AA216/CME345: MODEL REDUCTION

Methods for Nonlinear Systems

Charbel Farhat Stanford University cfarhat@stanford.edu

> <ロ> <合> < 言> < 言> < 言> こと < つへの 1/64

Outline

1 Nested Approximations

- 2 Trajectory PieceWise Linear (TPWL) Method
- **3** Hyperreduction Methods
- 4 Local Approaches

5 References

Nested Approximations

└─Nonlinear HDM

HDM of interest

$$\frac{d\mathbf{w}}{dt}(t;\boldsymbol{\mu}) = \mathbf{f}(\mathbf{w}(t;\boldsymbol{\mu}),\mathbf{u}(t),t;\boldsymbol{\mu})$$
$$\mathbf{y}(t;\boldsymbol{\mu}) = \mathbf{g}(\mathbf{w}(t;\boldsymbol{\mu}),\mathbf{u}(t),t;\boldsymbol{\mu})$$

- $\mathbf{w} \in \mathbb{R}^N$: Vector of state variables
- $\mathbf{u} \in \mathbb{R}^p$: Vector of input variables typically, $p \ll N$
- **v** $\mathbf{y} \in \mathbb{R}^q$: Vector of output variables typically, $q \ll N$
- $\mu \in \mathbb{R}^m$: Vector of parameter variables typically, $m \ll N$
- f: Nonlinear function
- Usually, there is no closed form solution for $\mathbf{w}(t; \boldsymbol{\mu})$

Nested Approximations

^LModel Order Reduction by Petrov-Galerkin Projection

Approximation of the state using a right ROB

$$\mathbf{w}(t; oldsymbol{\mu}) pprox ilde{\mathbf{w}}(t; oldsymbol{\mu}) = \mathbf{V} \mathbf{q}(t; oldsymbol{\mu})$$

Resulting nonlinear ODE

$$\mathbf{V} rac{d\mathbf{q}}{dt}(t;\mu) = \mathbf{f}(\mathbf{V}\mathbf{q}(t;\mu),\mathbf{u}(t),t;\mu) + \mathbf{r}(t;\mu)$$

• Enforcement of the orthogonality of the residual \mathbf{r} to a left ROB \mathbf{W}

$$\mathbf{W}^{\mathsf{T}}\mathbf{V}\frac{d\mathbf{q}}{dt}(t;\boldsymbol{\mu}) = \mathbf{W}^{\mathsf{T}}\mathbf{f}(\mathbf{V}\mathbf{q}(t;\boldsymbol{\mu}),\mathbf{u}(t),t;\boldsymbol{\mu})$$

If $\mathbf{W}^T \mathbf{V}$ is nonsingular, the above equation can be re-written as

$$\frac{d\mathbf{q}}{dt}(t;\boldsymbol{\mu}) = (\mathbf{W}^{\mathsf{T}}\mathbf{V})^{-1}\mathbf{W}^{\mathsf{T}}\mathbf{f}(\mathbf{V}\mathbf{q}(t;\boldsymbol{\mu}),\mathbf{u}(t),t;\boldsymbol{\mu})$$

-Nested Approximations

Computational Bottleneck

Petrov-Galerkin PROM

$$\boxed{\frac{d\mathbf{q}}{dt}(t;\mu) = \underbrace{(\mathbf{W}^{\mathsf{T}}\mathbf{V})^{-1}\mathbf{W}^{\mathsf{T}}}_{k \times N} \underbrace{\mathbf{f}(\mathbf{V}\mathbf{q}(t;\mu),\mathbf{u}(t),t;\mu)}_{N \times 1}}_{N \times 1}}$$

Nested Approximations

Computational Bottleneck

Petrov-Galerkin PROM

$$\frac{d\mathbf{q}}{dt}(t;\boldsymbol{\mu}) = \underbrace{(\mathbf{W}^{\mathsf{T}}\mathbf{V})^{-1}\mathbf{W}^{\mathsf{T}}}_{k \times N} \underbrace{\mathbf{f}(\mathbf{V}\mathbf{q}(t;\boldsymbol{\mu}),\mathbf{u}(t),t;\boldsymbol{\mu})}_{N \times 1}$$

k equations with k unknowns

-Nested Approximations

Computational Bottleneck

Petrov-Galerkin PROM

$$\frac{d\mathbf{q}}{dt}(t;\boldsymbol{\mu}) = \underbrace{(\mathbf{W}^{\mathsf{T}}\mathbf{V})^{-1}\mathbf{W}^{\mathsf{T}}}_{k \times N} \underbrace{\mathbf{f}(\mathbf{V}\mathbf{q}(t;\boldsymbol{\mu}),\mathbf{u}(t),t;\boldsymbol{\mu})}_{N \times 1}$$

- k equations with k unknowns
- For a given reduced state vector $\mathbf{q}(t; \mu)$, the evaluation of $\mathbf{f}_k(\mathbf{q}(t; \mu), \mathbf{u}(t), t, \mu) = (\mathbf{W}^T \mathbf{V})^{-1} \mathbf{W}^T \mathbf{f}(\mathbf{V} \mathbf{q}(t; \mu), \mathbf{u}(t), t; \mu)$ at a given time t and a given parameter vector μ can be performed in 3 steps as follows

< □ > < □ > < □ > < □ > < Ξ > < Ξ > = Ξ

5/64

1 compute
$$\mathbf{w}(t; \boldsymbol{\mu}) = \mathbf{V}\mathbf{q}(t; \boldsymbol{\mu})$$

- 2 evaluate $f(Vq(t; \mu), u(t), t; \mu)$ 3 left-multiply the result by $(W^T V)^{-1}W^T$ to obtain $(\mathbf{W}^T \mathbf{V})^{-1} \mathbf{W}^T \mathbf{f} (\mathbf{V} \mathbf{q}(t), t)$

-Nested Approximations

Computational Bottleneck

Petrov-Galerkin PROM

$$\frac{d\mathbf{q}}{dt}(t;\boldsymbol{\mu}) = \underbrace{(\mathbf{W}^{\mathsf{T}}\mathbf{V})^{-1}\mathbf{W}^{\mathsf{T}}}_{k \times N} \underbrace{\mathbf{f}(\mathbf{V}\mathbf{q}(t;\boldsymbol{\mu}),\mathbf{u}(t),t;\boldsymbol{\mu})}_{N \times 1}$$

- k equations with k unknowns
- For a given reduced state vector $\mathbf{q}(t; \mu)$, the evaluation of $\mathbf{f}_k(\mathbf{q}(t; \mu), \mathbf{u}(t), t, \mu) = (\mathbf{W}^T \mathbf{V})^{-1} \mathbf{W}^T \mathbf{f}(\mathbf{V} \mathbf{q}(t; \mu), \mathbf{u}(t), t; \mu)$ at a given time t and a given parameter vector μ can be performed in 3 steps as follows

1 compute
$$\mathbf{w}(t; \boldsymbol{\mu}) = \mathbf{V}\mathbf{q}(t; \boldsymbol{\mu})$$

- 2 evaluate $f(Vq(t; \mu), u(t), t; \mu)$ 3 left-multiply the result by $(W^T V)^{-1}W^T$ to obtain $(\mathbf{W}^T \mathbf{V})^{-1} \mathbf{W}^T \mathbf{f} (\mathbf{V} \mathbf{q}(t), t)$
- The computational cost associated with the three steps described above scales linearly with the dimension N of the HDM

-Nested Approximations

Computational Bottleneck

Petrov-Galerkin PROM

$$\frac{d\mathbf{q}}{dt}(t;\boldsymbol{\mu}) = \underbrace{(\mathbf{W}^{\mathsf{T}}\mathbf{V})^{-1}\mathbf{W}^{\mathsf{T}}}_{k \times N} \underbrace{\mathbf{f}(\mathbf{V}\mathbf{q}(t;\boldsymbol{\mu}),\mathbf{u}(t),t;\boldsymbol{\mu})}_{N \times 1}$$

- k equations with k unknowns
- For a given reduced state vector $\mathbf{q}(t; \mu)$, the evaluation of $\mathbf{f}_k(\mathbf{q}(t; \mu), \mathbf{u}(t), t, \mu) = (\mathbf{W}^T \mathbf{V})^{-1} \mathbf{W}^T \mathbf{f}(\mathbf{V} \mathbf{q}(t; \mu), \mathbf{u}(t), t; \mu)$ at a given time t and a given parameter vector μ can be performed in 3 steps as follows

1 compute
$$\mathbf{w}(t; \boldsymbol{\mu}) = \mathbf{V}\mathbf{q}(t; \boldsymbol{\mu})$$

- 2 evaluate $f(Vq(t; \mu), u(t), t; \mu)$ 3 left-multiply the result by $(W^T V)^{-1}W^T$ to obtain $(\mathbf{W}^T \mathbf{V})^{-1} \mathbf{W}^T \mathbf{f} (\mathbf{V} \mathbf{q}(t), t)$
- The computational cost associated with the three steps described above scales linearly with the dimension N of the HDM
- Hence, for nonlinear problems, dimensional reduction as described so far does not necessarily lead to significant CPU time reduction

-Nested Approximations

└─Function Approximations

In this case, an additional level of approximation is required to ensure that the online cost associated with solving the reduced nonlinear equations does not scale with the dimension N of the HDM

This leads to nested approximations

- state approximation
- nonlinear function approximation (approximate-then-project) or projection approximation (project-then-approximate ← new!)
- There are two main classes of nonlinear function approximations
 - linearization approaches (TPWL, ManiMOR,...)
 - hyperreduction approaches (DEIM, ECSW, GNAT,...)

^LTrajectory PieceWise Linear (TPWL) Method

Linear Approximation of Governing Nonlinear Function

Consider a nonlinear HDM of the form

$$rac{d\mathbf{w}}{dt}(t) = \mathbf{f}(\mathbf{w}(t)) + \mathbf{Bu}(t)$$

stationary system

- no parametric dependence for now
- separable linear input

For linear HDMs, reduced-order operators of the type

$$\mathbf{A}_r = (\mathbf{W}^T \mathbf{V})^{-1} \mathbf{W}^T \mathbf{A} \mathbf{V}$$

can be pre-computed offline once for all

Idea: linearize f around an operating point w₁

$$\mathbf{f}(\mathbf{w})\approx\mathbf{f}(\mathbf{w}_1)+\frac{\partial\mathbf{f}}{\partial\mathbf{w}}(\mathbf{w}_1)(\mathbf{w}-\mathbf{w}_1)=\mathbf{f}(\mathbf{w}_1)+\mathbf{A}(\mathbf{w}_1)(\mathbf{w}-\mathbf{w}_1)$$

• Then, the resulting approximated system is **linear** in the state $\mathbf{w}(t)$

$$\frac{d\mathbf{w}}{dt}(t) \approx \mathbf{A}(\mathbf{w}_1)\mathbf{w}(t) + \mathbf{B}\mathbf{u}(t) + \mathbf{f}(\mathbf{w}_1) - \mathbf{A}(\mathbf{w}_1)\mathbf{w}_1$$

7/64

^LTrajectory PieceWise Linear (TPWL) Method

Projection-Based Model Order Reduction

Approximated HDM system

$$rac{d\mathbf{w}}{dt}(t)pprox\mathbf{A}(\mathbf{w}_1)\mathbf{w}(t)+\mathbf{Bu}(t)+\mathbf{f}(\mathbf{w}_1)-\mathbf{A}(\mathbf{w}_1)\mathbf{w}_1$$

Reduced-order system after Petrov-Galerkin projection

$$\frac{d\mathbf{q}}{dt}(t) = (\mathbf{W}^{\mathsf{T}}\mathbf{V})^{-1}\mathbf{W}^{\mathsf{T}}\mathbf{A}(\mathbf{w}_{1})\mathbf{V}\mathbf{q}(t) + (\mathbf{W}^{\mathsf{T}}\mathbf{V})^{-1}\mathbf{W}^{\mathsf{T}}(\mathbf{B}\mathbf{u}(t) + \mathbf{f}(\mathbf{w}_{1}) - \mathbf{A}(\mathbf{w}_{1})\mathbf{w}_{1})$$

The following linear time-invariant operators can be pre-computed

^LTrajectory PieceWise Linear (TPWL) Method

Piecewise Linear Approximation of Governing Nonlinear Function

- Idea: Linearize the nonlinear function at multiple locations in the state space
- Extend the domain of validity of the linearization assumptions
- Approximated high-dimensional dynamical system

$$egin{array}{rcl} \displaystyle rac{d \mathbf{w}}{dt}(t) &pprox & \sum_{i=1}^s \omega_i(\mathbf{w}(t))(\mathbf{f}(\mathbf{w}_i)+\mathbf{A}_i(\mathbf{w}(t)-\mathbf{w}_i))+\mathbf{Bu}(t) \ \mathbf{y}(t) &= & \mathbf{g}(\mathbf{w}(t),\mathbf{u}(t),t) \end{array}$$

the s points {w_i}^s_{i=1} are linearization points
 the s coefficients {ω_i}^s_{i=1} are weights such that

$$\sum_{i=1}^{s}\omega_{i}(\mathbf{w})=1, \; orall \mathbf{w}\in \mathbb{R}^{N}$$

▲ロ ▶ ▲ 副 ▶ ▲ 国 ▶ ▲ 国 ▶ ● 回 ● の ◎

Trajectory PieceWise Linear (TPWL) Method

Projection-Based Model Order Reduction

For simplicity, assume $\mathbf{W}^T \mathbf{V} = \mathbf{I}_k$: In this case, the PROM obtained via Petrov-Galerkin projection is

$$\begin{aligned} \frac{d\mathbf{q}}{dt}(t) &= \sum_{i=1}^{s} \tilde{\omega}_{i}(\mathbf{q}(t)) (\mathbf{W}^{T} \mathbf{f}(\mathbf{w}_{i}) + \mathbf{W}^{T} \mathbf{A}_{i}(\mathbf{V} \mathbf{q}(t) - \mathbf{w}_{i})) + \mathbf{W}^{T} \mathbf{B} \mathbf{u}(t) \\ \mathbf{y}(t) &= \mathbf{g}(\mathbf{V} \mathbf{q}(t), \mathbf{u}(t), t) \end{aligned}$$

where

$$\sum_{i=1}^s ilde{\omega}_i(\mathbf{q}) = 1, \; orall \mathbf{q} \in \mathbb{R}^k$$

Equivalently

$$\frac{d\mathbf{q}}{dt}(t) = \left(\sum_{i=1}^{s} \tilde{\omega}_{i}(\mathbf{q}(t)) \mathbf{A}_{r_{i}}\right) \mathbf{q}(t) + \left(\sum_{i=1}^{s} \tilde{\omega}_{i}(\mathbf{q}(t))\right) \mathbf{F}_{r_{i}} + \mathbf{B}_{r} \mathbf{u}(t)$$

$$\mathbf{A}_{r_i} = \mathbf{W}^T \mathbf{A}_i \mathbf{V}, \ i = 1, \cdots, s$$

$$\mathbf{B}_r = \mathbf{W}^T \mathbf{B}$$

$$\mathbf{F}_{r_i} = \mathbf{W}^T (\mathbf{f}(\mathbf{w}_i) - \mathbf{A}_i \mathbf{w}_i), \ i = 1, \cdots, s$$

Trajectory PieceWise Linear (TPWL) Method

Projection-Based Model Order Reduction

 In this context, a complete Projection-based Model Order Reduction (PMOR) method should incorporate algorithms for

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

11/64

- selecting the linearization points $\{\mathbf{w}_i\}_{i=1}^s$
- \blacksquare selecting the ROBs ${\bf V}$ and ${\bf W}$
- determining the weights $\{\widetilde{\omega}_i(\mathbf{q})\}_{i=1}^s, \ \forall \mathbf{q} \in \mathbb{R}^k$

Trajectory PieceWise Linear (TPWL) Method

└─Selection of the Linearization Points

- Note that each linear approximation of the nonlinear function **f** is valid only in a neighborhood of each w_i
- Note also that, in practice, it is impossible to cover the entire state-space R^N by local linear approximations
- The Trajectory PieceWise Linear (TPWL) PMOR method (2001)
 - uses pre-computed trajectories of the HDM (offline) to select the linearization regions
 - selects an additional linearization point from the HDM trajectory if it is sufficiently far away from the previously selected points

^LTrajectory PieceWise Linear (TPWL) Method

└-Selection of the ROBs

Possible methods for constructing a **global** basis **V** include

• if the input function is linear in **u**, constructing Krylov subspaces $\mathcal{K}_i = \mathcal{K}(\mathbf{A}_i^{-1}, \mathbf{A}_i^{-1}\mathbf{B}) = \operatorname{range}(\mathbf{V}_i)$ at each linearization point \mathbf{w}_i and assembling a global basis **V** such that

$$range(\mathbf{V}) = range([\mathbf{V}_1 \quad \cdots \quad \mathbf{V}_s])$$

ad-hoc methods (Balanced truncation, POD...)

The left ROB W can be chosen based on the output of interest (two-sided Krylov moment matching), or simply as W = V (Galerkin projection)

```
AA216/CME345: MODEL REDUCTION
```

Trajectory PieceWise Linear (TPWL) Method

L Determination of the Weights $\{\omega_i\}$

• The weights are used to characterize in the reduced space \mathbb{R}^k the distance of the current point $\mathbf{q}(t)$ to the projection of the linearization points onto range(**V**) – that is,

$$\left\{ \mathbf{q}_{i} = \left(\mathbf{V}^{T} \mathbf{V}
ight)^{-1} \mathbf{V}^{T} \mathbf{w}_{i}
ight\}_{i=1}^{3}$$

one possible choice is

$$ilde{\omega}_i(\mathbf{q}) = rac{\exp\left(-rac{eta d_i^2}{m^2}
ight)}{\sum\limits_{j=1}^s \exp\left(-rac{eta d_j^2}{m^2}
ight)}$$

where β is a constant, $d_i = \|\mathbf{q} - \mathbf{q}_i\|_2$, and $m = \min_{j=1}^s d_j$ • other choices can be found in the literature

^LTrajectory PieceWise Linear (TPWL) Method

└─Further Developments

- A posteriori error estimators are available when **f** is negative monotone
- Stability guarantee is possible under some assumptions on f and specific choices for V and the weights {ũ_i(q)}^s_{i=1}
- Passivity preservation (i.e. no energy creation in a passive system) is possible under similar assumptions
- TPWL using local ROBs (ManiMOR)

^LTrajectory PieceWise Linear (TPWL) Method

Analysis of the TPWL Method

<u>Weaknesses</u>

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ○ ○ ○

16/64

Strengths

 The cost of the online phase does not scale with the size N of the HDM

Trajectory PieceWise Linear (TPWL) Method

Analysis of the TPWL Method

Strengths

 The cost of the online phase does not scale with the size N of the HDM

<u>Weaknesses</u>

It is essential to choose good linearization points offline

16/64

^LTrajectory PieceWise Linear (TPWL) Method

Analysis of the TPWL Method

Strengths

- The cost of the online phase does not scale with the size N of the HDM
- The online phase is not software-intrusive

<u>Weaknesses</u>

It is essential to choose good linearization points offline

16/64

^LTrajectory PieceWise Linear (TPWL) Method

Analysis of the TPWL Method

Strengths

- The cost of the online phase does not scale with the size N of the HDM
- The online phase is not software-intrusive

<u>Weaknesses</u>

- It is essential to choose good linearization points offline
- Requires the extraction of Jacobians from the HDM software

^LTrajectory PieceWise Linear (TPWL) Method

Analysis of the TPWL Method

Strengths

- The cost of the online phase does not scale with the size N of the HDM
- The online phase is not software-intrusive

<u>Weaknesses</u>

- It is essential to choose good linearization points offline
- Requires the extraction of Jacobians from the HDM software
- Many parameters to adjust (number of linearization points, weights, ...)

Hyperreduction Methods

Background: The Gappy POD Method

 First applied to face recognition (Emerson and Sirovich, "Karhunen-Loeve Procedure for Gappy Data", 1996)

Lyperreduction Methods

Background: The Gappy POD Method

 First applied to face recognition (Emerson and Sirovich, "Karhunen-Loeve Procedure for Gappy Data", 1996)

17/64

- Other applications
 - flow sensing and estimation
 - flow (approximate) reconstruction
 - nonlinear model order reduction

-Hyperreduction Methods

Background: The Gappy POD Method

Face recognition

Procedure

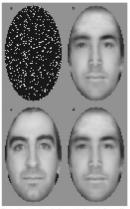


Fig. 1. Reconstruction of a face, not in the original ensemble, from a 10% mask. The reconstructed face, b, was determined with 50 empirical eigenfunctions and only the white pixels shown in a. The original face is shown in c, and a projection (with all the pixels) of the face onto 50 empirical eigenfunctions is shown in d.

-Hyperreduction Methods

Background: The Gappy POD Method

Face recognition

Procedure

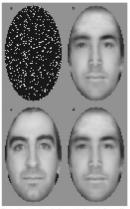


Fig. 1. Reconstruction of a face, not in the original ensemble, from a 10% mask. The reconstructed face, b, was determined with 50 empirical eigenfunctions and only the white pixels shown in a. The original face is shown in c, and a projection (with all the pixels) of the face onto 50 empirical eigenfunctions is shown in d.

-Hyperreduction Methods

Background: The Gappy POD Method

Face recognition

Procedure

 build a database of N_s faces (snapshots)

Fig. 1. Reconstruction of a face, not in the original ensemble, from a 10% mask. The reconstructed face, b, was determined with 50 empirical eigenfunctions and only the white pixels shown in a. The original face is shown in c, and a projection (with all the pixels) of the face onto 50 empirical eigenfunctions is shown in d.

-Hyperreduction Methods

Background: The Gappy POD Method

Face recognition

<u>Procedure</u>

- build a database of N_s faces (snapshots)
- 2 construct a POD basis V_f for the database

Fig. 1. Reconstruction of a face, not in the original ensemble, from a 10% mask. The reconstructed face, b, was determined with 50 empirical eigenfunctions and only the white pixels shown in a. The original face is shown in c, and a projection (with all the pixels) of the face onto 50 empirical eigenfunctions is shown in d.

イロト イロト イヨト イヨト 三日

-Hyperreduction Methods

Background: The Gappy POD Method

Face recognition

<u>Procedure</u>

- build a database of N_s faces (snapshots)
- 2 construct a POD basis V_f for the database
- **3** for a new face **f**, record a small number k_i of pixels $f_{i_1}, \dots, f_{i_{k_i}}$

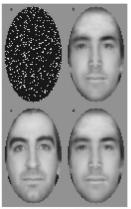


Fig. 1. Reconstruction of a face, not in the original ensemble, from a 10% mask. The reconstructed face, b, was determined with 50 empirical eigenfunctions and only the white pixels shown in a. The original face is shown in c, and a projection (with all the pixels) of the face onto 50 empirical eigenfunctions is shown in d.

<ロ> (四) (四) (注) (日) (三)

-Hyperreduction Methods

Background: The Gappy POD Method

Face recognition

<u>Procedure</u>

- build a database of N_s faces (snapshots)
- 2 construct a POD basis V_f for the database
- **3** for a new face **f**, record a small number k_i of pixels $f_{i_1}, \dots, f_{i_{k_i}}$
- 4 using the POD basis V_f, approximately reconstruct the new face f (in the least-squares sense)

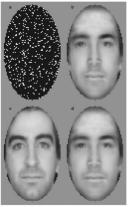


Fig. 1. Reconstruction of a face, not in the original ensemble, from a 10% mask. The reconstructed face, b, was determined with 50 empirical eigenfunctions and only the white pixels shown in a. The original face is shown in c, and a projection (with all the pixels) of the face onto 50 empirical eigenfunctions is shown in d.

イロト イヨト イヨト イヨト 三日

-Hyperreduction Methods

Nonlinear Function Approximation by Gappy POD

The gappy approach can also be used to approximate the nonlinear function **f** in the reduced equations

$$rac{d\mathbf{q}}{dt}(t) = \mathbf{W}^{T}\mathbf{f}(\mathbf{V}\mathbf{q}(t),t)$$

(for simplicity, the input function $\mathbf{u}(t)$ is not considered here)

-Hyperreduction Methods

Nonlinear Function Approximation by Gappy POD

The gappy approach can also be used to approximate the nonlinear function **f** in the reduced equations

$$rac{d\mathbf{q}}{dt}(t) = \mathbf{W}^{T}\mathbf{f}(\mathbf{V}\mathbf{q}(t),t)$$

(for simplicity, the input function $\mathbf{u}(t)$ is not considered here)

• The evaluation of all entries of $\mathbf{f}(\cdot, t)$ is computationally intensive (scales with N)

-Hyperreduction Methods

Nonlinear Function Approximation by Gappy POD

The gappy approach can also be used to approximate the nonlinear function **f** in the reduced equations

$$rac{d\mathbf{q}}{dt}(t) = \mathbf{W}^{T}\mathbf{f}(\mathbf{V}\mathbf{q}(t),t)$$

(for simplicity, the input function $\mathbf{u}(t)$ is not considered here)

- The evaluation of all entries of f(·, t) is computationally intensive (scales with N)
- Gappy approach
 - evaluate only a small subset of these entries
 - pre-compute a ROB V_f and use it to approximately reconstruct all other entries by interpolation or a least-squares strategy

Hyperreduction Methods

LNonlinear Function Approximation by Gappy POD

A complete PMOR method based on the Gappy approach for hyperreduction should then provide algorithms for

• selecting the evaluation entries $\mathcal{I} = \{i_1, \cdots, i_{k_i}\}$

Hyperreduction Methods

LNonlinear Function Approximation by Gappy POD

- A complete PMOR method based on the Gappy approach for hyperreduction should then provide algorithms for
 - selecting the evaluation entries $\mathcal{I} = \{i_1, \cdots, i_{k_i}\}$
 - \blacksquare pre-computing a ROB V_{f} for the nonlinear function f

L Hyperreduction Methods

LNonlinear Function Approximation by Gappy POD

- A complete PMOR method based on the Gappy approach for hyperreduction should then provide algorithms for
 - selecting the evaluation entries $\mathcal{I} = \{i_1, \cdots, i_{k_i}\}$
 - \blacksquare pre-computing a ROB V_{f} for the nonlinear function f
 - approximately reconstructing the nonlinear function at all its other entries $\Rightarrow \hat{\mathbf{f}}(\cdot, t)$

Lyperreduction Methods

└─Construction of a POD Basis for f

Construction of a POD basis V_f of dimension k_f

 \hbox{I} collect snapshots for the nonlinear function f from one or several transient simulations

$$\mathbf{F} = [\mathbf{f}(\mathbf{w}(t_1), t_1) \quad \cdots \quad \mathbf{f}(\mathbf{w}(t_{m_{\mathbf{f}}}), t_{m_{\mathbf{f}}})] \in \mathbb{R}^{N \times m_{\mathbf{f}}}$$

Lyperreduction Methods

└─Construction of a POD Basis for f

Construction of a POD basis V_f of dimension k_f

 $\ensuremath{\textbf{1}}$ collect snapshots for the nonlinear function f from one or several transient simulations

$$\mathbf{F} = [\mathbf{f}(\mathbf{w}(t_1), t_1) \quad \cdots \quad \mathbf{f}(\mathbf{w}(t_{m_{\mathbf{f}}}), t_{m_{\mathbf{f}}})] \in \mathbb{R}^{N \times m_{\mathbf{f}}}$$

2 compute a thin SVD

$$\mathbf{F} = \mathbf{U}_{\mathbf{f}} \mathbf{\Sigma}_{\mathbf{f}} \mathbf{Z}_{\mathbf{f}}^{\mathsf{T}}$$

Lyperreduction Methods

└─Construction of a POD Basis for f

- Construction of a POD basis V_f of dimension k_f
 - $\ensuremath{\textbf{1}}$ collect snapshots for the nonlinear function f from one or several transient simulations

$$\mathbf{F} = [\mathbf{f}(\mathbf{w}(t_1), t_1) \quad \cdots \quad \mathbf{f}(\mathbf{w}(t_{m_{\mathbf{f}}}), t_{m_{\mathbf{f}}})] \in \mathbb{R}^{N \times m_{\mathbf{f}}}$$

$$F = U_f \Sigma_f Z_f^{\mathcal{T}}$$

3 construct a ROB of dimension $k_f \le m_f$ as the set of first k_f vectors in U_f (truncation)

$$\mathbf{V}_{\mathbf{f}} = \begin{bmatrix} \mathbf{u}_{\mathbf{f},1} & \cdots & \mathbf{u}_{\mathbf{f},k_{\mathbf{f}}} \end{bmatrix}$$

Hyperreduction Methods

Approximate Reconstruction of a Nonlinear Function

Assume for now that k_i indices (entries of f) have been chosen (see later for how to choose these indices)

$$\mathcal{I} = \{i_1, \cdots, i_{k_i}\}$$

Hyperreduction Methods

Approximate Reconstruction of a Nonlinear Function

Assume for now that k_i indices (entries of f) have been chosen (see later for how to choose these indices)

$$\mathcal{I} = \{i_1, \cdots, i_{k_i}\}$$

• Consider the $N \times k_i$ "mask" matrix

$$\mathbf{P} = \begin{bmatrix} \mathbf{e}_{i_1} & \cdots & \mathbf{e}_{i_{k_i}} \end{bmatrix}$$

-Hyperreduction Methods

Approximate Reconstruction of a Nonlinear Function

Assume for now that k_i indices (entries of f) have been chosen (see later for how to choose these indices)

$$\mathcal{I} = \{i_1, \cdots, i_{k_i}\}$$

• Consider the $N \times k_i$ "mask" matrix

$$\mathbf{P} = \begin{bmatrix} \mathbf{e}_{i_1} & \cdots & \mathbf{e}_{i_{k_i}} \end{bmatrix}$$

At each time t, given a value of the state approximation

 w(t) = Vq(t), evaluate only those entries of f corresponding to the above indices

$$\begin{bmatrix} f_{i_1}(\tilde{\mathbf{w}}(t), t) \\ \vdots \\ f_{i_{k_i}}(\tilde{\mathbf{w}}(t), t) \end{bmatrix} = \mathbf{P}^T \mathbf{f}(\tilde{\mathbf{w}}(t), t)$$

22 / 64

-Hyperreduction Methods

Approximate Reconstruction of a Nonlinear Function

Assume for now that k_i indices (entries of f) have been chosen (see later for how to choose these indices)

$$\mathcal{I} = \{i_1, \cdots, i_{k_i}\}$$

• Consider the $N \times k_i$ "mask" matrix

$$\mathbf{P} = \begin{bmatrix} \mathbf{e}_{i_1} & \cdots & \mathbf{e}_{i_{k_i}} \end{bmatrix}$$

At each time t, given a value of the state approximation

 w(t) = Vq(t), evaluate only those entries of f corresponding to the above indices

$$\begin{bmatrix} f_{i_1}(\tilde{\mathbf{w}}(t), t) \\ \vdots \\ f_{i_{k_i}}(\tilde{\mathbf{w}}(t), t) \end{bmatrix} = \mathbf{P}^T \mathbf{f}(\tilde{\mathbf{w}}(t), t)$$

• This is computationally economical if $k_i \ll N$

-Hyperreduction Methods

Approximate Reconstruction of a Nonlinear Function

Assume for now that k_i indices (entries of f) have been chosen (see later for how to choose these indices)

$$\mathcal{I} = \{i_1, \cdots, i_{k_i}\}$$

• Consider the $N \times k_i$ "mask" matrix

$$\mathbf{P} = \begin{bmatrix} \mathbf{e}_{i_1} & \cdots & \mathbf{e}_{i_{k_i}} \end{bmatrix}$$

• At each time t, given a value of the state approximation $\tilde{\mathbf{w}}(t) = \mathbf{V}\mathbf{q}(t)$, evaluate only those entries of \mathbf{f} corresponding to the above indices

$$\begin{bmatrix} f_{i_1}(\tilde{\mathbf{w}}(t), t) \\ \vdots \\ f_{i_{k_i}}(\tilde{\mathbf{w}}(t), t) \end{bmatrix} = \mathbf{P}^T \mathbf{f}(\tilde{\mathbf{w}}(t), t)$$

- This is computationally economical if $k_i \ll N$
- Usually, only a subset of the entries of $\tilde{\mathbf{w}}(t)$ are required to construct the above vector (case of a sparse Jacobian)

22 / 64

Lyperreduction Methods

^LDiscrete Empirical Interpolation Method (DEIM)

Case where
$$k_i = k_{\mathbf{f}} \Rightarrow$$
 interpolation
idea: $\hat{f}_{i_j}(\tilde{\mathbf{w}}, t) = f_{i_j}(\tilde{\mathbf{w}}, t), \ \forall \tilde{\mathbf{w}} \in \mathbb{R}^N, \ \forall j = 1, \cdots, k_i$

Lyperreduction Methods

^LDiscrete Empirical Interpolation Method (DEIM)

■ Case where
$$k_i = k_{\mathbf{f}} \Rightarrow$$
 interpolation
■ idea: $\hat{f}_{i_j}(\tilde{\mathbf{w}}, t) = f_{i_j}(\tilde{\mathbf{w}}, t), \ \forall \tilde{\mathbf{w}} \in \mathbb{R}^N, \ \forall j = 1, \cdots, k_i$
■ this means that

$$\mathbf{P}^{\mathsf{T}}\hat{\mathbf{f}}(\tilde{\mathbf{w}}(t),t) = \mathbf{P}^{\mathsf{T}}\mathbf{f}(\tilde{\mathbf{w}}(t),t)$$

Hyperreduction Methods

^LDiscrete Empirical Interpolation Method (DEIM)

■ Case where
$$k_i = k_f \Rightarrow$$
 interpolation
■ idea: $\hat{f}_{i_j}(\tilde{\mathbf{w}}, t) = f_{i_j}(\tilde{\mathbf{w}}, t), \ \forall \tilde{\mathbf{w}} \in \mathbb{R}^N, \ \forall j = 1, \cdots, k_i$
■ this means that

$$\mathbf{P}^{\mathsf{T}}\hat{\mathbf{f}}(\tilde{\mathbf{w}}(t),t) = \mathbf{P}^{\mathsf{T}}\mathbf{f}(\tilde{\mathbf{w}}(t),t)$$

 \blacksquare recalling that $\hat{f}(\cdot,t)$ belongs to the range of V_{f} – that is,

$$\hat{\mathbf{f}}(\mathbf{V}\mathbf{q}(t),t)=\mathbf{V}_{\mathbf{f}}\mathbf{f}_{r}(\mathbf{q}(t),t), ext{ where } \mathbf{f}_{r}(\mathbf{q}(t),t)\in\mathbb{R}^{k_{\mathbf{f}}}$$

it follows that

$$\mathbf{P}^{\mathsf{T}}\mathbf{V}_{\mathsf{f}}\mathbf{f}_{\mathsf{f}}(\mathbf{q}(t),t) = \mathbf{P}^{\mathsf{T}}\mathbf{f}(\mathbf{V}\mathbf{q}(t),t)$$

-Hyperreduction Methods

^LDiscrete Empirical Interpolation Method (DEIM)

■ Case where
$$k_i = k_f \Rightarrow$$
 interpolation
■ idea: $\hat{f}_{i_j}(\tilde{\mathbf{w}}, t) = f_{i_j}(\tilde{\mathbf{w}}, t), \forall \tilde{\mathbf{w}} \in \mathbb{R}^N, \forall j = 1, \cdots, k_i$
■ this means that

$$\mathbf{P}^{\mathsf{T}}\hat{\mathbf{f}}(\tilde{\mathbf{w}}(t),t) = \mathbf{P}^{\mathsf{T}}\mathbf{f}(\tilde{\mathbf{w}}(t),t)$$

 \blacksquare recalling that $\hat{f}(\cdot,t)$ belongs to the range of V_{f} – that is,

$$\hat{\mathbf{f}}(\mathbf{Vq}(t),t) = \mathbf{V}_{\mathbf{f}}\mathbf{f}_{r}(\mathbf{q}(t),t), ext{ where } \mathbf{f}_{r}(\mathbf{q}(t),t) \in \mathbb{R}^{k_{\mathbf{f}}}$$

it follows that

$$\mathbf{P}^{\mathsf{T}}\mathbf{V}_{\mathbf{f}}\mathbf{f}_{\mathbf{f}}(\mathbf{q}(t),t) = \mathbf{P}^{\mathsf{T}}\mathbf{f}(\mathbf{V}\mathbf{q}(t),t)$$

• assuming that $\mathbf{P}^{\mathsf{T}} \mathbf{V}_{\mathbf{f}}$ is nonsingular

$$\Longrightarrow$$
 $\mathbf{f}_r(\mathbf{q}(t), t) = (\mathbf{P}^T \mathbf{V}_{\mathbf{f}})^{-1} \mathbf{P}^T \mathbf{f}(\mathbf{V} \mathbf{q}(t), t)$

23/64

-Hyperreduction Methods

^LDiscrete Empirical Interpolation Method (DEIM)

• Case where
$$k_i = k_{\mathbf{f}} \Rightarrow$$
 interpolation
• idea: $\hat{f}_{i_j}(\tilde{\mathbf{w}}, t) = f_{i_j}(\tilde{\mathbf{w}}, t), \ \forall \tilde{\mathbf{w}} \in \mathbb{R}^N, \ \forall j = 1, \cdots, k_i$
• this means that

$$\mathbf{P}^{\mathsf{T}}\hat{\mathbf{f}}(\tilde{\mathbf{w}}(t),t) = \mathbf{P}^{\mathsf{T}}\mathbf{f}(\tilde{\mathbf{w}}(t),t)$$

• recalling that $\hat{\mathbf{f}}(\cdot, t)$ belongs to the range of \mathbf{V}_{f} – that is,

$$\hat{\mathbf{f}}(\mathbf{Vq}(t),t)=\mathbf{V}_{\mathbf{f}}\mathbf{f}_{r}(\mathbf{q}(t),t), ext{ where } \mathbf{f}_{r}(\mathbf{q}(t),t)\in\mathbb{R}^{k_{\mathbf{f}}}$$

it follows that

$$\mathbf{P}^{\mathsf{T}}\mathbf{V}_{\mathbf{f}}\mathbf{f}_{\mathbf{f}}(\mathbf{q}(t),t) = \mathbf{P}^{\mathsf{T}}\mathbf{f}(\mathbf{V}\mathbf{q}(t),t)$$

assuming that \mathbf{P}^{\mathsf{T}} \mathbf{V}_{f} is nonsingular

$$\implies$$
 $\mathbf{f}_r(\mathbf{q}(t),t) = (\mathbf{P}^T \mathbf{V}_{\mathbf{f}})^{-1} \mathbf{P}^T \mathbf{f}(\mathbf{V} \mathbf{q}(t),t)$

hence, the high-dimensional nonlinear function $\hat{f}(\cdot, t)$ is interpolated as follows

$$\hat{\mathbf{f}}(\cdot,t) = \mathbf{V}_{\mathbf{f}}(\mathbf{P}^{\mathsf{T}}\mathbf{V}_{\mathbf{f}})^{-1}\mathbf{P}^{\mathsf{T}}\mathbf{f}(\cdot,t) = \mathbf{\Pi}_{\mathbf{V}_{\mathbf{f}},\mathbf{P}}\mathbf{f}(\cdot,t)$$

-Hyperreduction Methods

^LDiscrete Empirical Interpolation Method (DEIM)

• Case where
$$k_i = k_f \Rightarrow$$
 interpolation
• idea: $\hat{f}_{i_j}(\tilde{\mathbf{w}}, t) = f_{i_j}(\tilde{\mathbf{w}}, t), \ \forall \tilde{\mathbf{w}} \in \mathbb{R}^N, \ \forall j = 1, \cdots, k_i$
• this means that

$$\mathbf{P}^{\mathsf{T}}\hat{\mathbf{f}}(\tilde{\mathbf{w}}(t),t) = \mathbf{P}^{\mathsf{T}}\mathbf{f}(\tilde{\mathbf{w}}(t),t)$$

• recalling that $\hat{\mathbf{f}}(\cdot, t)$ belongs to the range of \mathbf{V}_{f} – that is,

$$\hat{\mathbf{f}}(\mathbf{Vq}(t),t) = \mathbf{V}_{\mathbf{f}}\mathbf{f}_{r}(\mathbf{q}(t),t), ext{ where } \mathbf{f}_{r}(\mathbf{q}(t),t) \in \mathbb{R}^{k_{\mathbf{f}}}$$

it follows that

$$\mathbf{P}^{\mathsf{T}}\mathbf{V}_{\mathbf{f}}\mathbf{f}_{\mathbf{f}}(\mathbf{q}(t),t) = \mathbf{P}^{\mathsf{T}}\mathbf{f}(\mathbf{V}\mathbf{q}(t),t)$$

• assuming that $\mathbf{P}^T \mathbf{V}_f$ is nonsingular

$$\implies$$
 $\mathbf{f}_r(\mathbf{q}(t), t) = (\mathbf{P}^T \mathbf{V}_{\mathbf{f}})^{-1} \mathbf{P}^T \mathbf{f}(\mathbf{V} \mathbf{q}(t), t)$

hence, the high-dimensional nonlinear function $\hat{\mathbf{f}}(\cdot, t)$ is interpolated as follows

$$\hat{\mathbf{f}}(\cdot,t) = \mathbf{V}_{\mathbf{f}}(\mathbf{P}^{\mathsf{T}}\mathbf{V}_{\mathbf{f}})^{-1}\mathbf{P}^{\mathsf{T}}\mathbf{f}(\cdot,t) = \mathbf{\Pi}_{\mathbf{V}_{\mathbf{f}},\mathbf{P}}\mathbf{f}(\cdot,t)$$

interpretation: the Discrete Empirical Interpolation Method (DEIM) is an oblique projection of the high-dimensional nonlinear vector-valued function

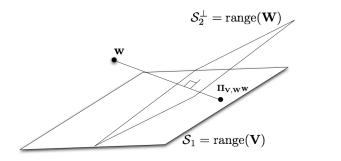
23 / 64

-Hyperreduction Methods

-Oblique Projection of the High-Dimensional Nonlinear Vector

$$\hat{\mathbf{f}}(\cdot,t) = \mathbf{V}_{\mathbf{f}}(\mathbf{P}^{\mathsf{T}}\mathbf{V}_{\mathbf{f}})^{-1}\mathbf{P}^{\mathsf{T}}\mathbf{f}(\cdot,t) = \mathbf{\Pi}_{\mathbf{V}_{\mathbf{f}},\mathbf{P}}\mathbf{f}(\cdot,t)$$

Recall that $\Pi_{\mathbf{V},\mathbf{W}} = \mathbf{V}(\mathbf{W}^T \mathbf{V})^{-1} \mathbf{W}^T$ is the oblique projector onto \mathbf{V} , orthogonally to \mathbf{W}



Hyperreduction Methods

Least-Squares Reconstruction

■ Case where $k_i > k_f \Rightarrow$ least-squares reconstruction ■ idea: $\hat{f}_{i_j}(\tilde{\mathbf{w}}, t) \approx f_{i_j}(\tilde{\mathbf{w}}, t), \ \forall \tilde{\mathbf{w}} \in \mathbb{R}^N, \ \forall j = 1, \cdots, N$

Lyperreduction Methods

Least-Squares Reconstruction

■ Case where $k_i > k_{\mathbf{f}} \Rightarrow$ least-squares reconstruction ■ idea: $\hat{f}_{i_j}(\tilde{\mathbf{w}}, t) \approx f_{i_j}(\tilde{\mathbf{w}}, t), \forall \tilde{\mathbf{w}} \in \mathbb{R}^N, \forall j = 1, \cdots, N$ = this least to the minimization problem

this leads to the minimization problem

$$\mathbf{f}_r(\mathbf{q}(t),t) = \underset{\mathbf{y}_r \in \mathbb{R}^{k_f}}{\operatorname{argmin}} \|\mathbf{P}^T \mathbf{V}_{\mathbf{f}} \mathbf{y}_r - \mathbf{P}^T \mathbf{f}(\mathbf{V} \mathbf{q}(t),t)\|_2$$

Lyperreduction Methods

Least-Squares Reconstruction

■ Case where $k_i > k_f \Rightarrow$ least-squares reconstruction ■ idea: $\hat{f}_{i_j}(\tilde{\mathbf{w}}, t) \approx f_{i_j}(\tilde{\mathbf{w}}, t), \forall \tilde{\mathbf{w}} \in \mathbb{R}^N, \forall j = 1, \cdots, N$ ■ this leads to the minimization problem

$$\mathbf{f}_r(\mathbf{q}(t),t) = \underset{\mathbf{y}_r \in \mathbb{R}^{k_f}}{\operatorname{argmin}} \|\mathbf{P}^T \mathbf{V}_f \mathbf{y}_r - \mathbf{P}^T \mathbf{f}(\mathbf{V}\mathbf{q}(t),t)\|_2$$

• note that $\mathbf{M} = \mathbf{P}^T \mathbf{V}_{\mathbf{f}} \in \mathbb{R}^{k_i \times k_{\mathbf{f}}}$ is a skinny matrix

L Hyperreduction Methods

Least-Squares Reconstruction

Case where k_i > k_f ⇒ least-squares reconstruction
 idea: f̂_{ij}(ũ, t) ≈ f_{ij}(ũ, t), ∀ũ ∈ ℝ^N, ∀j = 1, · · · , N
 this leads to the minimization problem

$$\mathbf{f}_r(\mathbf{q}(t), t) = \underset{\mathbf{y}_r \in \mathbb{R}^{k_f}}{\operatorname{argmin}} \| \mathbf{P}^T \mathbf{V}_f \mathbf{y}_r - \mathbf{P}^T \mathbf{f}(\mathbf{V}\mathbf{q}(t), t) \|_2$$

- note that $\mathbf{M} = \mathbf{P}^T \mathbf{V}_{\mathbf{f}} \in \mathbb{R}^{k_i \times k_{\mathbf{f}}}$ is a skinny matrix
- its singular value decomposition can be written as

$$M = U\Sigma Z^T$$

LHyperreduction Methods

Least-Squares Reconstruction

Case where k_i > k_f ⇒ least-squares reconstruction
 idea: f̂_{ij}(ũ, t) ≈ f̂_{ij}(ũ, t), ∀ũ ∈ ℝ^N, ∀j = 1, · · · , N
 this leads to the minimization problem

$$\mathbf{f}_r(\mathbf{q}(t),t) = \underset{\mathbf{y}_r \in \mathbb{R}^{k_f}}{\operatorname{argmin}} \|\mathbf{P}^T \mathbf{V}_f \mathbf{y}_r - \mathbf{P}^T \mathbf{f}(\mathbf{V}\mathbf{q}(t),t)\|_2$$

- note that $\mathbf{M} = \mathbf{P}^T \mathbf{V}_{\mathbf{f}} \in \mathbb{R}^{k_i \times k_{\mathbf{f}}}$ is a skinny matrix
- its singular value decomposition can be written as

 $\mathbf{M} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{Z}^T$

• then, the left inverse of $M((M^TM)^{-1}M^T)$ is given by

$$\begin{split} \mathbf{M}^{\dagger} &= \mathbf{Z} \mathbf{\Sigma}^{\dagger} \mathbf{U}^{T} \\ \text{where } \mathbf{\Sigma}^{\dagger} &= \text{diag}(\frac{1}{\sigma_{1}}, \cdots, \frac{1}{\sigma_{r}}, 0, \cdots, 0) \text{ if} \\ \mathbf{\Sigma} &= \text{diag}(\sigma_{1}, \cdots, \sigma_{r}, 0, \cdots, 0), \text{ where } \sigma_{1} \geq \cdots \sigma_{r} > 0 \end{split}$$

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 少 Q (や 25 / 64

-Hyperreduction Methods

Least-Squares Reconstruction

Case where k_i > k_f ⇒ least-squares reconstruction
 idea: f̂_{ij}(ũ, t) ≈ f_{ij}(ũ, t), ∀ũ ∈ ℝ^N, ∀j = 1, · · · , N
 this leads to the minimization problem

$$\mathbf{f}_r(\mathbf{q}(t),t) = \operatorname*{argmin}_{\mathbf{y}_r \in \mathbb{R}^{k_f}} \| \mathbf{P}^T \mathbf{V}_f \mathbf{y}_r - \mathbf{P}^T \mathbf{f}(\mathbf{V}\mathbf{q}(t),t) \|_2$$

- note that $\mathbf{M} = \mathbf{P}^T \mathbf{V}_{\mathbf{f}} \in \mathbb{R}^{k_i \times k_{\mathbf{f}}}$ is a skinny matrix
- its singular value decomposition can be written as

 $\mathbf{M} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{Z}^T$

• then, the left inverse of $M((M^TM)^{-1}M^T)$ is given by

$$\mathbf{M}^{\dagger} = \mathbf{Z} \mathbf{\Sigma}^{\dagger} \mathbf{U}^{T}$$

where $\mathbf{\Sigma}^{\dagger} = \operatorname{diag}(\frac{1}{\sigma_{1}}, \cdots, \frac{1}{\sigma_{r}}, 0, \cdots, 0)$ if
 $\mathbf{\Sigma} = \operatorname{diag}(\sigma_{1}, \cdots, \sigma_{r}, 0, \cdots, 0)$, where $\sigma_{1} \ge \cdots \sigma_{r} > 0$
and therefore

Hyperreduction Methods

└─Greedy Function Sampling

• The selection of the indices in \mathcal{I} takes place after the matrix $V_f = [v_{f,1} \cdots v_{f,k_f}]$ has been computed using, for example, POD

Hyperreduction Methods

└─Greedy Function Sampling

- The selection of the indices in \mathcal{I} takes place after the matrix $V_f = [v_{f,1} \cdots v_{f,k_f}]$ has been computed using, for example, POD
- Greedy algorithm

1:
$$[s, i_1] = \max\{|\mathbf{v}_{f,1}|\}$$

2: $\mathbf{V}_f = [\mathbf{v}_{f,1}], \mathbf{P} = [\mathbf{e}_{i_1}]$
3: for $l = 2$: k_f do
4: solve $\mathbf{P}^T \mathbf{V}_f \mathbf{c} = \mathbf{P}^T \mathbf{v}_{f,l}$ for c
5: $\mathbf{r} = \mathbf{v}_{f,l} - \mathbf{V}_f \mathbf{c}$
6: $[s, i_l] = \max\{|\mathbf{r}|\}$
7: $\mathbf{V}_f = [\mathbf{V}_f, \mathbf{v}_{f,l}], \mathbf{P} = [\mathbf{P}, \mathbf{e}_{i_l}]$
8: end for

Hyperreduction Methods

Analysis of the Hyperreduction Method DEIM

Strengths

 The cost of the online phase does not scale with the size N of the HDM

Weaknesses

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 めんの

27 / 64

Hyperreduction Methods

Analysis of the Hyperreduction Method DEIM

Strengths

 The cost of the online phase does not scale with the size N of the HDM

Weaknesses

The online phase is software-intrusive

L Hyperreduction Methods

Analysis of the Hyperreduction Method DEIM

Strengths

- The cost of the online phase does not scale with the size N of the HDM
- The hyperreduced function is usually robust with respect to deviations from the original training trajectory

Weaknesses

The online phase is software-intrusive

27 / 64

-Hyperreduction Methods

Analysis of the Hyperreduction Method DEIM

Strengths

- The cost of the online phase does not scale with the size N of the HDM
- The hyperreduced function is usually robust with respect to deviations from the original training trajectory

Weaknesses

- The online phase is software-intrusive
- Many parameters to adjust (ROB sizes, mask size, ...)

Hyperreduction Methods

Application to the Reduction of the Burgers Equation

Consider the inviscid Burgers equation

$$\frac{\partial U}{\partial t}(x,t) + \frac{1}{2}\frac{\partial U^2}{\partial x}(x,t) = g(x)$$

source term

$$g(x) = 0.02 \exp(0.02x)$$

initial condition

U(x,0)=1

inlet boundary condition

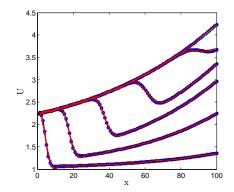
 $U(0,t)=\sqrt{5}$

Discretize it by a Finite Volume (Godunov) method

-Hyperreduction Methods

Application to the Reduction of the Burgers Equation

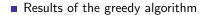
•
$$k = 15$$
, $k_f = 40$, $k_i = 40$

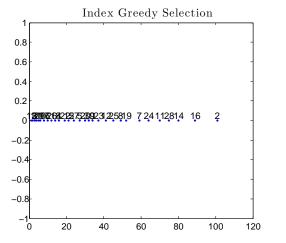


• Similar results for $k_i > 40$ (least-squares reconstruction)

-Hyperreduction Methods

Application to the Reduction of the Burgers Equation





æ

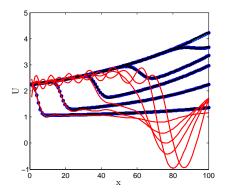
・ロン ・雪 と ・ ヨ と ・ ヨ と

-Hyperreduction Methods

Application to the Reduction of the Burgers Equation

• The dimension $k_{\rm f}$ of the ROB $V_{\rm f}$ is reduced from 40 to 30

a
$$k = 15$$
, $k_{\rm f} = 30$, $k_i = 80$



Similar results for $k_i = 100$ (no gaps) $\Rightarrow k_f$ is too small in that case

Lyperreduction Methods

Projection-Based Model Order Reduction at the Discrete Level

• Semi-discrete level:
$$\frac{d\mathbf{w}}{dt}(t) = \mathbf{f}(\mathbf{w}(t), t)$$

Hyperreduction Methods

^LProjection-Based Model Order Reduction at the Discrete Level

Semi-discrete level:
$$\frac{d\mathbf{w}}{dt}(t) = \mathbf{f}(\mathbf{w}(t), t)$$

• Subspace approximation: $\mathbf{w}(t) \approx \mathbf{V}\mathbf{q}(t) \Rightarrow \mathbf{V}\frac{d\mathbf{q}}{dt}(t) \approx \mathbf{f}(\mathbf{V}\mathbf{q}(t), t)$

L Hyperreduction Methods

Projection-Based Model Order Reduction at the Discrete Level

Semi-discrete level:
$$\frac{d\mathbf{w}}{dt}(t) = \mathbf{f}(\mathbf{w}(t), t)$$

• Subspace approximation: $\mathbf{w}(t) \approx \mathbf{V}\mathbf{q}(t) \Rightarrow \mathbf{V}\frac{d\mathbf{q}}{dt}(t) \approx \mathbf{f}(\mathbf{V}\mathbf{q}(t), t)$

Discrete level (backward Euler implicit time-integration scheme)

$$\mathbf{V}rac{\mathbf{q}^{n+1}-\mathbf{q}^n}{\Delta t^n}pprox \mathbf{f}\left(\mathbf{V}\mathbf{q}^{n+1},t^{n+1}
ight)$$

L Hyperreduction Methods

Projection-Based Model Order Reduction at the Discrete Level

Semi-discrete level:
$$\frac{d\mathbf{w}}{dt}(t) = \mathbf{f}(\mathbf{w}(t), t)$$

• Subspace approximation: $\mathbf{w}(t) \approx \mathbf{V}\mathbf{q}(t) \Rightarrow \mathbf{V}\frac{d\mathbf{q}}{dt}(t) \approx \mathbf{f}(\mathbf{V}\mathbf{q}(t), t)$

Discrete level (backward Euler implicit time-integration scheme)

$$\mathbf{V}rac{\mathbf{q}^{n+1}-\mathbf{q}^n}{\Delta t^n}pprox \mathbf{f}\left(\mathbf{V}\mathbf{q}^{n+1},t^{n+1}
ight)$$

Discrete residual

$$\mathbf{r}^{n+1}\left(\mathbf{q}^{n+1}\right) = \mathbf{V}\frac{\mathbf{q}^{n+1} - \mathbf{q}^{n}}{\Delta t^{n}} - \mathbf{f}\left(\mathbf{V}\mathbf{q}^{n+1}, t^{n+1}\right)$$

-Hyperreduction Methods

Projection-Based Model Order Reduction at the Discrete Level

Semi-discrete level:
$$\frac{d\mathbf{w}}{dt}(t) = \mathbf{f}(\mathbf{w}(t), t)$$

• Subspace approximation: $\mathbf{w}(t) \approx \mathbf{V}\mathbf{q}(t) \Rightarrow \mathbf{V}\frac{d\mathbf{q}}{dt}(t) \approx \mathbf{f}(\mathbf{V}\mathbf{q}(t), t)$

Discrete level (backward Euler implicit time-integration scheme)

$$\mathbf{V}rac{\mathbf{q}^{n+1}-\mathbf{q}^n}{\Delta t^n}pprox \mathbf{f}\left(\mathbf{V}\mathbf{q}^{n+1},t^{n+1}
ight)$$

Discrete residual

$$\mathbf{r}^{n+1}\left(\mathbf{q}^{n+1}\right) = \mathbf{V}\frac{\mathbf{q}^{n+1} - \mathbf{q}^{n}}{\Delta t^{n}} - \mathbf{f}\left(\mathbf{V}\mathbf{q}^{n+1}, t^{n+1}\right)$$

 Residual minimization (a.k.a PMOR by least-squares or Petrov-Galerkin projection)

$$ig \| \mathbf{q}^{n+1} = \operatorname*{argmin}_{\mathbf{y} \in \mathbb{R}^k} ig \| \mathbf{r}^{n+1}(\mathbf{y}) ig \|_2$$

-Hyperreduction Methods

Projection-Based Model Order Reduction at the Discrete Level

Semi-discrete level:
$$\frac{d\mathbf{w}}{dt}(t) = \mathbf{f}(\mathbf{w}(t), t)$$

• Subspace approximation: $\mathbf{w}(t) \approx \mathbf{V}\mathbf{q}(t) \Rightarrow \mathbf{V}\frac{d\mathbf{q}}{dt}(t) \approx \mathbf{f}(\mathbf{V}\mathbf{q}(t), t)$

Discrete level (backward Euler implicit time-integration scheme)

$$\mathbf{V}rac{\mathbf{q}^{n+1}-\mathbf{q}^n}{\Delta t^n}pprox \mathbf{f}\left(\mathbf{V}\mathbf{q}^{n+1},t^{n+1}
ight)$$

Discrete residual

$$\mathbf{r}^{n+1}\left(\mathbf{q}^{n+1}\right) = \mathbf{V}\frac{\mathbf{q}^{n+1} - \mathbf{q}^{n}}{\Delta t^{n}} - \mathbf{f}\left(\mathbf{V}\mathbf{q}^{n+1}, t^{n+1}\right)$$

 Residual minimization (a.k.a PMOR by least-squares or Petrov-Galerkin projection)

$$\mathbf{q}^{n+1} = \operatorname*{argmin}_{\mathbf{y} \in \mathbb{R}^k} \left\| \mathbf{r}^{n+1}(\mathbf{y}) \right\|_2$$

■ r (qⁿ⁺¹) is nonlinear ⇒ approximate it using a gappy POD approach for hyperreduction

Lyperreduction Methods

└─Gappy POD at the Discrete Level

Gappy POD procedure for the fully discrete residual **r**

-Hyperreduction Methods

└─Gappy POD at the Discrete Level

- Gappy POD procedure for the fully discrete residual **r**
- Algorithm

Lyperreduction Methods

└─Gappy POD at the Discrete Level

- Gappy POD procedure for the fully discrete residual **r**
- Algorithm

1 build an orthogonal ROB $\mathbf{V}_r \in \mathbb{R}^{N \times k_r}$ for $\mathbf{r} (\mathbf{V}_r^T \mathbf{V}_r = \mathbf{I}_{k_r})$

L Hyperreduction Methods

└─Gappy POD at the Discrete Level

- Gappy POD procedure for the fully discrete residual r
- Algorithm
 - **1** build an orthogonal ROB $\mathbf{V}_{\mathbf{r}} \in \mathbb{R}^{N \times k_{\mathbf{r}}}$ for $\mathbf{r} (\mathbf{V}_{\mathbf{r}}^{T} \mathbf{V}_{\mathbf{r}} = \mathbf{I}_{k_{\mathbf{r}}})$

2 construct a sample mesh \mathcal{I} (indices i_1, \dots, i_{k_i}) using the greedy procedure

L Hyperreduction Methods

└─Gappy POD at the Discrete Level

- Gappy POD procedure for the fully discrete residual r
- Algorithm
 - **1** build an orthogonal ROB $\mathbf{V}_{r} \in \mathbb{R}^{N \times k_{r}}$ for $r (\mathbf{V}_{r}^{T} \mathbf{V}_{r} = \mathbf{I}_{k_{r}})$
 - 2 construct a sample mesh \mathcal{I} (indices i_1, \dots, i_{k_i}) using the greedy procedure
 - 3 consider the gappy approximation

$$\mathbf{r}^{n+1}\left(\mathbf{q}^{n+1}\right) \approx \mathbf{V}_{\mathbf{r}}\mathbf{r}_{k_{\mathbf{r}}}\left(\mathbf{q}^{n+1}\right) \approx \mathbf{V}_{\mathbf{r}}\left(\mathbf{P}^{\mathsf{T}}\mathbf{V}_{\mathbf{r}}\right)^{\dagger}\mathbf{P}^{\mathsf{T}}\mathbf{r}^{n+1}\left(\mathbf{V}\mathbf{q}^{n+1}\right)$$

L Hyperreduction Methods

└─Gappy POD at the Discrete Level

- Gappy POD procedure for the fully discrete residual r
- Algorithm
 - **1** build an orthogonal ROB $\mathbf{V}_{\mathbf{r}} \in \mathbb{R}^{N \times k_{\mathbf{r}}}$ for $\mathbf{r} (\mathbf{V}_{\mathbf{r}}^{T} \mathbf{V}_{\mathbf{r}} = \mathbf{I}_{k_{\mathbf{r}}})$
 - 2 construct a sample mesh \mathcal{I} (indices i_1, \dots, i_{k_i}) using the greedy procedure
 - 3 consider the gappy approximation

$$\mathbf{r}^{n+1}\left(\mathbf{q}^{n+1}\right)\approx\mathbf{V}_{\mathbf{r}}\mathbf{r}_{k_{\mathbf{r}}}\left(\mathbf{q}^{n+1}\right)\approx\mathbf{V}_{\mathbf{r}}\left(\mathbf{P}^{\mathsf{T}}\mathbf{V}_{\mathbf{r}}\right)^{\dagger}\mathbf{P}^{\mathsf{T}}\mathbf{r}^{n+1}\left(\mathbf{V}\mathbf{q}^{n+1}\right)$$

4 determine the vector of generalized coordinates at t^{n+1}

$$\begin{aligned} \mathbf{q}^{n+1} &= \operatorname*{argmin}_{\mathbf{y} \in \mathbb{R}^{k}} \left\| \mathbf{V}_{\mathbf{r}} \mathbf{r}_{k_{\mathbf{r}}}(\mathbf{y}) \right\|_{2} \\ &= \operatorname*{argmin}_{\mathbf{y} \in \mathbb{R}^{k}} \left\| \mathbf{r}_{k_{\mathbf{r}}}(\mathbf{y}) \right\|_{2} \\ &= \operatorname*{argmin}_{\mathbf{y} \in \mathbb{R}^{k}} \left\| \left(\mathbf{P}^{T} \mathbf{V}_{\mathbf{r}} \right)^{\dagger} \mathbf{P}^{T} \mathbf{r}^{n+1}(\mathbf{V} \mathbf{y}) \right\|_{2} \end{aligned}$$

Hyperreduction Methods

Gauss-Newton Method for Nonlinear Least-Squares Problems

Nonlinear least-squares problem: $\min_{\mathbf{y}} \|\mathbf{r}(\mathbf{y})\|_2$, where $\mathbf{r} \in \mathbb{R}^N$, $\mathbf{y} \in \mathbb{R}^k$, and $k \ll N$

-Hyperreduction Methods

Gauss-Newton Method for Nonlinear Least-Squares Problems

- Nonlinear least-squares problem: $\min_{\mathbf{y}} \|\mathbf{r}(\mathbf{y})\|_2$, where $\mathbf{r} \in \mathbb{R}^N$, $\mathbf{y} \in \mathbb{R}^k$, and $k \ll N$
- Equivalent function to minimize: $\phi(\mathbf{y}) = \frac{1}{2} \|\mathbf{r}(\mathbf{y})\|_2^2 = \mathbf{r}(\mathbf{y})^T \mathbf{r}(\mathbf{y})$

-Hyperreduction Methods

Gauss-Newton Method for Nonlinear Least-Squares Problems

Nonlinear least-squares problem: $\min_{\mathbf{y}} \|\mathbf{r}(\mathbf{y})\|_2$, where $\mathbf{r} \in \mathbb{R}^N$, $\mathbf{y} \in \mathbb{R}^k$, and $k \ll N$

• Equivalent function to minimize: $\phi(\mathbf{y}) = \frac{1}{2} \|\mathbf{r}(\mathbf{y})\|_2^2 = \mathbf{r}(\mathbf{y})^T \mathbf{r}(\mathbf{y})$

• Gradient: $\nabla \phi(\mathbf{y}) = \mathbf{J}(\mathbf{y})^T \mathbf{r}(\mathbf{y})$, where $\mathbf{J}(\mathbf{y}) = \frac{\partial \mathbf{r}}{\partial \mathbf{y}}(\mathbf{y})$

L Hyperreduction Methods

Gauss-Newton Method for Nonlinear Least-Squares Problems

- Nonlinear least-squares problem: $\min_{\mathbf{y}} \|\mathbf{r}(\mathbf{y})\|_2$, where $\mathbf{r} \in \mathbb{R}^N$, $\mathbf{y} \in \mathbb{R}^k$, and $k \ll N$
- Equivalent function to minimize: $\phi(\mathbf{y}) = \frac{1}{2} \|\mathbf{r}(\mathbf{y})\|_2^2 = \mathbf{r}(\mathbf{y})^T \mathbf{r}(\mathbf{y})$

Gradient: $\nabla \phi(\mathbf{y}) = \mathbf{J}(\mathbf{y})^T \mathbf{r}(\mathbf{y})$, where $\mathbf{J}(\mathbf{y}) = \frac{\partial \mathbf{r}}{\partial \mathbf{y}}(\mathbf{y})$

 Iterative solution of equivalent minimization problem using the Gauss-Newton method

$$\mathbf{y}^{(j+1)} = \mathbf{y}^{(j)} + \Delta \mathbf{y}^{(j+1)}$$

where

$$\nabla^{2}\phi\left(\mathbf{y}^{(j)}\right)\Delta\mathbf{y}^{(j+1)} = -\nabla\phi\left(\mathbf{y}^{(j)}\right)$$

▲ロ ▶ ▲ □ ▶ ■ ■ ■ ∧ □ ▶ ■ ■ ■ ∩ ■ ■ ∩ ■ ■ ∩ ■ ■ ∩ ■ ■ ∩ ■ ■ ∩ ■ ■ ∩ ■ ■ ∩ ■ ■ ∩ ■ ■ ∩ ■ ■ ∩ ■ ■ ∩ ■ ■ ∩ ■

-Hyperreduction Methods

Gauss-Newton Method for Nonlinear Least-Squares Problems

- Nonlinear least-squares problem: $\min_{\mathbf{y}} \|\mathbf{r}(\mathbf{y})\|_2$, where $\mathbf{r} \in \mathbb{R}^N$, $\mathbf{y} \in \mathbb{R}^k$, and $k \ll N$
- Equivalent function to minimize: $\phi(\mathbf{y}) = \frac{1}{2} \|\mathbf{r}(\mathbf{y})\|_2^2 = \mathbf{r}(\mathbf{y})^T \mathbf{r}(\mathbf{y})$

• Gradient:
$$\nabla \phi(\mathbf{y}) = \mathbf{J}(\mathbf{y})^T \mathbf{r}(\mathbf{y})$$
, where $\mathbf{J}(\mathbf{y}) = \frac{\partial \mathbf{r}}{\partial \mathbf{y}}(\mathbf{y})$

 Iterative solution of equivalent minimization problem using the Gauss-Newton method

$$\mathbf{y}^{(j+1)} = \mathbf{y}^{(j)} + \Delta \mathbf{y}^{(j+1)}$$

where

$$\nabla^{2}\phi\left(\mathbf{y}^{(j)}\right)\Delta\mathbf{y}^{(j+1)} = -\nabla\phi\left(\mathbf{y}^{(j)}\right)$$

• What is $\nabla^2 \phi(\mathbf{y})$?

$$abla^2 \phi(\mathbf{y}) = \mathbf{J}(\mathbf{y})^T \mathbf{J}(\mathbf{y}) + \sum_{i=1}^N rac{\partial^2 r_i}{\partial \mathbf{y}^2}(\mathbf{y}) r_i(\mathbf{y})$$

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 の Q (~ 34 / 64

-Hyperreduction Methods

Gauss-Newton Method for Nonlinear Least-Squares Problems

- Nonlinear least-squares problem: $\min_{\mathbf{y}} \|\mathbf{r}(\mathbf{y})\|_2$, where $\mathbf{r} \in \mathbb{R}^N$, $\mathbf{y} \in \mathbb{R}^k$, and $k \ll N$
- Equivalent function to minimize: $\phi(\mathbf{y}) = \frac{1}{2} \|\mathbf{r}(\mathbf{y})\|_2^2 = \mathbf{r}(\mathbf{y})^T \mathbf{r}(\mathbf{y})$

• Gradient:
$$\nabla \phi(\mathbf{y}) = \mathbf{J}(\mathbf{y})^T \mathbf{r}(\mathbf{y})$$
, where $\mathbf{J}(\mathbf{y}) = \frac{\partial \mathbf{r}}{\partial \mathbf{y}}(\mathbf{y})$

 Iterative solution of equivalent minimization problem using the Gauss-Newton method

$$\mathbf{y}^{(j+1)} = \mathbf{y}^{(j)} + \Delta \mathbf{y}^{(j+1)}$$

where

$$\nabla^{2}\phi\left(\mathbf{y}^{(j)}\right)\Delta\mathbf{y}^{(j+1)} = -\nabla\phi\left(\mathbf{y}^{(j)}\right)$$

• What is $\nabla^2 \phi(\mathbf{y})$?

$$abla^2 \phi(\mathbf{y}) = \mathbf{J}(\mathbf{y})^T \mathbf{J}(\mathbf{y}) + \sum_{i=1}^N rac{\partial^2 r_i}{\partial \mathbf{y}^2}(\mathbf{y}) r_i(\mathbf{y})$$

Gauss-Newton method with $\nabla^2 \phi(\mathbf{y}) \approx \mathbf{J}(\mathbf{y})^{\mathsf{T}} \mathbf{J}(\mathbf{y})$

Lyperreduction Methods

Gauss-Newton Method for Nonlinear Least-Squares Problems

Gauss-Newton method

$$\mathbf{y}^{(j+1)} = \mathbf{y}^{(j)} + \Delta \mathbf{y}^{(j+1)}$$

where

$$\mathsf{J}\left(\mathsf{y}^{(j)}\right)^{\mathsf{T}}\mathsf{J}\left(\mathsf{y}^{(j)}\right)\Delta\mathsf{y}^{(j+1)} = -\mathsf{J}\left(\mathsf{y}^{(j)}\right)^{\mathsf{T}}\mathsf{r}\left(\mathsf{y}^{(j)}\right)$$

Hyperreduction Methods

Gauss-Newton Method for Nonlinear Least-Squares Problems

Gauss-Newton method

$$\mathbf{y}^{(j+1)} = \mathbf{y}^{(j)} + \Delta \mathbf{y}^{(j+1)}$$

where

$$\mathsf{J}\left(\mathsf{y}^{(j)}\right)^{\mathsf{T}}\mathsf{J}\left(\mathsf{y}^{(j)}\right)\Delta\mathsf{y}^{(j+1)} = -\mathsf{J}\left(\mathsf{y}^{(j)}\right)^{\mathsf{T}}\mathsf{r}\left(\mathsf{y}^{(j)}\right)$$

This is the normal equation for

$$\Delta \mathbf{y}^{(j+1)} = \underset{\mathbf{z}}{\operatorname{argmin}} \left\| \mathbf{J} \left(\mathbf{y}^{(j)} \right) \mathbf{z} + \mathbf{r} \left(\mathbf{y}^{(j)} \right) \right\|_{2}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Hyperreduction Methods

Gauss-Newton Method for Nonlinear Least-Squares Problems

Gauss-Newton method

$$\mathbf{y}^{(j+1)} = \mathbf{y}^{(j)} + \Delta \mathbf{y}^{(j+1)}$$

where

$$\mathsf{J}\left(\mathsf{y}^{(j)}\right)^{\mathsf{T}}\mathsf{J}\left(\mathsf{y}^{(j)}\right)\Delta\mathsf{y}^{(j+1)} = -\mathsf{J}\left(\mathsf{y}^{(j)}\right)^{\mathsf{T}}\mathsf{r}\left(\mathsf{y}^{(j)}\right)$$

This is the normal equation for

$$\Delta \mathbf{y}^{(j+1)} = \underset{\mathbf{z}}{\operatorname{argmin}} \left\| \mathbf{J} \left(\mathbf{y}^{(j)} \right) \mathbf{z} + \mathbf{r} \left(\mathbf{y}^{(j)} \right) \right\|_{2}$$

QR decomposition of the Jacobian

$$\mathsf{J}\left(\mathsf{y}^{(j)}\right) = \mathsf{Q}^{(j)}\mathsf{R}^{(j)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Lyperreduction Methods

Gauss-Newton Method for Nonlinear Least-Squares Problems

Gauss-Newton method

$$\mathbf{y}^{(j+1)} = \mathbf{y}^{(j)} + \Delta \mathbf{y}^{(j+1)}$$

where

$$\mathbf{J}\left(\mathbf{y}^{\left(j\right)}\right)^{\mathsf{T}}\mathbf{J}\left(\mathbf{y}^{\left(j\right)}\right)\Delta\mathbf{y}^{\left(j+1\right)}=-\mathbf{J}\left(\mathbf{y}^{\left(j\right)}\right)^{\mathsf{T}}\mathbf{r}\left(\mathbf{y}^{\left(j\right)}\right)$$

This is the normal equation for

$$\Delta \mathbf{y}^{(j+1)} = \underset{\mathbf{z}}{\operatorname{argmin}} \left\| \mathbf{J} \left(\mathbf{y}^{(j)} \right) \mathbf{z} + \mathbf{r} \left(\mathbf{y}^{(j)} \right) \right\|_{2}$$

QR decomposition of the Jacobian

$$\mathsf{J}\left(\mathsf{y}^{(j)}\right) = \mathsf{Q}^{(j)}\mathsf{R}^{(j)}$$

 Equivalent solution using the QR decomposition (assuming that R^(j) has full column rank)

$$\Delta \mathbf{y}^{(j+1)} = -\mathbf{J} \left(\mathbf{y}^{(j)} \right)^{\dagger} \mathbf{r} \left(\mathbf{y}^{(j)} \right) = -\left(\mathbf{R}^{(j)} \right)^{-1} \left(\mathbf{Q}^{(j)} \right)^{T} \mathbf{r} \left(\mathbf{y}^{(j)} \right)$$

Hyperreduction Methods

Gauss-Newton with Approximated Tensors

 GNAT (Gauss-Newton with Approximated Tensors) = Gauss-Newton + gappy POD

Lyperreduction Methods

Gauss-Newton with Approximated Tensors

- GNAT (Gauss-Newton with Approximated Tensors) = Gauss-Newton + gappy POD
- Minimization problem

$$\min_{\mathbf{y}\in\mathbb{R}^{k}}\left\|\left(\mathbf{P}^{\mathsf{T}}\mathbf{V}_{\mathsf{r}}\right)^{\dagger}\mathbf{P}^{\mathsf{T}}\mathbf{r}^{n+1}(\mathbf{V}\mathbf{y})\right\|_{2}$$

-Hyperreduction Methods

Gauss-Newton with Approximated Tensors

- GNAT (Gauss-Newton with Approximated Tensors) = Gauss-Newton + gappy POD
- Minimization problem

$$\min_{\mathbf{y}\in\mathbb{R}^{k}}\left\|\left(\mathbf{P}^{\mathsf{T}}\mathbf{V}_{\mathsf{r}}\right)^{\dagger}\mathbf{P}^{\mathsf{T}}\mathbf{r}^{n+1}(\mathbf{V}\mathbf{y})\right\|_{2}$$

Jacobian: $\widehat{\mathbf{J}}(\mathbf{y}) = (\mathbf{P}^T \mathbf{V}_r)^{\dagger} \mathbf{P}^T \mathbf{J}^{n+1}(\mathbf{V}\mathbf{y})$

-Hyperreduction Methods

Gauss-Newton with Approximated Tensors

- GNAT (Gauss-Newton with Approximated Tensors) = Gauss-Newton + gappy POD
- Minimization problem

$$\min_{\mathbf{y}\in\mathbb{R}^{k}}\left\|\left(\mathbf{P}^{\mathsf{T}}\mathbf{V}_{\mathsf{r}}\right)^{\dagger}\mathbf{P}^{\mathsf{T}}\mathbf{r}^{n+1}(\mathbf{V}\mathbf{y})\right\|_{2}$$

- Jacobian: $\widehat{\mathbf{J}}(\mathbf{y}) = \left(\mathbf{P}^T \mathbf{V}_r\right)^{\dagger} \mathbf{P}^T \mathbf{J}^{n+1}(\mathbf{V}\mathbf{y})$
- Construct offline the small-dimensional matrix $\mathbf{A} = (\mathbf{P}^{\mathsf{T}} \mathbf{V}_{\mathsf{r}})^{\dagger}$

-Hyperreduction Methods

Gauss-Newton with Approximated Tensors

- GNAT (Gauss-Newton with Approximated Tensors) = Gauss-Newton + gappy POD
- Minimization problem

$$\min_{\mathbf{y}\in\mathbb{R}^{k}}\left\|\left(\mathbf{P}^{\mathsf{T}}\mathbf{V}_{\mathsf{r}}\right)^{\dagger}\mathbf{P}^{\mathsf{T}}\mathbf{r}^{n+1}(\mathbf{V}\mathbf{y})\right\|_{2}$$

- Jacobian: $\widehat{\mathbf{J}}(\mathbf{y}) = \left(\mathbf{P}^T \mathbf{V}_r\right)^{\dagger} \mathbf{P}^T \mathbf{J}^{n+1}(\mathbf{V}\mathbf{y})$
- Construct offline the small-dimensional matrix $\mathbf{A} = \left(\mathbf{P}^{T}\mathbf{V}_{r}\right)^{\dagger}$
- Solve at each *j*-th Gauss-Newton iteration of tⁿ⁺¹ the least-squares problem

$$\Delta \mathbf{y}^{(j)} = \underset{\mathbf{z} \in \mathbb{R}^{k}}{\operatorname{argmin}} \left\| \mathbf{A} \mathbf{P}^{\mathsf{T}} \mathbf{J}^{n+1} \left(\mathbf{V} \mathbf{y}^{(j)} \right) \mathbf{V} \mathbf{z} + \mathbf{A} \mathbf{P}^{\mathsf{T}} \mathbf{r}^{n+1} \left(\mathbf{V} \mathbf{y}^{(j)} \right) \right\|_{2}$$

-Hyperreduction Methods

Gauss-Newton with Approximated Tensors

- GNAT (Gauss-Newton with Approximated Tensors) = Gauss-Newton + gappy POD
- Minimization problem

$$\min_{\mathbf{y}\in\mathbb{R}^{k}}\left\|\left(\mathbf{P}^{\mathsf{T}}\mathbf{V}_{\mathsf{r}}\right)^{\dagger}\mathbf{P}^{\mathsf{T}}\mathbf{r}^{n+1}(\mathbf{V}\mathbf{y})\right\|_{2}$$

- Jacobian: $\widehat{\mathbf{J}}(\mathbf{y}) = \left(\mathbf{P}^T \mathbf{V}_r\right)^{\dagger} \mathbf{P}^T \mathbf{J}^{n+1}(\mathbf{V}\mathbf{y})$
- Construct offline the small-dimensional matrix $\mathbf{A} = (\mathbf{P}^T \mathbf{V}_r)^{\dagger}$
- Solve at each *j*-th Gauss-Newton iteration of tⁿ⁺¹ the least-squares problem

$$\Delta \mathbf{y}^{(j)} = \underset{\mathbf{z} \in \mathbb{R}^{k}}{\operatorname{argmin}} \left\| \mathbf{A} \mathbf{P}^{T} \mathbf{J}^{n+1} \left(\mathbf{V} \mathbf{y}^{(j)} \right) \mathbf{V} \mathbf{z} + \mathbf{A} \mathbf{P}^{T} \mathbf{r}^{n+1} \left(\mathbf{V} \mathbf{y}^{(j)} \right) \right\|_{2}$$

Compute the GNAT solution using QR

$$\mathbf{A}\mathbf{P}^{T}\mathbf{J}^{n+1}\left(\mathbf{V}\mathbf{y}^{(j)}\right)\mathbf{V} = \mathbf{Q}^{(j)}\mathbf{R}^{(j)}$$
$$\Delta\mathbf{y}^{(j)} = -\left(\mathbf{R}^{(j)}\right)^{-1}\left(\mathbf{Q}^{(j)}\right)^{T}\mathbf{A}\mathbf{P}^{T}\mathbf{r}^{n+1}\left(\mathbf{V}\mathbf{y}^{(j)}\right)$$

-Hyperreduction Methods

Gauss-Newton with Approximated Tensors

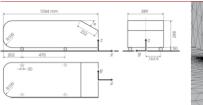
 Further developments (see the references by: Carlberg, Farhat, Cortial, Amsallem; Carlberg, Bou-Mosleh, Farhat; and Amsallem, Zahr, Farhat)

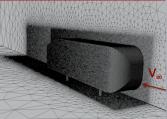
- concept of a reduced mesh
- concept of an output mesh
- error bounds
- GNAT using local reduced-order bases

-Hyperreduction Methods

└─Application: Compressible Navier-Stokes Equations

- Turbulent flow past the Ahmed body (CFD benchmark in the automotive industry)
- 3D compressible Navier-Stokes equations with turbulence modeling (Spalart-Allmaras)
- $N = 1.73 \times 10^7$
- $Re = 4.48 \times 10^6$, $M_{\infty} = 0.175$ (216km/h)

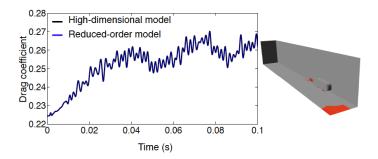




-Hyperreduction Methods

Application: Compressible Navier-Stokes Equations

PMOR: POD + GNAT, k = 283, $k_f = 1,514$, and $k_i = 2,268$



Method	CPU	Number	Relative
	Time	of CPUs	Error
HDM	13.28 h	512	-
PROM (GNAT)	3.88 h	4	0.68%

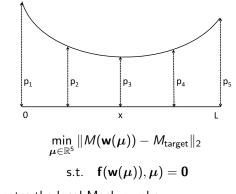
39 / 64

-Hyperreduction Methods

└─Application: Design Optimization of a Nozzle

- HDM: N = 2,048 and m = 5 shape parameters
- PMOR: POD + DEIM: k = 8, $k_f = 20$, and $k_i = 20$

Parameterized steady-state problem

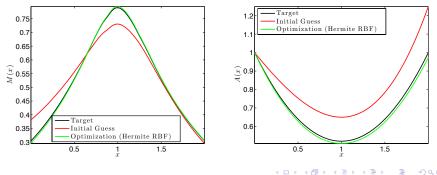


where M denotes the local Mach number

-Hyperreduction Methods

Application: Design Optimization of a Nozzle

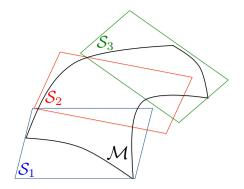
Method	Offline	Online	Total
	CPU Time	CPU Time	CPU Time
HDM	_	78.8 s	78.8 s
PROM (DEIM)	5.08 s	4.87 s	9.96 s



Local Approaches

Local Approximation of the State

- Approximating the solution manifold *M* by a single subspace *S* can lead to a large-dimensional subspace
- Idea: Approximate \mathcal{M} using local subspaces $\{\mathcal{S}_l\}_{i=1}^{L}$



Local Approaches

- Local Approximation of the State
 - In practice, the local approximation of the state takes place at the fully discrete level
 - Each local subspace S₁ is associated with a pre-computed local ROB
 V₁
 - At each time-step n, the state \mathbf{w}^n is computed as

$$\mathbf{w}^n = \mathbf{w}^{n-1} + \Delta \mathbf{w}^n$$

The increment $\Delta \mathbf{w}^n$ is then approximated in a subspace $S_{I,n} = \operatorname{range}(\mathbf{V}_{I,n})$ as

$$\Delta \mathbf{w}^n pprox \mathbf{V}_{l,n} \widetilde{\mathbf{q}}^n$$

- The choice of the pre-computed reduced-order basis **V**_{*l*,*n*} is specified later
- By induction, the state \mathbf{w}^n is computed as

$$\mathbf{w}^{n} = \mathbf{w}^{0} + \sum_{i=1}^{n} \mathbf{V}_{i,i} \widetilde{\mathbf{q}}^{n}$$

Local Approaches

- Local Approximation of the State
 - The state **w**ⁿ is computed as

$$\mathbf{w}^n = \mathbf{w}^0 + \sum_{i=1}^n \mathbf{V}_{l,i} \widetilde{\mathbf{q}}^n$$

 In practice, the ROBs {V_{1,i}}ⁿ_{i=1} are chosen among a finite set of pre-computed local ROBs {V₁}^L_{i=1}

Hence

$$\mathbf{w}^n = \mathbf{w}^0 + \sum_{l=1}^L \mathbf{V}_l \mathbf{q}_l^n$$

This shows that

$$\mathbf{w}^n \in \mathbf{w}^0 + \operatorname{range}([\mathbf{V}_1 \quad \cdots \quad \mathbf{V}_L])$$

Note that each local ROB can be of a different dimension

 $\mathbf{V}_{l} \in \mathbb{R}^{N \times k_{l}}$

イロン 不良 とくほど 不良 とうほう

Local Approaches

Construction of the Local ROBs

- Intuitively, a given local subspace S₁ should approximate only a portion of the solution manifold M
- The solution manifold is a subset of the solution space \mathbb{R}^N

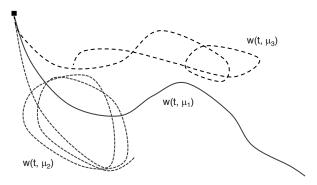
$\mathcal{M} \subset \mathbb{R}^{N}$

- The solution space ℝ^N is partitioned into L subdomains, where each subdomain is associated with a local approximation subspace S_I = range(V_I)
- In practice, a set of solution snapshots {w_i}^{N_s}_{i=1} can be partitioned into L subsets using the k-means clustering algorithm
- This leads to a Voronoi tessellation of \mathbb{R}^N
- The k-means clustering algorithm is distance-dependent
- After clustering, each snapshot subset can be compressed into a local ROB, for example, using POD

Local Approaches

Construction of the Local ROBs

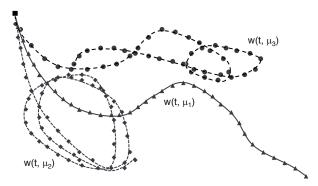
Local ROBs construction procedure



Local Approaches

Construction of the Local ROBs

Local ROBs construction procedure

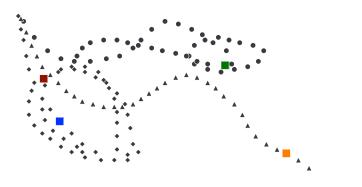


Local Approaches

Construction of the Local ROBs

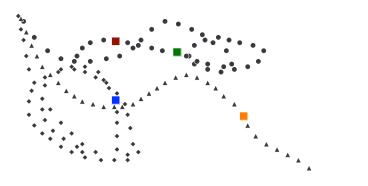
Local Approaches

Construction of the Local ROBs



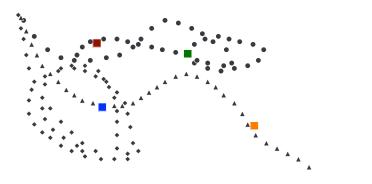
Local Approaches

Construction of the Local ROBs



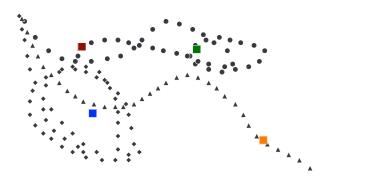
Local Approaches

Construction of the Local ROBs



Local Approaches

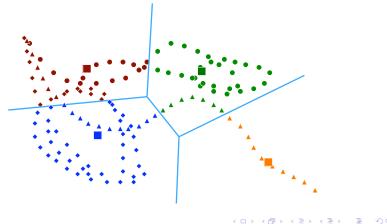
Construction of the Local ROBs



Local Approaches

Construction of the Local ROBs

Local ROBs construction procedure

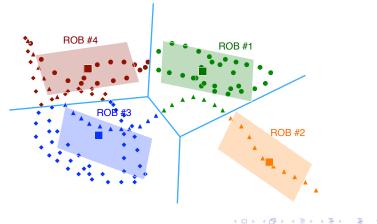


53/64

Local Approaches

Construction of the Local ROBs

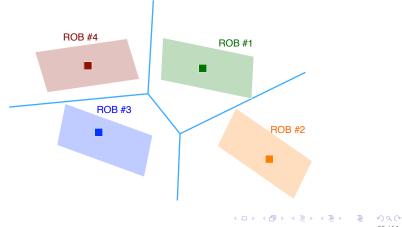
Local ROBs construction procedure



54 / 64

Local Approaches

Construction of the Local ROBs



55 / 64

Local Approaches

└Online Selection of the Local ROB

- Online, at time-step n, a pre-computed local ROB $\mathbf{V}_{l,n}$ must be chosen
- The selection is based on the current location of wⁿ⁻¹ on the solution manifold M
- The local approximation subspace is selected as that associated with the cluster whose center is the closest to \mathbf{w}^{n-1}

$$I, n = \underset{I \in \{1, \dots, L\}}{\operatorname{argmin}} d\left(\mathbf{w}^{n-1}, \mathbf{w}_{I}^{c}\right)$$

Consider the case of the distance based on a weighted Euclidian norm

$$d(\mathbf{w}, \mathbf{z}) = \|\mathbf{w} - \mathbf{z}\|_{\mathbf{H}} = \sqrt{(\mathbf{w} - \mathbf{z})^T \mathbf{H} (\mathbf{w} - \mathbf{z})}$$

where $\mathbf{H} \in \mathbb{R}^{N \times N}$ is a symmetric positive definite matrix

<ロト < 団 > < 臣 > < 臣 > 差 う Q () 56 / 64

Local Approaches

└Online Selection of the Local ROB

Choice of the local approximation subspace at time-step n

$$I, n = \operatorname*{argmin}_{I \in \{1, \cdots, L\}} d(\mathbf{w}^{n-1}, \mathbf{w}_{I}^{c})$$

- For a distance based on a weighted Euclidian norm, the solution of the above problem can be computed efficiently at a cost that does not depend on the large dimension N
- To show this, consider the special form of the solution

$$\mathbf{w}^{n-1} = \mathbf{w}^0 + \sum_{l=1}^L \mathbf{V}_l \mathbf{q}_l^{n-1}$$

■ Then, one needs to compare the distances $d(\mathbf{w}^{n-1}, \mathbf{w}_l^{c_i})$ and $d(\mathbf{w}^{n-1}, \mathbf{w}_l^{c_j})$ for $1 \le i \ne j \le L$

Local Approaches

└Online Selection of the Local ROB

• The two distances $d(\mathbf{w}^{n-1}, \mathbf{w}_{l}^{c_{i}})$ and $d(\mathbf{w}^{n-1}, \mathbf{w}_{l}^{c_{j}})$ can be compared as follows

$$\begin{split} \Delta_{i,j} &= d \left(\mathbf{w}^{n-1}, \mathbf{w}_{l}^{c_{i}} \right)^{2} - d \left(\mathbf{w}^{n-1}, \mathbf{w}_{l}^{c_{j}} \right)^{2} \\ &= \left\| \mathbf{w}^{n-1} - \mathbf{w}_{l}^{c_{i}} \right\|_{\mathsf{H}}^{2} - \left\| \mathbf{w}^{n-1} - \mathbf{w}_{l}^{c_{j}} \right\|_{\mathsf{H}}^{2} \\ &= \left\| \sum_{l=1}^{L} \mathbf{V}_{l} \mathbf{q}_{l}^{n-1} \right\|_{\mathsf{H}}^{2} + \left\| \mathbf{w}_{l}^{c_{i}} - \mathbf{w}^{0} \right\|_{\mathsf{H}}^{2} - 2 \sum_{l=1}^{L} \left[\mathbf{w}^{c_{i}} \right]^{T} \mathbf{V}_{l} \mathbf{q}_{l}^{n-1} \\ &- \left\| \sum_{l=1}^{L} \mathbf{V}_{l} \mathbf{q}_{l}^{n-1} \right\|_{\mathsf{H}}^{2} - \left\| \mathbf{w}_{l}^{c_{j}} - \mathbf{w}^{0} \right\|_{\mathsf{H}}^{2} + 2 \sum_{l=1}^{L} \left[\mathbf{w}^{c_{j}} \right]^{T} \mathbf{V}_{l} \mathbf{q}_{l}^{n-1} \\ &= \left\| \mathbf{w}_{l}^{c_{i}} - \mathbf{w}^{0} \right\|_{\mathsf{H}}^{2} - \left\| \mathbf{w}_{l}^{c_{j}} - \mathbf{w}^{0} \right\|_{\mathsf{H}}^{2} + 2 \sum_{l=1}^{L} \left[\mathbf{w}^{c_{i}} - \mathbf{w}^{c_{j}} \right]^{T} \mathbf{V}_{l} \mathbf{q}_{l}^{n-1} \end{split}$$

■ The following small quantities can be pre-computed offline and used online to compute economically Δ_{i,j}, 1 ≤ i ≠ j ≤ L

$$\mathbf{a}_{i,j} = \left\|\mathbf{w}_{i}^{c_{i}} - \mathbf{w}^{0}\right\|_{\mathbf{H}}^{2} - \left\|\mathbf{w}_{i}^{c_{j}} - \mathbf{w}^{0}\right\|_{\mathbf{H}}^{2} \in \mathbb{R}, \ \mathbf{g}_{i,j} = \left[\mathbf{w}_{i}^{c_{j}} \rightarrow \mathbf{w}^{c_{j}}\right]_{*}^{T} \mathbf{V}_{\mathbf{f}} \in \mathbb{R}^{k_{i}} \xrightarrow{\mathfrak{s}_{i} < \mathfrak{s}_{i}} \mathbb{R}^{k_{i}}$$

Local Approaches

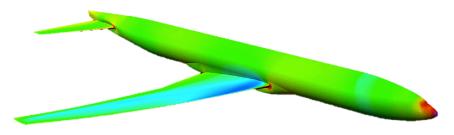
Extension to Hyperreduction

- The local approach to nonlinear PMOR can be easily extended to hyperreduction as follows
 - hyperreduction is applied independently to each cluster of snapshots
 - It leads to the definition of
 - the local ROBs for the state: V_I , $I = 1, \cdots, L$
 - **\blacksquare** the local ROBs for the residual: $\mathbf{V}_{\mathbf{r},l}, \ l=1,\cdots,L$
 - the local masks: $\mathcal{I}_I, I = 1, \cdots, L$
- The choice of the local ROBs and masks is still dictated by the location of the current time-iterate in the state space

Local Approaches

└- Application

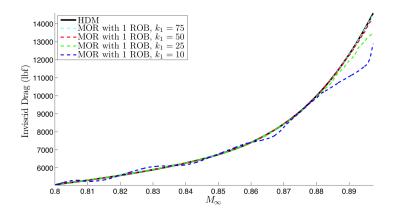
- Flow past the NASA CRM (Common Research Model) (CFD benchmark in the aeronautical industry)
- 3D compressible Euler equations
- $N = 3.1 \times 10^{6}$
- Constant acceleration of 2.5 m/s², from $M_\infty = 0.8$ to $M_\infty = 0.9$



Local Approaches

└- Application

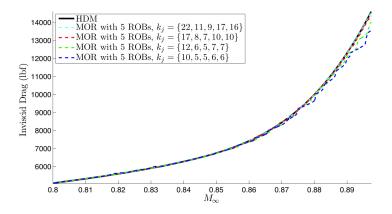
PMOR using a global ROB



Local Approaches

└- Application

PMOR using 5 local ROBs



• Very good accuracy can be obtained with $k_l \le 17$ as opposed to k = 50 with a global ROB

62 / 64

Э

References

- M. Rewienski, J. White. Model order reduction for nonlinear dynamical systems based on trajectory piecewise-linear approximations. Linear Algebra and its Applications 2006; 415(2-3):426-454.
- R. Everson, L. Sirovich. Karhunen–Loeve procedure for gappy data. Journal of the Optical Society of America A 1995; 12(8):1657–1664.
- M. Barrault et al. An empirical interpolation method: application to efficient reduced basis discretization of partial differential equations. Comptes Rendus de lAcademie des Sciences Paris 2004; 339:667–672.
- K. Willcox. Unsteady flow sensing and estimation via the gappy proper orthogonal decomposition. Computers and Fluids 2006; 35:208–226.
- S. Chaturantabut, D.C. Sorensen. Nonlinear model reduction via Discrete Empirical Interpolation. SIAM Journal on Scientific Computing 2010; 32:2737–2764.

References

- K. Carlberg, C. Farhat, J. Cortial, D. Amsallem. The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows. Journal of Computational Physics 2013; 242:623–647.
- K. Carlberg, C. Bou-Mosleh, C. Farhat. Efficient nonlinear model reduction via a least-squares Petrov–Galerkin projection and compressive tensor approximations. International Journal for Numerical Methods in Engineering 2011; 86(2):155–181.
- D. Amsallem, M. Zahr, Y. Choi, C. Farhat. Design optimization using hyperreduced-order models. Structural and Multidisciplinary Optimization 2015; 51:919–940.
- D. Amsallem, M. Zahr, C. Farhat. Nonlinear model reduction based on local reduced order bases. International Journal for Numerical Methods in Engineering 2012; 92(12):891-916.
- K. Washabaugh, M. Zahr, C. Farhat, On the use of discrete nonlinear reduced-order models for the prediction of steady-state flows past parametrically deformed complex geometries.
 AIAA-2016-1814, AIAA SciTech 2016, San Diego, CA, January 4-8, 2016.