t) are required to
construct the above vector (case of a sparse Jacobian)
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Discrete Empirical Interpolation Method (DEIM)

Case where ki = kf ⇒ interpolation
idea: f̂ij (w̃, t) = fij (w̃, t), ∀w̃ ∈ RN , ∀j = 1, · · · , ki

this means that

PT f̂(w̃(t), t) = PT f(w̃(t), t)

recalling that f̂(·, t) belongs to the range of Vf – that is,

f̂(Vq(t), t) = Vf fr (q(t), t), where fr (q(t), t) ∈ Rkf

it follows that

PTVf fr (q(t), t) = PT f(Vq(t), t)

assuming that PTVf is nonsingular

=⇒ fr (q(t), t) = (PTVf )
−1PT f(Vq(t), t)

hence, the high-dimensional nonlinear function f̂(·, t) is interpolated
as follows

f̂(·, t) = Vf (PTVf )
−1PT f(·, t) = ΠVf ,Pf(·, t)

interpretation: the Discrete Empirical Interpolation Method (DEIM)
is an oblique projection of the high-dimensional nonlinear
vector-valued function
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Oblique Projection of the High-Dimensional Nonlinear Vector

f̂(·, t) = Vf(PTVf)
−1PT f(·, t) = ΠVf ,Pf(·, t)

Recall that ΠV,W = V(WTV)−1WT is the oblique projector onto V,
orthogonally to W
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Least-Squares Reconstruction

Case where ki > kf ⇒ least-squares reconstruction
idea: f̂ij (w̃, t) ≈ fij (w̃, t), ∀w̃ ∈ RN , ∀j = 1, · · · ,N

this leads to the minimization problem

fr (q(t), t) = argmin
yr∈Rkf

‖PTVfyr − PT f(Vq(t), t)‖2

note that M = PTVf ∈ Rki×kf is a skinny matrix
its singular value decomposition can be written as

M = UΣZT

then, the left inverse of M
(
(MTM)−1MT

)
is given by

M† = ZΣ†UT

where Σ† = diag(
1

σ1
, · · · , 1

σr
, 0, · · · , 0) if

Σ = diag(σ1, · · · , σr , 0, · · · , 0), where σ1 ≥ · · ·σr > 0
and therefore

f̂(q(t), t) = Vf

(
PT Vf

)†
PT f(Vq(t), t)

= Vf

(
ZΣ†UT

)
PT f(Vq(t), t)
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Greedy Function Sampling

The selection of the indices in I takes place after the matrix
Vf = [vf,1 · · · vf,kf ] has been computed using, for example, POD

Greedy algorithm

1: [s, i1] = max{|vf,1|}
2: Vf = [vf,1], P = [ei1 ]
3: for l = 2 : kf do
4: solve PTVfc = PTvf,l for c
5: r = vf,l − Vfc
6: [s, il ] = max{|r|}
7: Vf = [Vf , vf,l ], P = [P, eil ]
8: end for
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Hyperreduction Methods

Analysis of the Hyperreduction Method DEIM

Strengths

The cost of the online phase
does not scale with the size
N of the HDM

The hyperreduced function is
usually robust with respect to
deviations from the original
training trajectory

Weaknesses

The online phase is
software-intrusive

Many parameters to adjust
(ROB sizes, mask size, ...)
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Hyperreduction Methods

Application to the Reduction of the Burgers Equation

Consider the inviscid Burgers equation

∂U

∂t
(x , t) +

1

2

∂U2

∂x
(x , t) = g(x)

source term
g(x) = 0.02 exp(0.02x)

initial condition
U(x , 0) = 1

inlet boundary condition

U(0, t) =
√

5

Discretize it by a Finite Volume (Godunov) method
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Application to the Reduction of the Burgers Equation

k = 15, kf = 40, ki = 40

0 20 40 60 80 100
1

1.5

2

2.5

3

3.5

4

4.5

x

U

Similar results for ki > 40 (least-squares reconstruction)
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Application to the Reduction of the Burgers Equation

Results of the greedy algorithm

0 20 40 60 80 100 120
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Application to the Reduction of the Burgers Equation

The dimension kf of the ROB Vf is reduced from 40 to 30

k = 15, kf = 30, ki = 80

0 20 40 60 80 100
−1

0

1

2

3

4

5

x

U

Similar results for ki = 100 (no gaps) ⇒ kf is too small in that case
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Projection-Based Model Order Reduction at the Discrete Level

Semi-discrete level:
dw

dt
(t) = f(w(t), t)

Subspace approximation: w(t) ≈ Vq(t)⇒ V
dq

dt
(t) ≈ f(Vq(t), t)

Discrete level (backward Euler implicit time-integration scheme)

V
qn+1 − qn

∆tn
≈ f

(
Vqn+1, tn+1

)
Discrete residual

rn+1
(
qn+1

)
= V

qn+1 − qn

∆tn
− f
(
Vqn+1, tn+1

)
Residual minimization (a.k.a PMOR by least-squares or
Petrov-Galerkin projection)

qn+1 = argmin
y∈Rk

∥∥rn+1(y)
∥∥
2

r
(
qn+1

)
is nonlinear ⇒ approximate it using a gappy POD approach

for hyperreduction
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Gappy POD at the Discrete Level

Gappy POD procedure for the fully discrete residual r

Algorithm

1 build an orthogonal ROB Vr ∈ RN×kr for r
(
VT

r Vr = Ikr

)
2 construct a sample mesh I (indices i1, · · · , iki ) using the greedy

procedure
3 consider the gappy approximation

rn+1
(

qn+1
)
≈ Vrrkr

(
qn+1

)
≈ Vr

(
PTVr

)†
PT rn+1

(
Vqn+1

)
4 determine the vector of generalized coordinates at tn+1

qn+1 = argmin
y∈Rk

‖Vrrkr (y)‖2

= argmin
y∈Rk

‖rkr (y)‖2

= argmin
y∈Rk

∥∥∥∥(PTVr

)†
PT rn+1(Vy)

∥∥∥∥
2

33 / 64



AA216/CME345: MODEL REDUCTION

Hyperreduction Methods

Gappy POD at the Discrete Level

Gappy POD procedure for the fully discrete residual r

Algorithm

1 build an orthogonal ROB Vr ∈ RN×kr for r
(
VT

r Vr = Ikr

)
2 construct a sample mesh I (indices i1, · · · , iki ) using the greedy

procedure
3 consider the gappy approximation

rn+1
(

qn+1
)
≈ Vrrkr

(
qn+1

)
≈ Vr

(
PTVr

)†
PT rn+1

(
Vqn+1

)
4 determine the vector of generalized coordinates at tn+1

qn+1 = argmin
y∈Rk

‖Vrrkr (y)‖2

= argmin
y∈Rk

‖rkr (y)‖2

= argmin
y∈Rk

∥∥∥∥(PTVr

)†
PT rn+1(Vy)

∥∥∥∥
2

33 / 64



AA216/CME345: MODEL REDUCTION

Hyperreduction Methods

Gappy POD at the Discrete Level

Gappy POD procedure for the fully discrete residual r

Algorithm

1 build an orthogonal ROB Vr ∈ RN×kr for r
(
VT

r Vr = Ikr

)

2 construct a sample mesh I (indices i1, · · · , iki ) using the greedy
procedure

3 consider the gappy approximation

rn+1
(

qn+1
)
≈ Vrrkr

(
qn+1

)
≈ Vr

(
PTVr

)†
PT rn+1

(
Vqn+1

)
4 determine the vector of generalized coordinates at tn+1

qn+1 = argmin
y∈Rk

‖Vrrkr (y)‖2

= argmin
y∈Rk

‖rkr (y)‖2

= argmin
y∈Rk

∥∥∥∥(PTVr

)†
PT rn+1(Vy)

∥∥∥∥
2

33 / 64



AA216/CME345: MODEL REDUCTION

Hyperreduction Methods

Gappy POD at the Discrete Level

Gappy POD procedure for the fully discrete residual r

Algorithm

1 build an orthogonal ROB Vr ∈ RN×kr for r
(
VT

r Vr = Ikr

)
2 construct a sample mesh I (indices i1, · · · , iki ) using the greedy

procedure

3 consider the gappy approximation

rn+1
(

qn+1
)
≈ Vrrkr

(
qn+1

)
≈ Vr

(
PTVr

)†
PT rn+1

(
Vqn+1

)
4 determine the vector of generalized coordinates at tn+1

qn+1 = argmin
y∈Rk

‖Vrrkr (y)‖2

= argmin
y∈Rk

‖rkr (y)‖2

= argmin
y∈Rk

∥∥∥∥(PTVr

)†
PT rn+1(Vy)

∥∥∥∥
2

33 / 64



AA216/CME345: MODEL REDUCTION

Hyperreduction Methods

Gappy POD at the Discrete Level

Gappy POD procedure for the fully discrete residual r

Algorithm

1 build an orthogonal ROB Vr ∈ RN×kr for r
(
VT

r Vr = Ikr

)
2 construct a sample mesh I (indices i1, · · · , iki ) using the greedy

procedure
3 consider the gappy approximation

rn+1
(

qn+1
)
≈ Vrrkr

(
qn+1

)
≈ Vr

(
PTVr

)†
PT rn+1

(
Vqn+1

)

4 determine the vector of generalized coordinates at tn+1

qn+1 = argmin
y∈Rk

‖Vrrkr (y)‖2

= argmin
y∈Rk

‖rkr (y)‖2

= argmin
y∈Rk

∥∥∥∥(PTVr

)†
PT rn+1(Vy)

∥∥∥∥
2

33 / 64



AA216/CME345: MODEL REDUCTION

Hyperreduction Methods

Gappy POD at the Discrete Level

Gappy POD procedure for the fully discrete residual r

Algorithm

1 build an orthogonal ROB Vr ∈ RN×kr for r
(
VT

r Vr = Ikr

)
2 construct a sample mesh I (indices i1, · · · , iki ) using the greedy

procedure
3 consider the gappy approximation

rn+1
(

qn+1
)
≈ Vrrkr

(
qn+1

)
≈ Vr

(
PTVr

)†
PT rn+1

(
Vqn+1

)
4 determine the vector of generalized coordinates at tn+1

qn+1 = argmin
y∈Rk

‖Vrrkr (y)‖2

= argmin
y∈Rk

‖rkr (y)‖2

= argmin
y∈Rk

∥∥∥∥(PTVr

)†
PT rn+1(Vy)

∥∥∥∥
2

33 / 64



AA216/CME345: MODEL REDUCTION

Hyperreduction Methods

Gauss-Newton Method for Nonlinear Least-Squares Problems

Nonlinear least-squares problem: miny ‖r(y)‖2, where r ∈ RN ,
y ∈ Rk , and k � N

Equivalent function to minimize: φ(y) =
1

2
‖r(y)‖22 = r(y)T r(y)

Gradient: ∇φ(y) = J(y)T r(y), where J(y) =
∂r

∂y
(y)

Iterative solution of equivalent minimization problem using the
Gauss-Newton method

y(j+1) = y(j) + ∆y(j+1)

where
∇2φ

(
y(j)
)

∆y(j+1) = −∇φ
(

y(j)
)

What is ∇2φ(y)?

∇2φ(y) = J(y)TJ(y) +
N∑
i=1

∂2ri
∂y2

(y)ri (y)

Gauss-Newton method with ∇2φ(y) ≈ J(y)TJ(y)
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Gauss-Newton Method for Nonlinear Least-Squares Problems

Gauss-Newton method

y(j+1) = y(j) + ∆y(j+1)

where

J
(

y(j)
)T

J
(

y(j)
)

∆y(j+1) = −J
(

y(j)
)T

r
(

y(j)
)

This is the normal equation for

∆y(j+1) = argmin
z

∥∥∥J
(

y(j)
)

z + r
(

y(j)
)∥∥∥

2

QR decomposition of the Jacobian

J
(

y(j)
)

= Q(j)R(j)

Equivalent solution using the QR decomposition (assuming that R(j)

has full column rank)

∆y(j+1) = −J
(

y(j)
)†

r
(

y(j)
)

= −
(

R(j)
)−1 (

Q(j)
)T

r
(

y(j)
)
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Gauss-Newton with Approximated Tensors

GNAT (Gauss-Newton with Approximated Tensors) =
Gauss-Newton + gappy POD

Minimization problem

min
y∈Rk

∥∥∥(PTVr

)†
PT rn+1(Vy)

∥∥∥
2

Jacobian: Ĵ(y) =
(
PTVr

)†
PTJn+1(Vy)

Construct offline the small-dimensional matrix A =
(
PTVr

)†
Solve at each j-th Gauss-Newton iteration of tn+1 the least-squares
problem

∆y(j) = argmin
z∈Rk

∥∥∥APTJn+1
(

Vy(j)
)

Vz + APT rn+1
(

Vy(j)
)∥∥∥

2

Compute the GNAT solution using QR

APTJn+1
(

Vy(j)
)

V = Q(j)R(j)

∆y(j) = −
(

R(j)
)−1 (

Q(j)
)T

APT rn+1
(

Vy(j)
)
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Gauss-Newton with Approximated Tensors

Further developments (see the references by: Carlberg, Farhat,
Cortial, Amsallem; Carlberg, Bou-Mosleh, Farhat; and Amsallem,
Zahr, Farhat)

concept of a reduced mesh
concept of an output mesh
error bounds
GNAT using local reduced-order bases
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Application: Compressible Navier-Stokes Equations

Turbulent flow past the Ahmed body (CFD benchmark in the
automotive industry)

3D compressible Navier-Stokes equations with turbulence modeling
(Spalart-Allmaras)

N = 1.73× 107

Re = 4.48× 106, M∞ = 0.175 (216km/h)
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Application: Compressible Navier-Stokes Equations

PMOR: POD + GNAT, k = 283, kf = 1, 514, and ki = 2, 268

Method CPU Number Relative
Time of CPUs Error

HDM 13.28 h 512 –
PROM (GNAT) 3.88 h 4 0.68%
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Application: Design Optimization of a Nozzle

HDM: N = 2, 048 and m = 5 shape parameters

PMOR: POD + DEIM: k = 8, kf = 20, and ki = 20

Parameterized steady-state problem

min
µ∈R5

‖M(w(µ))−Mtarget‖2

s.t. f(w(µ)),µ) = 0

where M denotes the local Mach number
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Application: Design Optimization of a Nozzle

Method Offline Online Total
CPU Time CPU Time CPU Time

HDM – 78.8 s 78.8 s
PROM (DEIM) 5.08 s 4.87 s 9.96 s
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Local Approaches

Local Approximation of the State

Approximating the solution manifold M by a single subspace S can
lead to a large-dimensional subspace

Idea: Approximate M using local subspaces {Sl}Li=1

M
S1

S2

S3
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Local Approximation of the State

In practice, the local approximation of the state takes place at the
fully discrete level

Each local subspace Sl is associated with a pre-computed local ROB
Vl

At each time-step n, the state wn is computed as

wn = wn−1 + ∆wn

The increment ∆wn is then approximated in a subspace
Sl,n = range(Vl,n) as

∆wn ≈ Vl,nq̃n

The choice of the pre-computed reduced-order basis Vl,n is specified
later

By induction, the state wn is computed as

wn = w0 +
n∑

i=1

Vl,i q̃
n
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Local Approaches

Local Approximation of the State

The state wn is computed as

wn = w0 +
n∑

i=1

Vl,i q̃
n

In practice, the ROBs {Vl,i}ni=1 are chosen among a finite set of
pre-computed local ROBs {Vl}Ll=1

Hence

wn = w0 +
L∑

l=1

Vlq
n
l

This shows that

wn ∈ w0 + range([V1 · · · VL])

Note that each local ROB can be of a different dimension

Vl ∈ RN×kl
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Local Approaches

Construction of the Local ROBs

Intuitively, a given local subspace Sl should approximate only a
portion of the solution manifold M
The solution manifold is a subset of the solution space RN

M⊂ RN

The solution space RN is partitioned into L subdomains, where each
subdomain is associated with a local approximation subspace
Sl = range(Vl)

In practice, a set of solution snapshots {wi}Ns

i=1 can be partitioned
into L subsets using the k-means clustering algorithm

This leads to a Voronoi tessellation of RN

The k-means clustering algorithm is distance-dependent

After clustering, each snapshot subset can be compressed into a
local ROB, for example, using POD
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Local Approaches

Construction of the Local ROBs

Local ROBs construction procedure

w(t, µ1)!

w(t, µ2)!

w(t, µ3)!
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Local Approaches

Construction of the Local ROBs

Local ROBs construction procedure

ROB #1!

ROB #2!

ROB #3!

ROB #4!
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Local Approaches

Online Selection of the Local ROB

Online, at time-step n, a pre-computed local ROB Vl,n must be
chosen

The selection is based on the current location of wn−1 on the
solution manifold M
The local approximation subspace is selected as that associated with
the cluster whose center is the closest to wn−1

l , n = argmin
l∈{1,··· ,L}

d
(
wn−1,wc

l

)
Consider the case of the distance based on a weighted Euclidian
norm

d(w, z) = ‖w − z‖H =
√

(w − z)TH(w − z)

where H ∈ RN×N is a symmetric positive definite matrix
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Local Approaches

Online Selection of the Local ROB

Choice of the local approximation subspace at time-step n

l , n = argmin
l∈{1,··· ,L}

d(wn−1,wc
l )

For a distance based on a weighted Euclidian norm, the solution of
the above problem can be computed efficiently at a cost that does
not depend on the large dimension N

To show this, consider the special form of the solution

wn−1 = w0 +
L∑

l=1

Vlq
n−1
l

Then, one needs to compare the distances d
(
wn−1,wci

l

)
and

d
(
wn−1,w

cj
l

)
for 1 ≤ i 6= j ≤ L
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Local Approaches

Online Selection of the Local ROB

The two distances d
(
wn−1,wci

l

)
and d

(
wn−1,w

cj
l

)
can be

compared as follows

∆i,j = d
(
wn−1,wci

l

)2 − d
(
wn−1,w

cj
l

)2
=

∥∥wn−1 −wci
l

∥∥2
H
−
∥∥wn−1 −w

cj
l

∥∥2
H

=

∥∥∥∥∥
L∑

l=1

Vlq
n−1
l

∥∥∥∥∥
2

H

+
∥∥wci

l −w0
∥∥2

H
− 2

L∑
l=1

[wci ]T Vlq
n−1
l

−
∥∥∥∥∥

L∑
l=1

Vlq
n−1
l

∥∥∥∥∥
2

H

−
∥∥w

cj
l −w0

∥∥2
H

+ 2
L∑

l=1

[wcj ]T Vlq
n−1
l

=
∥∥wci

l −w0
∥∥2

H
−
∥∥w

cj
l −w0

∥∥2
H

+ 2
L∑

l=1

[wci −wcj ]T Vlq
n−1
l

The following small quantities can be pre-computed offline and used
online to compute economically ∆i,j , 1 ≤ i 6= j ≤ L

ai,j =
∥∥wci

l −w0
∥∥2

H
−
∥∥w

cj
l −w0

∥∥2
H
∈ R, gi,j = [wci −wcj ]T Vl ∈ Rkl
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Local Approaches

Extension to Hyperreduction

The local approach to nonlinear PMOR can be easily extended to
hyperreduction as follows

hyperreduction is applied independently to each cluster of snapshots
It leads to the definition of

the local ROBs for the state: Vl , l = 1, · · · , L
the local ROBs for the residual: Vr,l , l = 1, · · · , L
the local masks: Il , l = 1, · · · , L

The choice of the local ROBs and masks is still dictated by the
location of the current time-iterate in the state space
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Local Approaches

Application

Flow past the NASA CRM (Common Research Model) – (CFD
benchmark in the aeronautical industry)

3D compressible Euler equations

N = 3.1× 106

Constant acceleration of 2.5 m/s2, from M∞ = 0.8 to M∞ = 0.9
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Local Approaches

Application

PMOR using a global ROB
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Local Approaches

Application

PMOR using 5 local ROBs

Very good accuracy can be obtained with kl ≤ 17 as opposed to
k = 50 with a global ROB
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