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AA216/CME345: MODEL REDUCTION
|—Nested Approximations
L Nonlinear HDM

m HDM of interest

Mitu) = Fwle ().t p)
y(tin) = g(w(t;p),u(t),t;p)

w € RY: Vector of state variables

u € RP: Vector of input variables — typically, p < N

y € R Vector of output variables — typically, g < N

p € R™: Vector of parameter variables — typically, m < N
f: Nonlinear function

m Usually, there is no closed form solution for w(t; p)



AA216/CME345: MODEL REDUCTION
|—Nested Approximations
LModel Order Reduction by Petrov-Galerkin Projection

m Approximation of the state using a right ROB
w(t; p) ~ W(t; p) = Va(t; p)
m Resulting nonlinear ODE

V%(ﬂ p) = f(Va(t; p),u(t), t; ) + r(t; p)

m Enforcement of the orthogonality of the residual r to a left ROB W

WV I 1) = WTH(Va(t; ), u(t), £ 1)

m If W'V is nonsingular, the above equation can be re-written as

dq

7 (G1) = (WTV)IWTE(Va(t; p), u(t), £ )
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|—Nested Approximations
LComputational Bottleneck

m Petrov-Galerkin PROM

%(t; p) = (WTv)—le f(Vaq(t; p),u(t), t; u)

kxN Nx1
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AA216/CME345: MODEL REDUCTION
|—Nested Approximations
LComputational Bottleneck

m Petrov-Galerkin PROM

dq

() = W)W f(Vq(t; ), u(t), t; )

kxN Nx1

m k equations with k unknowns
m For a given reduced state vector q(t; ), the evaluation of
fi(a(t; p),u(t), t, 1) = (WTV)'WTF(Va(t; p), u(t), t; p) at a
given time t and a given parameter vector p can be performed in 3
steps as follows
compute w(t; u) = Vq(t;
H evaluate f(Vq(t; ), u(t),
H left-multiply the result b
(WTV)"'WTf(Vq(t), t)

1)

D)
t;
(WTV)"'WT to obtain
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|—Nested Approximations
LComputational Bottleneck

m Petrov-Galerkin PROM

991, ) = (WTV) W F(Va(t; 1) u(2). £ 1)

kxN Nx1

m k equations with k unknowns
m For a given reduced state vector q(t; ), the evaluation of
fi(a(t; p),u(t), t, 1) = (WTV)'WTF(Va(t; p), u(t), t; p) at a
given time t and a given parameter vector p can be performed in 3
steps as follows
compute w(t; u) = Vq(t;
H evaluate f(Vq(t; ), u(t),
H left-multiply the result b
(WTV)"'WTf(Vq(t), t)
m The computational cost associated with the three steps described
above scales linearly with the dimension N of the HDM

1)

D)
t;
(WTV)"'WT to obtain



AA216/CME345: MODEL REDUCTION
|—Nested Approximations
LComputational Bottleneck

m Petrov-Galerkin PROM

%(t; p) = (WTv)—le f(Vaq(t; p),u(t), t; u)

kxN Nx1

m k equations with k unknowns
m For a given reduced state vector q(t; ), the evaluation of
fi(a(t; p),u(t), t, 1) = (WTV)'WTF(Va(t; p), u(t), t; p) at a
given time t and a given parameter vector p can be performed in 3
steps as follows
compute w(t; u) = Vq(t; pn)
H evaluate f(Vq(t; ), u(t), t; p)
left-multiply the result by (W™V)~'WT to obtain
(WTV)"'WTf(Vq(t), t)
m The computational cost associated with the three steps described
above scales linearly with the dimension N of the HDM
m Hence, for nonlinear problems, dimensional reduction as described so
far does not necessarily lead to significant CPU time reduction
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|—Nested Approximations

LFunction Approximations

m In this case, an additional level of approximation is required to
ensure that the online cost associated with solving the reduced
nonlinear equations does not scale with the dimension N of the HDM

m This leads to nested approximations

m state approximation
m nonlinear function approximation (approximate-then-project) or
projection approximation (project-then-approximate <— new!)

m There are two main classes of nonlinear function approximations

m linearization approaches (TPWL, ManiMOR,...)
m hyperreduction approaches (DEIM, ECSW, GNAT,...)
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L Trajectory PieceWise Linear (TPWL) Method

LLinear Approximation of Governing Nonlinear Function

m Consider a nonlinear HDM of the form

dw
I(t) = f(w(t)) + Bu(t)

m stationary system
m no parametric dependence for now
m separable linear input
m For linear HDMs, reduced-order operators of the type

A =(W'V)"'wTAav

can be pre-computed offline once for all
m Idea: linearize f around an operating point w;

f(w) ~ f(wy) + g—‘:l(wl)(w —wy) = f(wy) + A(wy)(w — wy)

m Then, the resulting approximated system is linear in the state w(t)

D (1)~ Alw)w(t) + Bu(t) + f(wa) — Alw)wi
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L Trajectory PieceWise Linear (TPWL) Method
LProjection—Based Model Order Reduction

m Approximated HDM system

dw

E(t) ~ A(wq)w(t) + Bu(t) + f(wy) — A(wy)wy

m Reduced-order system after Petrov-Galerkin projection

d _
6 = (WY)W A(w)Va(t)
+(WTV)'WT (Bu(t) + f(w;) — A(w;)wy)
m The following linear time-invariant operators can be pre-computed
B A =(W'V)IWTA(w; )V € RF¥

= B, = (W'V)'W'B ¢ R¥*P
m F, = (W'V)'WT (f(w1) — A(wi)w;) € R
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L Trajectory PieceWise Linear (TPWL) Method

LPiecewise Linear Approximation of Governing Nonlinear Function

m ldea: Linearize the nonlinear function at multiple locations in the
state space
m Extend the domain of validity of the linearization assumptions

m Approximated high-dimensional dynamical system

dw
E(f)

Q

Zw;(w(t))(f(w/) + Aj(w(t) — w;)) + Bu(t)

y(t) = g(w(t)u(t),t)

m the s points {w;};_; are linearization points
m the s coefficients {w;}i_; are weights such that

Zw;(w) =1, v'w e R"
i=1
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L Trajectory PieceWise Linear (TPWL) Method
LProjection—Based Model Order Reduction

m For simplicity, assume W7V = I;: In this case, the PROM obtained
via Petrov-Galerkin projection is

dq

- = Zw, £))(WTf(w,;) + WTA;(Vq(t) — w;)) + W' Bu(t)
y(t) = (Vq( ), u(t), 1)
where

S
Y Gi(@) =1, vq € R*

m Equivalently

d s s
Z® ( w,(q(r))A,,> a(t) + <Zw,<q( ))) F, + Bou(t)
i=1 i=1
B A, =W/AV, i=1-s
" B,.=W'B
mF,=W'(f(w))—Aw;), i=1,-- s
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L Trajectory PieceWise Linear (TPWL) Method
LProjection-Based Model Order Reduction

m In this context, a complete Projection-based Model Order Reduction
(PMOR) method should incorporate algorithms for
m selecting the linearization points {w;}i_;
m selecting the ROBs V and W
m determining the weights {©;(q)}5_;, Vq € R*
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L Trajectory PieceWise Linear (TPWL) Method

LSelection of the Linearization Points

m Note that each linear approximation of the nonlinear function f is
valid only in a neighborhood of each w;

m Note also that, in practice, it is impossible to cover the entire
state-space R" by local linear approximations
m The Trajectory PieceWise Linear (TPWL) PMOR method (2001)
m uses pre-computed trajectories of the HDM (offline) to select the
linearization regions
m selects an additional linearization point from the HDM trajectory if it
is sufficiently far away from the previously selected points

12/64



AA216/CME345: MODEL REDUCTION
L Trajectory PieceWise Linear (TPWL) Method
L Selection of the ROBs

m Possible methods for constructing a global basis V include

m if the input function is linear in u, constructing Krylov subspaces
Ki = K(A; ', A;'B) = range(V,) at each linearization point w; and
assembling a global basis V such that

range(V) = range ([V1 -+ V4])

m ad-hoc methods (Balanced truncation, POD...)

m The left ROB W can be chosen based on the output of interest
(two-sided Krylov moment matching), or simply as W = V (Galerkin
projection)
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L Trajectory PieceWise Linear (TPWL) Method
L Determination of the Weights {w;}

m The weights are used to characterize in the reduced space R¥ the
distance of the current point q(t) to the projection of the
linearization points onto range(V) — that is,

fa

- (vTv)*lva,}f

one possible choice is

i=1

d?
B exp (7 f:nzl )

@i(q) = S 7 a2\
> exp (— = )
j=1

where 3 is a constant, di = ||q — q;|]2, and m = min;_; dj
other choices can be found in the literature
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L Trajectory PieceWise Linear (TPWL) Method

LFurther Developments

m A posteriori error estimators are available when f is negative
monotone

m Stability guarantee is possible under some assumptions on f and
specific choices for V and the weights {&;(q)}3_;

m Passivity preservation (i.e. no energy creation in a passive system) is
possible under similar assumptions

m TPWL using local ROBs (ManiMOR)

/64
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L Trajectory PieceWise Linear (TPWL) Method
L Analysis of the TPWL Method

Weaknesses

Strengths

m The cost of the online phase
does not scale with the size
N of the HDM
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L Trajectory PieceWise Linear (TPWL) Method
L Analysis of the TPWL Method

Weaknesses

m It is essential to choose good

Strengths . . . .
—_— linearization points offline

m The cost of the online phase
does not scale with the size
N of the HDM

m The online phase is not
software-intrusive

m Requires the extraction of
Jacobians from the HDM
software

m Many parameters to adjust
(number of linearization
points, weights, ...)
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I—Hyperreduction Methods
L Background: The Gappy POD Method

m First applied to face recognition (Emerson and Sirovich,
“Karhunen-Loeve Procedure for Gappy Data”, 1996)

17/ 64



AA216/CME345: MODEL REDUCTION
I—Hyperreduction Methods
L Background: The Gappy POD Method

m First applied to face recognition (Emerson and Sirovich,
“Karhunen-Loeve Procedure for Gappy Data”, 1996)
m Other applications

m flow sensing and estimation
m flow (approximate) reconstruction
m nonlinear model order reduction
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I—Hyperreduction Methods

L Background: The Gappy POD Method

m Face recognition

Procedure
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I—Hyperreduction Methods
L Background: The Gappy POD Method

m Face recognition

Procedure

build a database of Ns faces
(snapshots)

Fig. 1. Reconstruction of a
from a 10% mask. The recs
with, i

ina. The original face is show
the pixels) of the face onto 50 em)
ind
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m Face recognition
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(snapshots)
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I—Hyperreduction Methods
L Background: The Gappy POD Method

m Face recognition

Procedure

build a database of Ns faces
(snapshots)

construct a POD basis Vs for
the database

for a new face f, record a small
number k; of pixels f;, - - 7fik,

A using the POD basis V¥,
approximately reconstruct the

new face f (in the least-squares
sense)

ce is shown in c, and &

ina. The original fa P
the pixels) of the face onto 50 empirical cigenf:
ind
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I—Hyperreduction Methods
LNonlinear Function Approximation by Gappy POD
m The gappy approach can also be used to approximate the nonlinear
function f in the reduced equations
dq
dt
(for simplicity, the input function u(t) is not considered here)

(t) = WTf(Vq(t), t)
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m The gappy approach can also be used to approximate the nonlinear
function f in the reduced equations

dq

dt

(for simplicity, the input function u(t) is not considered here)
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(scales with N)

(t) = WTf(Vq(t), t)
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AA216/CME345: MODEL REDUCTION
I—Hyperreduction Methods
LNonlinear Function Approximation by Gappy POD

m The gappy approach can also be used to approximate the nonlinear
function f in the reduced equations
dq
dt
(for simplicity, the input function u(t) is not considered here)
m The evaluation of all entries of f(-, t) is computationally intensive
(scales with N)
m Gappy approach
m evaluate only a small subset of these entries
m pre-compute a ROB V§ and use it to approximately reconstruct all
other entries by interpolation or a least-squares strategy

(t) = WTf(Vq(t), t)
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I—Hyperreduction Methods
LNonlinear Function Approximation by Gappy POD

m A complete PMOR method based on the Gappy approach for
hyperreduction should then provide algorithms for

m selecting the evaluation entries Z = {i, - , ik}
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I—Hyperreduction Methods
LNonlinear Function Approximation by Gappy POD

m A complete PMOR method based on the Gappy approach for
hyperreduction should then provide algorithms for
m selecting the evaluation entries Z = {i, - , ik}
m pre-computing a ROB V¢ for the nonlinear function f
m approximately reconstructing the nonlinear function at all its other
entries = f(-, )

20/ 64
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I—Hyperreduction Methods
L Construction of a POD Basis for f

m Construction of a POD basis V¢ of dimension k¢

collect snapshots for the nonlinear function f from one or several
transient simulations

F=[F(w(t).t) - F(W(tm), tn)] € RV
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I—Hyperreduction Methods
L Construction of a POD Basis for f

m Construction of a POD basis V¢ of dimension k¢

collect snapshots for the nonlinear function f from one or several
transient simulations

F=[f(w(t).t) - F(W(tm), tn)] € RY™
HA compute a thin SVD
F=UxeZ/

construct a ROB of dimension ks < m¢ as the set of first k¢ vectors
in Us (truncation)
Ve=lurs -+ ug ]
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I—Hyperreduction Methods

LApproximate Reconstruction of a Nonlinear Function

m Assume for now that k; indices (entries of f) have been chosen (see
later for how to choose these indices)

I:{,'l’... 7ik,'}
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I—Hyperreduction Methods

LApproximate Reconstruction of a Nonlinear Function

m Assume for now that k; indices (entries of f) have been chosen (see
later for how to choose these indices)

Z={i, i}

m Consider the N x k; “mask” matrix

P: |:e’1 “ e eik,v:|
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I—Hyperreduction Methods

LApproximate Reconstruction of a Nonlinear Function

m Assume for now that k; indices (entries of f) have been chosen (see
later for how to choose these indices)

T={i, ik}
m Consider the N x k; “mask” matrix
P: |:e’1 “ e eik,v:|

m At each time t, given a value of the state approximation
w(t) = Vq(t), evaluate only those entries of f corresponding to the
above indices

fiy (W(t), t)
: = PTf(W(t),t)
fi,, (W(t), t)
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I—Hyperreduction Methods

LApproximate Reconstruction of a Nonlinear Function

m Assume for now that k; indices (entries of f) have been chosen (see
later for how to choose these indices)

T={i, ik}
m Consider the N x k; “mask” matrix
P: |:e’1 “ e eik,v:|

m At each time t, given a value of the state approximation
w(t) = Vq(t), evaluate only those entries of f corresponding to the
above indices

fi,(W(t), t)
: = PTf(W(t), )

fi, (W(t), t)
m This is computationally economical if k; < N

m Usually, only a subset of the entries of W(t) are required to
construct the above vector (case of a sparse Jacobian)
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I—Hyperreduction Methods
L Discrete Empirical Interpolation Method (DEIM)

m Case where k; = k¢ = interpolation
m idea: (W, t) =fi(W,t), We e RY, Vj=1,--- K
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m idea: (W, t) =fi(W,t), We e RY, Vj=1,--- K
m this means that

PTR(W(t), t) = PTF(W(¢), t)
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I—Hyperreduction Methods
L Discrete Empirical Interpolation Method (DEIM)

m Case where k; = k¢ = interpolation
m idea: (W, t) =fi(W,t), We e RY, Vj=1,--- K
m this means that

PTi(W(t), t) = PTF(W(t), t)
m recalling that f(-, t) belongs to the range of V¢ — that is,
f(Vq(t), t) = Vif(q(t), t), where f,(q(t), t) € R
it follows that
PTVif, (a(t), ) = PTf(Va(t), t)
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I—Hyperreduction Methods
L Discrete Empirical Interpolation Method (DEIM)

m Case where k; = k¢ = interpolation
m idea: (W, t) =fi(W,t), We e RY, Vj=1,--- K
m this means that

PTi(W(t), t) = PTF(W(t), t)
m recalling that f(-, t) belongs to the range of V¢ — that is,
f(Vq(t), t) = Vif(q(t), t), where f,(q(t), t) € R
it follows that
PTVif.(a(t), t) = PTf(Va(1), 1)
m assuming that P7 V¢ is nonsingular

= fr(a(t),t) = (P"V)) 'PT(Va(t), t)
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L Discrete Empirical Interpolation Method (DEIM)

m Case where k; = k¢ = interpolation
m idea: (W, t) =fi(W,t), We e RY, Vj=1,--- K
m this means that

PTi(W(t), t) = PTF(W(t), t)
m recalling that f(-, t) belongs to the range of V¢ — that is,
f(Vq(t), t) = Vif(q(t), t), where f,(q(t), t) € R
it follows that
PTVif.(a(t), t) = PTf(Va(1), 1)
m assuming that P7 V¢ is nonsingular
— f,(a(t),t) = (PTV,) *PTF(Vq(t), 1)

m hence, the high-dimensional nonlinear function f”(~, t) is interpolated
as follows

f(, 1) = Ve(PTVE)T'PTE(-, t) = Ny, pf(-, t)
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I—Hyperreduction Methods
L Discrete Empirical Interpolation Method (DEIM)

m Case where k; = k¢ = interpolation

idea: f,(W,t) = f,(W,t), W e R", ¥j=1,--- ki
this means that

PTi(W(t), t) = PTF(W(t), t)
recalling that f(-, t) belongs to the range of Vi — that is,
f(Vq(t), t) = Vif(q(t), t), where f,(q(t), t) € R
it follows that
PTVif.(a(t), t) = PTf(Va(1), 1)
assuming that P Vs is nonsingular
— f,(a(t),t) = (PTV,) *PTF(Vq(t), 1)

hence, the high-dimensional nonlinear function f”(~, t) is interpolated
as follows

f(, 1) = Ve(PTVE)T'PTE(-, t) = Ny, pf(-, t)

interpretation: the Discrete Empirical Interpolation Method (DEIM)
is an oblique projection of the high-dimensional nonlinear
vector-valued function
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I—Hyperreduction Methods

LOblique Projection of the High-Dimensional Nonlinear Vector

f(-,t) = Ve(PTVE)IPTH(-, t) = Ny, pf(-, t)

m Recall that My w = V(WTV)~!WT is the oblique projector onto V,
orthogonally to W
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I—Hyperreduction Methods

LLeast-Squares Reconstruction

m Case where k; > kf = least-squares reconstruction
m idea: fi(W,t) = fi (W, t), VW € RY, Vj=1,--- N

/64



AA216/CME345: MODEL REDUCTION
I—Hyperreduction Methods
LLeast-Squares Reconstruction
m Case where k; > kf = least-squares reconstruction
m idea: (W, t) ~ fi(W,t), W e R, Vj=1,--- /N
m this leads to the minimization problem

f.(a(t), t) = argmin |P"Vry, — PTf(Va(t), t)]|2

yr ERKF
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I—Hyperreduction Methods
LLeast-Squares Reconstruction
m Case where k; > kf = least-squares reconstruction
m idea: (W, t) ~ fi(W,t), W e R, Vj=1,--- /N
m this leads to the minimization problem
f(a(t), t) = argmin [P Viy, — PTf(Va(t), t)]>
yr ERKF

m note that M = PV € RF*k s 5 skinny matrix
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I—Hyperreduction Methods
LLeast-Squares Reconstruction
m Case where k; > kf = least-squares reconstruction
m idea: (W, t) ~ fi(W,t), W e R, Vj=1,--- /N
m this leads to the minimization problem

f.(a(t), t) = argmin |P"Vry, — PTf(Va(t), t)]|2

yr ERKF

m note that M = PV € RF*k s 5 skinny matrix
m its singular value decomposition can be written as

M=Uxz’
m then, the left inverse of M ((M"M)~'M7) is given by
M’ =zx'u’
where X' = diag( —,0,---,0) if

o’ o,
¥ = diag(o1, - ,0,,0,--+,0), where 01 > -0, >0
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I—Hyperreduction Methods
LLeast-Squares Reconstruction
m Case where k; > kf = least-squares reconstruction
m idea: (W, t) ~ fi(W,t), W e R, Vj=1,--- /N
m this leads to the minimization problem

f.(a(t), t) = argmin |P"Vry, — PTf(Va(t), t)]|2

yr ERKF

m note that M = PV € RF*k s 5 skinny matrix
m its singular value decomposition can be written as

M=uxz’
m then, the left inverse of M ((M"M)~'M7) is given by
Mf =zxtu’
where X' = diag(—, -+, —,0,---,0) if
g1 Or
¥ =diag(o1, - ,0,,0,--+,0), where 61 > -0, >0
m and therefore
A 1
fa(0,0) = Vi (PTVf) PTH(Va(t), 1)

V¢ (zzTUT) PTF(Vq(t), t)
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I—Hyperreduction Methods
LGreedy Function Sampling

m The selection of the indices in Z takes place after the matrix
Ve =|[ve1 - - Vg has been computed using, for example, POD
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I—Hyperreduction Methods
LGreedy Function Sampling

m The selection of the indices in Z takes place after the matrix
Ve =|[ve1 - - Vg has been computed using, for example, POD
m Greedy algorithm
o [s, 1] = max{|vs 1|}
: Vf = [Vf71], P= [e,-l]
: for | =2 : ks do
solve PTV¢c = Pva_’/ for c
r=vg, — Vic
s, il = max{rl}
Vf = [Vf7\lf,[], P= [P, e,-,]
end for

[y

e A
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I—Hyperreduction Methods
LAnalysis of the Hyperreduction Method DEIM

Strengths

m The cost of the online phase Weaknesses
does not scale with the size
N of the HDM
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LAnalysis of the Hyperreduction Method DEIM

Strengths
m The cost of the online phase Weaknesses
does not scale with the size = The online phase is
N of the HDM P

software-intrusive
m The hyperreduced function is

usually robust with respect to
deviations from the original
training trajectory

m Many parameters to adjust
(ROB sizes, mask size, ...)
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I—Hyperreduction Methods
LApplication to the Reduction of the Burgers Equation

m Consider the inviscid Burgers equation

ou 1002

E(Xv t) + EW(X’ t) = g(x)

m source term
g(x) = 0.02exp(0.02x)

m initial condition
U(x,0)=1

m inlet boundary condition
U(,t) =5

m Discretize it by a Finite Volume (Godunov) method
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I—Hyperreduction Methods
LApplication to the Reduction of the Burgers Equation

m k=15, ks =40, ki =40

45

4+

3.5F

0 20 40 60 80 100
X

m Similar results for k; > 40 (least-squares reconstruction)
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I—Hyperreduction Methods
LApplication to the Reduction of the Burgers Equation

m Results of the greedy algorithm

Index Greedy Selection

1HREE PR PR A 2569 724112814 16 2

O R SRR RRAI LIRS [ 45 40K < 1

0 20 40 60 80 100 120
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I—Hyperreduction Methods
LApplicatitm to the Reduction of the Burgers Equation

m The dimension ks of the ROB Vg is reduced from 40 to 30
m k=15, ks = 30, k; =80

0 20 40 60 80 100

m Similar results for k; = 100 (no gaps) = k¢ is too small in that case
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I—Hyperreduction Methods
LProjection-Based Model Order Reduction at the Discrete Level

m Semi-discrete level: CZf—‘gl(t) = f(w(t), t)
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m Semi-discrete level: CZf—‘gl(t) = f(w(t), t)

m Subspace approximation: w(t) = Vq(t) = V—(t) = f(Vq(t), t)
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LProjection-Based Model Order Reduction at the Discrete Level

m Semi-discrete level: CZf—‘gl(t) = f(w(t), t)

d
m Subspace approximation: w(t) =~ Vq(t) = Vd—?(t) ~ f(Vq(t), t)
m Discrete level (backward Euler implicit time-integration scheme)

n+1 n
-q

q n n
Ve —~f(Va et
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LProjection-Based Model Order Reduction at the Discrete Level

m Semi-discrete level: CZf—‘gl(t) = f(w(t), t)

d
m Subspace approximation: w(t) =~ Vq(t) = Vd—?(t) ~ f(Vq(t), t)
m Discrete level (backward Euler implicit time-integration scheme)

n+1 n
a ~a

q n n
VI (Ve

m Discrete residual

n+l [ nt+l\ _ Q" —q" n+l ontl
r" (q )7VT—f(Vq )
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I—Hyperreduction Methods
LProjection-Based Model Order Reduction at the Discrete Level

m Semi-discrete level: CZf—‘gl(t) = f(w(t), t)

d
m Subspace approximation: w(t) =~ Vq(t) = Vd—?(t) ~ f(Vq(t), t)
m Discrete level (backward Euler implicit time-integration scheme)
Q""" —q" n+1 ontl
V———=x=f(V t
AN ( q ’ )
m Discrete residual

q") = anH -q" f (Vg tm+h)
Atn ’
m Residual minimization (a.k.a PMOR by least-squares or
Petrov-Galerkin projection)

I,n+1 (

q""! = argmin Hr”’“%y)”2
yERK
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LProjection-Based Model Order Reduction at the Discrete Level

m Semi-discrete level: CZf—‘gl(t) = f(w(t), t)

d
m Subspace approximation: w(t) =~ Vq(t) = Vd—?(t) ~ f(Vq(t), t)
m Discrete level (backward Euler implicit time-integration scheme)
Q""" —q" n+1 ontl
V———=x=f(V t
AN ( q ’ )
m Discrete residual

q") = anH -q" f (Vg tm+h)
Atn ’
m Residual minimization (a.k.a PMOR by least-squares or
Petrov-Galerkin projection)

I,n+1 (

q""! = argmin Hr”’“%y)”2
yERK

v (q”“) is nonlinear = approximate it using a gappy POD approach
for hyperreduction
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LGappy POD at the Discrete Level

m Gappy POD procedure for the fully discrete residual r
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m Gappy POD procedure for the fully discrete residual r

m Algorithm
build an orthogonal ROB V, € RV** for r (V] V, = 1)
construct a sample mesh Z (indices i1, - - - , ix;) using the greedy
procedure

consider the gappy approximation

i
il (qn+1) ~ Vyry, (qn+1) ~V, (PTVr> pTetl (an+1)
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LGappy POD at the Discrete Level

m Gappy POD procedure for the fully discrete residual r

m Algorithm
build an orthogonal ROB V, € RV** for r (V] V, = 1)
construct a sample mesh Z (indices i1, - - - , ix;) using the greedy
procedure

consider the gappy approximation

i
il (qn+1) ~ Vyry, (qn+1) ~V, (PTVr> pTetl (an+1)

[ determine the vector of generalized coordinates at "'

n+1

q

argmin [|Vir (y) |l
yERK

argmin ||rg, (y)|l,
yERK

(PTV,)T P (Vy)

= argmin
YERK

2
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I—Hyperreduction Methods

LGauss-Newton Method for Nonlinear Least-Squares Problems

m Nonlinear least-squares problem: miny ||r(y)|2, where r € RV,

y €RF and k < N
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LGauss-Newton Method for Nonlinear Least-Squares Problems

m Nonlinear least-squares problem: miny ||r(y)|2, where r € RV,

y €RF and k < N

1
m Equivalent function to minimize: ¢(y) = EHr(y)H% =r(y)"r(y)
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LGauss-Newton Method for Nonlinear Least-Squares Problems

m Nonlinear least-squares problem: miny ||r(y)|2, where r € RV,
y €RF and k < N

Ir )1 = r(y)e(y)
m Gradient: Vo(y) = J(y)"r(y), where J(y) = %(Y)

m Equivalent function to minimize: ¢(y) =
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LGauss-Newton Method for Nonlinear Least-Squares Problems
m Nonlinear least-squares problem: miny ||r(y)|2, where r € RV,
y €RF and k < N

1
m Equivalent function to minimize: ¢(y) = fH W3 =r(y)"r(y)

m Gradient: Vo(y) = J(y)"r(y), where J(y) = g;(Y)

m Iterative solution of equivalent minimization problem using the
Gauss-Newton method

yU+D = y0) 4 AyU+D)

where

() 19 = -5 (40)
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LGauss-Newton Method for Nonlinear Least-Squares Problems

Nonlinear least-squares problem: miny [|r(y)||2, where r € RV,
y €RF and k < N

1
Equivalent function to minimize: ¢(y) = fH W3 =r(y)"r(y)

Gradient: Va(y) = J(y) "r(y), where J(y) = g;(Y)

Iterative solution of equivalent minimization problem using the
Gauss-Newton method

yU+D = y0) 4 AyU+D)

where
e () ) 5 (40)
What is V2¢(y)?

V2o(y) = (y) "Iy +Za2(y)n)
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LGauss-Newton Method for Nonlinear Least-Squares Problems

Nonlinear least-squares problem: miny [|r(y)||2, where r € RV,
y €RF and k < N

1
Equivalent function to minimize: ¢(y) = fH W3 =r(y)"r(y)

Gradient: Va(y) = J(y) "r(y), where J(y) = g;(Y)

Iterative solution of equivalent minimization problem using the
Gauss-Newton method

yU+D = y0) 4 AyU+D)

where
e () ) 5 (40)
What is V2¢(y)?

V2o(y) = (y) "Iy +Za2(y)n)

Gauss-Newton method with V24(y) ~ J(y) " J(y)

34/64



AA216/CME345: MODEL REDUCTION
I—Hyperreduction Methods

LGauss-Newton Method for Nonlinear Least-Squares Problems
m Gauss-Newton method
" . "
where

J (y(j)) "y (ym) AU+ — (yu)) T, (yU))
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I—Hyperreduction Methods

LGauss-Newton Method for Nonlinear Least-Squares Problems
m Gauss-Newton method
where
N\ T . . N\ T .
J (yu)) J (yo)) AyU+D) — (yu)> r (Y(J))
m This is the normal equation for

Ay(j+1) — argzmin HJ (y(j)> z+r (y(j)) H2
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LGauss-Newton Method for Nonlinear Least-Squares Problems

m Gauss-Newton method
where
N\ T . . N\ T )
J (yu)) J (yo)) AyU+D) — (yu)> r (Y(J))
m This is the normal equation for
AyU+D — i HJ 0) 0) H

y argzmln (y >z+r(y )2

m QR decomposition of the Jacobian

J (y(j)) — QURY)
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I—Hyperreduction Methods

LGauss-Newton Method for Nonlinear Least-Squares Problems

m Gauss-Newton method
yUt) = y0) 4 AyU+D)
where
N\ T . . N\ T .
J (yu)) J (yo)) AyU+D) — (yu)) r (Y(J))
m This is the normal equation for
AyU+D — i HJ 0) 0) H

y argzmln (y >z+r(y )2

m QR decomposition of the Jacobian
J (ym) — QUWRY)

m Equivalent solution using the QR decomposition (assuming that RV
has full column rank)

AyUHD — (y(j))T ; <ym> _ (Ro)>’1 (Qo)) T (yo))
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LGauss-Newton with Approximated Tensors

m GNAT (Gauss-Newton with Approximated Tensors) =
Gauss-Newton + gappy POD
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LGauss-Newton with Approximated Tensors
m GNAT (Gauss-Newton with Approximated Tensors) =

Gauss-Newton + gappy POD
m Minimization problem

min
yERK

(PTV) PTe L (vy) |

36/64



AA216/CME345: MODEL REDUCTION
I—Hyperreduction Methods

LGauss-Newton with Approximated Tensors
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Gauss-Newton + gappy POD
m Minimization problem

min
yERK

= Jacobian: J(y) = (F'TVr)T PTJ"H(Vy)
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LGauss-Newton with Approximated Tensors

m GNAT (Gauss-Newton with Approximated Tensors) =
Gauss-Newton + gappy POD
m Minimization problem

min
yERK

= Jacobian: J(y) = (F'TVr)T PTJ"H(Vy)

m Construct offline the small-dimensional matrix A = (PTV,)T

(PTV,—)T PTrn+1(Vy) H2
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LGauss-Newton with Approximated Tensors
m GNAT (Gauss-Newton with Approximated Tensors) =

Gauss-Newton + gappy POD
m Minimization problem

: tpT n+1
PTV,)  PTe(vy)|
min || (PTVe) PTrm(Vy)
m Jacobian: J(y) = (PTV,)" PTJm+1(vy)
m Construct offline the small-dimensional matrix A = (PTV,)T
m Solve at each j-th Gauss-Newton iteration of t"*! the least-squares

problem

S A O R (A
zc
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LGauss-Newton with Approximated Tensors

m GNAT (Gauss-Newton with Approximated Tensors) =
Gauss-Newton + gappy POD
m Minimization problem

min
yERK

Jacobian: J(y) = (F'TVr)T PTJ"H(Vy)

(PTV,—)T PTrn+1(Vy) H2

Construct offline the small-dimensional matrix A = (PTV,)T

|
m Solve at each j-th Gauss-Newton iteration of t"*! the least-squares
problem
AyY) = argmin HAPTJ"+1 (Vy(j)> Vz + APt (Vy(j)) H2

zERK
m Compute the GNAT solution using QR

APT il (Vym) V = QURY)

AyO) — — (Ru )‘1 (Qu ) T ApT 1 (Vym)
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I—Hyperreduction Methods

LGauss-Newton with Approximated Tensors

m Further developments (see the references by: Carlberg, Farhat,
Cortial, Amsallem; Carlberg, Bou-Mosleh, Farhat; and Amsallem,
Zahr, Farhat)

m concept of a reduced mesh

m concept of an output mesh

m error bounds

m GNAT using local reduced-order bases
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|—Hyperreduction Methods

|—Application: Compressible Navier-Stokes Equations

m Turbulent flow past the Ahmed body (CFD benchmark in the
automotive industry)

m 3D compressible Navier-Stokes equations with turbulence modeling
(Spalart-Allmaras)

m N =1.73x10
m Re = 4.48 x 10°, M, = 0.175 (216km/h)
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|—Application: Compressible Navier-Stokes Equations

= PMOR: POD + GNAT, k = 283, ks = 1,514, and k; = 2,268

0-28r— High-dimensional model’
= 0.27r — Reduced-order model
50.26/
k=
§0.25'
20.24}
a
0.23F
0'220 0.62 0.64 O.IOB O.IOS 01
Time (s)
Method CPU Number | Relative
Time of CPUs Error
HDM 13.28 h 512 -
PROM (GNAT) | 3.88 h 4 0.68%
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I—Hyperreduction Methods
LApplication: Design Optimization of a Nozzle

m HDM: N = 2,048 and m = 5 shape parameters
m PMOR: POD + DEIM: kK =8, kf = 20, and k; = 20
m Parameterized steady-state problem

Py ip, ips iPa {ps

in [|M - M,
min [M(w(p)) = Mearget |2

st. f(w(p)),n)=0

where M denotes the local Mach number
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I—Hyperreduction Methods

LApplication: Design Optimization of a Nozzle

0.75
0.7
0.65
08
50.55

0.45
0.4
0.35

0.3F

Method Offline Online Total
CPU Time | CPU Time | CPU Time
HDM - 78.8 s 78.8 s
PROM (DEIM) 5.08 s 4.87 s 9.96 s
Tt
——Initial Guess
11M Optimization (Hermite RBF)
1
=o09r
) 0.8
0.7
— Target
——Initial Guess 0.61
Optimization (Hermite RBF)

0.5

1 15
£

0.5
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AA216/CME345: MODEL REDUCTION
I—Local Approaches
L Local Approximation of the State

m Approximating the solution manifold M by a single subspace S can
lead to a large-dimensional subspace

m Idea: Approximate M using local subspaces {S/}L_;

42/64



AA216/CME345: MODEL REDUCTION
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L Local Approximation of the State

In practice, the local approximation of the state takes place at the
fully discrete level

Each local subspace S is associated with a pre-computed local ROB
V,

At each time-step n, the state w” is computed as

Wn — Wn—l + AW”

The increment Aw” is then approximated in a subspace
Si.n = range(V, ,) as
Aw" =V, ,q"
The choice of the pre-computed reduced-order basis V, , is specified
later
By induction, the state w” is computed as

n
w' = WO + Zvl7l_an
i=1
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I—Local Approaches
L Local Approximation of the State

m The state w” is computed as

n
w=w’+ > Vg’
i=1

In practice, the ROBs {V, ;}7_, are chosen among a finite set of
pre-computed local ROBs {V,}L_,

m Hence ,
w’=wl+ ZV/q;’
I=1
m This shows that
w” € w® +range([V; --- Vi])

Note that each local ROB can be of a different dimension

V/ c RNXk/

44/64



AA216/CME345: MODEL REDUCTION
I—Local Approaches
L Construction of the Local ROBs

m Intuitively, a given local subspace S; should approximate only a
portion of the solution manifold M

m The solution manifold is a subset of the solution space RV
M c RV

m The solution space R is partitioned into L subdomains, where each
subdomain is associated with a local approximation subspace
S; = range(V))

m In practice, a set of solution snapshots {w,-},N:s1 can be partitioned
into L subsets using the k-means clustering algorithm

m This leads to a Voronoi tessellation of RV
m The k-means clustering algorithm is distance-dependent

m After clustering, each snapshot subset can be compressed into a
local ROB, for example, using POD
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|—Local Approaches

LConstruction of the Local ROBs

m Local ROBs construction procedure

4
~o
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|—Construction of the Local ROBs

m Local ROBs construction procedure
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|—Construction of the Local ROBs

m Local ROBs construction procedure
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|—Construction of the Local ROBs

m Local ROBs construction procedure
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|—Construction of the Local ROBs

m Local ROBs construction procedure
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|—Construction of the Local ROBs

m Local ROBs construction procedure
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L Construction of the Local ROBs

m Local ROBs construction procedure
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m Local ROBs construction procedure
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m Local ROBs construction procedure
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I—Local Approaches
L Online Selection of the Local ROB

m Online, at time-step n, a pre-computed local ROB V, , must be
chosen

m The selection is based on the current location of w"~! on the
solution manifold M

m The local approximation subspace is selected as that associated with
the cluster whose center is the closest to w" !

I,n= argmin d(w”_17w,c)
le{1,-,L}

m Consider the case of the distance based on a weighted Euclidian
norm

d(w.z) = |w — zu = /(W — 2) TH(w —2)

where H € RV*N is a symmetric positive definite matrix
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AA216/CME345: MODEL REDUCTION
I—Local Approaches
L Online Selection of the Local ROB

m Choice of the local approximation subspace at time-step n

I,n= argmin d(w"* wf)

b
Ie{e L}

m For a distance based on a weighted Euclidian norm, the solution of
the above problem can be computed efficiently at a cost that does
not depend on the large dimension N

m To show this, consider the special form of the solution
L
wil = wo Zvlqu
=1

m Then, one needs to compare the distances d (w”*17w,c") and
d(w”’l,w,cj) for1<i#j <L
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AA216/CME345: MODEL REDUCTION
I—Local Approaches
L Online Selection of the Local ROB

= The two distances d (w"~!, wf’) and d (w""!,w/) can be
compared as follows

Ay o= dwhwe)—d (wtwd)?

n—1 n—1

= HW S

2

+lwp - %m—2§2Mﬂ Via
H

Zvlqn 1

—wy ||H

-1

2

—Hw, —WOHH+2Z[WCJ] Viq~ 1
H I=1

o — W, — w5 = W+ 23 o — ) Vi
1=1

m The following small quantities can be pre-computed offline and used
online to compute economically A;;, 1 <i# ;<L

iy = [[wi —wOlf—[lwf —wOlfy € R, gy = [w - w] TV € B
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I—Local Approaches

LExtension to Hyperreduction

m The local approach to nonlinear PMOR can be easily extended to
hyperreduction as follows

m hyperreduction is applied independently to each cluster of snapshots
m It leads to the definition of

m the local ROBs for the state: V;, =1,--- L
m the local ROBs for the residual: V,;, I=1,---,L
m the local masks: Z;, I =1,---,L

m The choice of the local ROBs and masks is still dictated by the
location of the current time-iterate in the state space
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L Application

m Flow past the NASA CRM (Common Research Model) — (CFD
benchmark in the aeronautical industry)

m 3D compressible Euler equations
m N=231x10°

m Constant acceleration of 2.5 m/s2, from M., = 0.8 to M, = 0.9

o = = = z 9Dac
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|—Local Approaches
L Application

m PMOR using a global ROB

— DM
140007 - MOR with 1 ROB, k; = 75
-~ -MOR with 1 ROB, k; = 50
130001 _ _ _MOR with 1 ROB, k; = 25 ;
12000 MOR with 1 ROB, k; = 10 [
o
£ 11000

Inviscid Drag
©
o
o
o
T

T I I I I I L I I
0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89

00
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|—Local Approaches
L Application

m PMOR using 5 local ROBs

[—HDM
14000 MOR with 5 ROBs, k

13000} = = ~MOR with 5 ROBs
MOR vnth ROB%, 0

={22,11,9,17,16} f

12000
o
11000

10000

Inviscid Drag (b

[ ©
[=] [=]
S o
S o

I L 1 L 1 1 L 1 1
0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89
VIS

m Very good accuracy can be obtained with k; < 17 as opposed to
k = 50 with a global ROB
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