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m Note: The material covered in this chapter is based on the following
published papers:

m D. Amsallem, C. Farhat. Interpolation method for adapting
reduced-order models and application to aeroelasticity. AIAA Journal
2008; 46(7):1803-1813.

m D. Amsallem, J. Cortial, C. Farhat. Towards real-time CFD-based
aeroelastic computations using a database of reduced-order models.
AIAA Journal 2010; 48(9):2029-2037.

m D. Amsallem, C. Farhat. An online method for interpolating linear
parametric reduced-order models. SIAM Journal on Scientific
Computing 2011; 33(5): 2169-2198.

m D. Amsallem, Interpolation on manifolds of CFD-based fluid and
finite element-based structural reduced-order models for on-line
aeroelastic predictions. Ph.D. Thesis, Stanford University, 2010.
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|—Concept of a Database of Local PROMs

LParameterized Linear Time-Invariant Systems

Mitu) = AGew(t ) + Bl
y(tipn) = C(p)w(t;p)+ D(p)u(t)
w(O:n) = woln)

m w € RN: Vector of state variables

m u € RP: Vector of input variables — typically p < N

m y € R9: Vector of output variables — typically g < N
m p € D CR™: Vector of parameters — typically m < N
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|—Concept of a Database of Local PROMs
LParametric Petrov-Galerkin Projection-Based PROMs

m Goal: Construct a parametric Projection-based Reduced-Order
Model (PROM)

%(t;ﬂ) = A (p)a(t; p) + B, (p)u(t)

y(t;pn) = C(m)a(t;p) + D (p)u(t)

(
(
m based on local Reduced-Order Bases (ROBs) (V(/,L M), W(n ))

and the approximation

IW(t;u) A V(u)q(t;u)\

mpu) e D qeRF
m all ROBs have the same dimension k < N
m PROM resulting from Petrov-Galerkin projection

A(p) = (W()TV () "W(n)TA(p)V (k) € RFX
B/ (k) (W(p) V(1)) "W () "B(ps) € R*P
C(n) = C(uV(w) e R D (i) =D(n)c R
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LConcept of a Database of Local PROMs

LSample Application: Aeroelastic Analysis of a Complete Aircraft Configuration

m Hundreds of flight conditions p = (M, @) for flutter clearance
m Multiple aircraft configurations

CFD model FEM structural model

L Nﬂuid 2 X 106: Nstructure ~ 1.6 x 105
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|—Concept of a Database of Local PROMs
LLack of Robustness of Local ROBs for Parameter Changes

m Consider the following procedure

2]
3

construct local ROBs (V (u(l)) , W (u(l))) at the parametric

configuration/flight condition e
use these two bases to reduce the HDM at p(®

El avoid reconstructing a ROB every time the configuration/flight

condition is varied

A build the resulting PROM

“(en) = A ()a(en) o8 () uo
(60) = C()a(en) ¢, (5)ut
w(en®) = V()a(ea?)

A () = (W () v () w () A
B,(,ﬁ?)) = (w(,ﬁ“)Tv(,ﬁl)))*lw(umy (”m)ekap

-
A

H(2)> Vv (H(1)> € RKXK

B
“(2)) v (“(1)) c Rqu; D, (“(2)) -D (H(Z)) c RIXP
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|—Concept of a Database of Local PROMs
LApplicatitm: Aeroelastic Analysis of a Complete Aircraft Configuration

m Queried flight conditions
n u® = (Moo1,a®) = (0.71, atrimmed (0.71))

m

Lift (Ib)

= the

2 = (Moo,Qa a(2)) = (0~8»atrimmed(0-8))

9ed
8e4
Te4
Bed
5ed
el \AAVAVATQVA VoV
3ed
2e4
1e4

0

HDM(p ™))
PROM (1))

0 0.2 0.4 0.6 0.8 1
Time (s)

ROBs lack robustness with respect to parameter changes
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L Reconstruction of the ROBs

m The lack of robustness of the ROBs with respect to parameter
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m Procedure

given a queried but unsampled parameter point u* € D
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|—Concept of a Database of Local PROMs
L Reconstruction of the ROBs

m The lack of robustness of the ROBs with respect to parameter
changes implies that the ROBs should be reconstructed every time
the parameters are varied

m Procedure

given a queried but unsampled parameter point u* € D

H construct the HDM operators (A(p*), B(pe*), C(*), D(1*))

generate the ROBs (V(u*), W(1*)) using a preferred
projection-based model order reduction method

@ construct the PROM operators (A, (p*), B.(u*), C/ (™), D, (™))
using a Petrov-Galerkin projection

B exploit the constructed PROM

m Question: Is this procedure computationally efficient?
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|—Concept of a Database of Local PROMs

|—Application: Aeroelastic Analysis of a Complete Aircraft Configuration

m Construction and exploitation in t € [0, 1]s of a linearized aeroelastic
F-16 PROM

“HDM construction
“ROBs generation

_I ROM construction

“ROM exploitation

0 10 20 30 40 50 60
( CPU time in min)

m The direct generation of the ROB accounts for 89% of the total
CPU time

m The overall procedure takes 56 minutes, which renders this approach
non-amenable to real-time parametric applications
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L One Strategy

m ldea: Pre-compute some quantities offline

m Interpolate these quantities online
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|—Concept of a Database of Local PROMs
L One Strategy

m ldea: Pre-compute some quantities offline
m Interpolate these quantities online
m What entities should be interpolated and how?

Input Qutput

SYSTEM

(g5 i)
- Response Surface
Estimation (RSE)

—_—

- Model Interpolation
(Adaptation)

= interpolate the ROBs given the above CPU time analysis
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|—Concept of a Database of Local PROMs
L One Strategy

m |ldea
m pre-compute ROBs at a number of sampled parameter points
Ns
{”(/) €p I=1
m interpolate these ROBs to obtain a ROB at a queried but unsampled

Ns
parameter configuration pu* ¢ {u(/)}

I=1

® O Y0 O Pre-computed
pi o ® RoB
® o ! o Interpolated
8 o o o ROB
O Zonal
® O @ O O O interpolation
| anOmnCay
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I—Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)
L Interpolation of the ROBs

m For simplicity, assume an orthogonal Galerkin projection

V(u) =W(p) and V(u)"V(k)= Ik

m Procedure
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L Interpolation of the ROBs

m For simplicity, assume an orthogonal Galerkin projection
V(p) =W(u) and V(u)"V(n)= Ik

m Procedure
given a queried but unsampled parameter point u* € D
construct the HDM operators (A(p*), B(pe™), C(pe*), D(p™))
compute the ROB V(u*) by interpolating the pre-computed ROBs
B construct the PROM operators (A, (p*), B-(n*), Cr (™), D, (™)) by
Galerkin projection
B exploit the constructed PROM

m Question: How does one interpolate pre-computed ROBs?
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L Direct Interpolation of the ROBs

= Tempting idea: Interpolate the matrices V (u(!)) € RV>k
entry-by-entry
m Input
m queried parameter p*
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I—Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)
L Direct Interpolation of the ROBs

= Tempting idea: Interpolate the matrices V (u(!)) € RV>k
entry-by-entry
m Input
m queried parameter p*
m pre-computed ROBs {V (u(’))}
® multi-variate interpolation in R™ I(Zéperator 7)

alp) =1 (”; {a (”(I)) ’”(/)}:V:)
m Algorithm

1: fori=1: N do
for j=1:kdo
N;
compute vji(p*) =7 (,u*; {Vij (H(’)) 7H(I)}/:1)
end for
end for

o form V(p*) = [vii(p*)]

Ns

@R N
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I—Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)
LDirect Interpolation Does Not Work

m Example
m N=3 k=2 m=1
w for g =0: V (pt ) =V(0) = (vi v2)"
m for u® =1: v (“(2)) =V(1) = (—v1 v2)

target parameter p = 0.5
linear interpolation
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I—Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)
LDirect Interpolation Does Not Work

m Example
m N=3 k=2 m=1
m for p® =0: V (V) =V(0) = (vi vo)7
1)
mfor u® =1: v u(Q) =V(1) = (—vi v)7
w

m target parameter u = 0.5
m linear interpolation
m Interpolatory result

V(0.5) = 0.5(V(0) + V(1)) = (0.5(vs — v1) 0.5(v2 +v2))" = (0 vy)

V'1
< Vo '/V‘\VAE e— S

T
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I—Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)
LDirect Interpolation Does Not Work

m Example
m N=3 k=2 m=1
w for g =0: V (pt ) =V(0) = (vi v2)"
m for p@ =1 Vv (H(Q)) =V(1) = (—vi v2)"

m target parameter u = 0.5
m linear interpolation
m Interpolatory result

V(0.5) = 0.5(V(0) + V(1)) = (0.5(vs — v1) 0.5(v2 +v2))" = (0 vy)

V'1
< Vo '/V‘\VAE e— S

m What went wrong?
m a relevant constraint was neither identified nor preserved
m the wrong entity was interpolated

T
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LSubspace Interpolation
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994, ) = V() TAGV ()t 1) + V(1) B ()u(2)
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LSubspace Interpolation

m Reduced-order equation

994, ) = V() TAGV ()t 1) + V(1) B ()u(2)
m Equivalent high-dimensional equation for w(t; u) = V(u)q(t; p)

dw ~
ﬁ(t? 1) = My v A(p)w(t; 1) + My v B(r)u(t)
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I—Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)
LSubspace Interpolation

m Reduced-order equation

994, ) = V() TAGV ()t 1) + V(1) B ()u(2)

m Equivalent high-dimensional equation for w(t; u) = V(u)q(t; p)
dw _
o (G R) = ) v AG)W(E 1) + My, v B(r)u(t)

m The PROM solution is independent of the choice of ROB associated
with the projection subspace

= the correct entity to interpolate is S(u) = range(V(u))
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L The Grassmann Manifold

m A subspace S is typically represented by a ROB
m The appropriate choice of a ROB is not unique

S = range(V) = range(VQ), VQ € GL(k)

m Manifolds of interest

m G(k, N) (Grassmann manifold): Set of subspaces in RV of dimension
k

m ST (k, N) (orthogonal Stiefel manifold): Set of orthogonal ROB
matrices in RV*¥

m GL(k) (general linear group): Set of non-singular square matrices of
size k
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I—Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)
L The Grassmann Manifold

A subspace S is typically represented by a ROB

The appropriate choice of a ROB is not unique
S = range(V) = range(VQ), VQ € GL(k)

m Manifolds of interest

m G(k, N) (Grassmann manifold): Set of subspaces in RV of dimension
k

m ST (k, N) (orthogonal Stiefel manifold): Set of orthogonal ROB
matrices in RV*¥

m GL(k) (general linear group): Set of non-singular square matrices of
size k

m O(k): Set of orthogonal square matrices of size k

Properties
m O(k) C GL(k)
s ST(N,N) = O(N)
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I—Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)
L The Grassmann Manifold

m Case of projection-based model order reduction with orthogonal
ROBs
m V(u) € ST(k,N)
m range(V(u)) € G(k, N)
m Equivalence class
m S() = range(V(u)) = range(V(1)Q), ¥Q € O(k)
m an element of the Grassmann manifold defines an entire class of
equivalence on the Stiefel manifold
m this class of equivalence is defined by the range operation

V Vi,Vo € ST(k,N), Vi ~V> <& range(Vi) = range(V2)
& 3Q € O(k) st Vi =V.Q
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L The Grassmann Manifold

m Case of projection-based model order reduction with orthogonal
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m V(u) € ST(k,N)
m range(V(u)) € G(k, N)
m Equivalence class
m S() = range(V(u)) = range(V(1)Q), ¥Q € O(k)
m an element of the Grassmann manifold defines an entire class of
equivalence on the Stiefel manifold
m this class of equivalence is defined by the range operation

V Vi,Vo € ST(k,N), Vi ~V> <& range(Vi) = range(V2)
< JQ € O(k) st Vi =VoQ
m therefore, the Grassmann manifold is a quotient manifold denoted as

G(k, N) = ST(k, N)/O(k)
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I—Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)
L The Grassmann Manifold

m Case of projection-based model order reduction with orthogonal
ROBs
m V(u) € ST(k,N)
m range(V(u)) € G(k, N)
m Equivalence class
m S() = range(V(u)) = range(V(1)Q), ¥Q € O(k)
m an element of the Grassmann manifold defines an entire class of
equivalence on the Stiefel manifold
m this class of equivalence is defined by the range operation

V Vi,Vo € ST(k,N), Vi ~V> <& range(Vi) = range(V2)
< 3Q € O(k) st V1 =V2Q
m therefore, the Grassmann manifold is a quotient manifold denoted as
G(k, N) = STk, N)/O(k)

m Hence, one should interpolate subspaces, but has access in practice
to (orthogonal) ROBs
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I—Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)
L The Grassmann Manifold

m Case of projection-based model order reduction with orthogonal
ROBs
m V(u) € ST(k,N)
m range(V(u)) € G(k, N)
m Equivalence class
m S() = range(V(u)) = range(V(1)Q), ¥Q € O(k)
m an element of the Grassmann manifold defines an entire class of
equivalence on the Stiefel manifold
m this class of equivalence is defined by the range operation

V Vi,Vo € ST(k,N), Vi ~V> <& range(Vi) = range(V2)
< 3Q € O(k) st V1 =V2Q
m therefore, the Grassmann manifold is a quotient manifold denoted as
G(k, N) = STk, N)/O(k)

m Hence, one should interpolate subspaces, but has access in practice
to (orthogonal) ROBs

m Solution: Perform interpolation on the Grasmann manifold using
entities belonging to the (orthogonal) Stiefel manifold
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I—Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)
L The Grassmann Manifold

m Matrix manifolds of interest
m G(k, N) (Grassmann manifold): Set of subspaces in RV of dimension
k

m ST (k, N) (orthogonal Stiefel manifold): Set of orthogonal ROB
matrices in RV*k

range'(range(V) )

v

v

ST{k,N)
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L Matrix Manifolds

m Embedded matrix manifolds
m the sphere
S(N) = {w eRY st. |wl2 = 1}

m the manifold of orthogonal matrices

O(N) = {M eRV Vst MTM = |N}
m the general linear group

GL(N) = {M e RV N st. det (M) # o}
m the manifold of symmetric positive definite matrices

SPD(N) = {M eERVMst. M=M"& w Mw >0 Vw # 0}

the orthogonal Stiefel manifold
ST(k,N) = {M eRV st MTM = |k}

m Quotient matrix manifold
m the Grassmann manifold

20/
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L Interpolation on Matrix Manifolds

m First example: The circle (sphere S(N) for N = 2)

P(u)
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m Standard interpolation fails to preserve a nonlinear manifold
(essentially because standard interpolation applies only in vector
spaces)
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I—Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

L Interpolation on Matrix Manifolds

m First example: The circle (sphere S(N) for N = 2)

P(u)

m Standard interpolation fails to preserve a nonlinear manifold
(essentially because standard interpolation applies only in vector
spaces)

m Idea: perform interpolation in a linear space = on a tangent space
to the manifold

21/



AA216/CME345: MODEL REDUCTION
I—Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)
LInterpc::lati(m on the Tangent Space to a Matrix Manifold

® Input

Ns
pre-computed matrices {A(u(')) e RVM

=1
map ma from the manifold M to the tangent space of M at A
multi-variate interpolation in R™

(operator a(p) =1 (Hi {3 (l‘(l)) 7“(1)}:\151))

® inverse map m;l from the tangent space to M at A to the manifold

M

22/



AA216/CME345: MODEL REDUCTION
I—Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)
LInterpc::lati(m on the Tangent Space to a Matrix Manifold

® Input

Ns
pre-computed matrices {A(u(')) e RVM

=1
map ma from the manifold M to the tangent space of M at A
multi-variate interpolation in R™

(operator a(p) =1 (Hi {3 (l‘(l)) 7“(1)}:\151))

® inverse map m;l from the tangent space to M at A to the manifold

M

m Requirement: The interpolation operator Z must preserve the
tangent space = for example,

alp)=1 (u*; {a (u(')) aN(I)}:\:) = ﬁ: 0i(p")a (N(I))
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I—Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)
LInterpolation on the Tangent Space to a Matrix Manifold

m Algorithm
1: for /=1: N do

2. compute I’ (u(’)) = ma (A (u(/)))

3: end for

4. fori=1:N do

50 forj=1:Mdo

6 compute My(u) =T (i {Ty (u®), u} "))

7 end for

8: end for

9: form T(p*) = [T;(p*)] and compute A(p*) = my (T (u*))
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I—Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)
LDifferential Geometry

m How does one find mp and its inverse m;l?
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I—Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)
LDifferential Geometry

m How does one find mp and its inverse m;l?
m Idea: Use concepts from differential geometry
m Geodesic
m is a generalization of a “straight line” to “curved spaces” (manifolds)
m is uniquely defined given a point x on the manifold and a tangent
vector x at this point

Y(t;x,€) :[0,1] = M
7(0;x,€) = x, ¥(0,x,£) =¢

T; ,
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I—Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)
LDifferential Geometry

m How does one find mp and its inverse m;l?
m Idea: Use concepts from differential geometry
m Geodesic
m is a generalization of a “straight line” to “curved spaces” (manifolds)
m is uniquely defined given a point x on the manifold and a tangent
vector x at this point

Y(t;x,€) :[0,1] = M
7(0;x,€) = x, ¥(0,x,£) =¢

T; ,

Exp, : TxM = M & — v(1;x,8)

m Exponential map
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I—Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)
LDifferential Geometry

m How does one find mp and its inverse m;l?
m Idea: Use concepts from differential geometry
m Geodesic
m is a generalization of a “straight line” to “curved spaces” (manifolds)
m is uniquely defined given a point x on the manifold and a tangent
vector x at this point

Y(t;x,€) :[0,1] = M
7(0;x,€) = x, ¥(0,x,£) =¢

T; ,

Exp, : M = M & — y(1; x,§)
m Logarithmic map (defined in a neighborhood U, of x)
Log, : Us C M = TeM y — Expy*(y) = Log,(y) = (0, x,€) = ¢

m Exponential map
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I—Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

LInterpc::lati(m on a Tangent Space to a Matrix Manifold

m Application to the interpolation of points on a circle

Logpg,yP (1®) =0z

LoQP(p,m)P (uM) =0

P()



AA216/CME345: MODEL REDUCTION
I—Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

LInterpc::lati(m on a Tangent Space to the Grassmann Manifold

m Logarithmic map
compute a thin SVD

(1= VoV )Vi(VgV)) ' =uxz’

H compute
N=Utan (x)Z" e RV**

I < Logs, (Si) € T5,G(k, N)
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LInterpc::lati(m on a Tangent Space to the Grassmann Manifold

m Logarithmic map
compute a thin SVD

(1= VoV )Vi(VgV)) ' =uxz’
H compute
N=Utan (x)Z" e RV**
I < Logs, (Si) € T5,G(k, N)

m Exponential map of x € 7s,G(k,N) < T
compute a thin SVD _
r=uxz’

compute
V = (VoZcosX + UsinX) € ST (k, N)

range(V) = Exp, (X) € G(k, N)
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LInterpc::lati(m on a Tangent Space to the Grassmann Manifold

m Logarithmic map
compute a thin SVD

(1= VoV )Vi(VgV)) ' =uxz’
H compute
N=Utan (x)Z" e RV**
I < Logs, (Si) € T5,G(k, N)

m Exponential map of x € 7s,G(k,N) < T
compute a thin SVD _
r=uxz’
compute
V = (VoZcosX + UsinX) € ST (k, N)

range(V) = Exp, (X) € G(k, N)

m Note: The trigonometric operators apply only to the diagonal entries
of the relevant matrices
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AA216/CME345: MODEL REDUCTION

I—Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)
I—Interpolation on a Tangent Space to the Grassmann Manifold

m Interpolation on the tangent space to G(k, N)

Logs, (S2)

Logsn (83)
-
Ts,9(k, N)
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|—lnterpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

LApplication to Linearized Aeroelasticity

m Prediction of the linearized aeroelastic behavior of an F-16

configuration

3.0 . ° Pre-computed ROB
70,000 7 % * Interpolated ROB
o
24 —®
65,000 '
0.77 0.79 0.81
60,000
55,000
ROM (90) built usi
_ 50,000 ~—— Directly computed ROB
o)
E 45,000 — Pre-computed ROB #1
1
40,000 :/\ Pre-computed ROB #2
\

35,000 & Pre-computed ROB #3

30,000 —— Pre-computed ROB #4

25,000 — Interpolated ROB

(Grassmann manifold)
20,000 T T T T )
0.00 0.20 0.40 0.60 0.80 1.00

Time (s)
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|—Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

LApplication to Linearized Aeroelasticity
m Prediction of the linearized aeroelastic behavior of an F-18
configuration: Effect of the choice of the tangent plane

- — Direct ROM
5.20E+04] [AY \ / Interpolated ROM
.‘" Y Tangent space at
5 [ / \ M=0.5
< 5.10E+04 [
E . | — M=0.7
M=0.75
5.00E+04 / M=08
4.90E+04 T " i
0 01 0.2 0.3
Time (s)
0.725
M, ® &—C—e—o ROM (51)
0.7 075 08

0.5
29/51



AA216/CME345: MODEL REDUCTION
|—Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

|—Application to Linearized Aeroelasticity

m Prediction of the linearized aeroelastic behavior of the wing of a
commercial aircraft (Airbus)

Airbus AMP model Unsteady pressure distribution
Upper surface Lower surface

A/ / //
Interpolated
ROB
Grassmann)
-0.04

30

g Pressure (x105 Pa)
S .&’

g E

2 8

i 2 01 YT

. X
" 1 Pressure (x105Pa) 2.6 o ROM (46 Vetrano et al.,
. @ hd ASD Journal 2011

0.78 0.79 0.8 0.81 0.82
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|—lnterpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)
LApplication to Linearized Aeroelasticity

m Construction and exploitation in t € [0, 1] s of a linearized
aeroelastic PROM

Direct HDM construction

construction
“ROBs generation

ROM construction

Interpolation )
(Grassmann) ROM exploitation
I

m Overall CPU time is decreased from 55 minutes to 8 minutes
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LApplication to Linearized Aeroelasticity

m Construction and exploitation in t € [0, 1] s of a linearized
aeroelastic PROM

Direct HDM construction
construction

“ROBs generation

ROM construction

Interpolation

(Grassmann) ROM exploitation

m Overall CPU time is decreased from 55 minutes to 8 minutes
m New dominant cost: Construction of the HDM operators

(A(p*),B(p*), C(p*), D(1"))
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I—Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

LApplicatitm to Linearized Aeroelasticity

m Construction and exploitation in t € [0, 1] s of a linearized
aeroelastic PROM

Direct HDM construction
construction

“ROBs generation

ROM construction

Interpolation

(Grassmann) 1] ROM exploitation

m Overall CPU time is decreased from 55 minutes to 8 minutes
m New dominant cost: Construction of the HDM operators

(A(p*),B(p*), C(p*), D(1"))

—> alternative approach is to interpolate the reduced-order operators

(A1), B, (1), €, (1), D, (1))
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AA216/CME345: MODEL REDUCTION
|—Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)
LApplication: Structural Analysis of a Simple Mass-Spring System

m Simple example: Mass-spring system with two degrees of freedom

2W
MW (1) + K(w() = Bu(®),

kl ];; kz
my —\\N\— M2
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|—Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)
LApplication: Structural Analysis of a Simple Mass-Spring System

m Projection-based model order reduction by modal truncation: V(u)
is the matrix of the two eigenmodes of the structural system

K(p)vj(1) = A (1)Mv;(p)
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LApplication: Structural Analysis of a Simple Mass-Spring System

m Projection-based model order reduction by modal truncation: V(u)
is the matrix of the two eigenmodes of the structural system

K(p)vj(1) = A (1)Mv;(p)
m Matrix of eigenvalues: K,(u) = V(u)TK(p)V (1) = A(pe)
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|—Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)
LApplication: Structural Analysis of a Simple Mass-Spring System

m Projection-based model order reduction by modal truncation: V(u)
is the matrix of the two eigenmodes of the structural system

K(p)vj(1) = A (1)Mv;(p)
m Matrix of eigenvalues: K,(u) = V(u)TK(p)V (1) = A(pe)

m Variations of the eigenvalues and eigenmodes with the parameter p
(first eigenmode is shown in blue color, second is shown in red color)

3.5

25

1
05 /

1
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|—Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

L Interpolation on a Matrix Manifold

m Note that A(u) belongs to the manifold of (diagonal) symmetric
positive definite matrices

34/



AA216/CME345: MODEL REDUCTION
|—Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

L Interpolation on a Matrix Manifold

m Note that A(u) belongs to the manifold of (diagonal) symmetric
positive definite matrices

m Perform interpolation of A(p) on this manifold using (A(0), A(2.9))
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|—Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

L Interpolation on a Matrix Manifold

m Note that A(u) belongs to the manifold of (diagonal) symmetric
positive definite matrices

m Perform interpolation of A(p) on this manifold using (A(0), A(2.9))

m Result is shown in magenta color

3.5

3

1 by Step B Only
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|—Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

L Interpolation on a Matrix Manifold

m Note that A(u) belongs to the manifold of (diagonal) symmetric
positive definite matrices

m Perform interpolation of A(p) on this manifold using (A(0), A(2.9))

m Result is shown in magenta color

3.5

3

1 by Step B Only

0 0.5 1 1.5 2 25 3
n

m Observe that the result is wrong, even for such a simple system
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|—Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)
LMode Veering and Mode Crossing

m The issue is the lack of consistency between the coordinates of the
reduced-order matrices, triggered in this case by mode veering

0 05 1 15 2 25 3 "
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|—Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)
LMode Veering and Mode Crossing

m The issue is the lack of consistency between the coordinates of the
reduced-order matrices, triggered in this case by mode veering

0 05 1 15 2 25 3 "
1t

m Mode crossing would trigger a similar issue (the eigenfrequencies are
ordered increasingly in A(u))
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|—Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

LConsistent Interpolation on Matrix Manifolds

Two-step solution
m step A: Pre-process the reduced-order matrices

m enforce consistency by solving the following N; orthogonal
Procrustes problems
min v (u(’)) Q-V (M’“)H VI=1,--- N,
Q Q7 Q=1 F
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LConsistent Interpolation on Matrix Manifolds

Two-step solution
m step A: Pre-process the reduced-order matrices

m enforce consistency by solving the following N; orthogonal
Procrustes problems
min v (u“)) Q-V (M’“)H VI=1,--- N,
Q Q7 Q=1 F

m compute analytical solutions of above problems as follows
compute Py, =V (u()) v (pth))
B compute the SVD P, ;) = U,7,02,7,02110
compute Q; = U/7,02I10
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LConsistent Interpolation on Matrix Manifolds

Two-step solution
m step A: Pre-process the reduced-order matrices

m enforce consistency by solving the following N; orthogonal
Procrustes problems
min v (u“)) Q-V (M’“)H VI=1,--- N,
Q Q7 Q=1 F

m compute analytical solutions of above problems as follows
compute Py, =V (u()) Tv (o))
H compute the SVD Py, = U/Joz/JoZ/T/o
compute Q; = U/7,02I10

m the associated computational cost scales with k

— step A can be performed either online or offline
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Q Q7 Q=1 F

m compute analytical solutions of above problems as follows
compute Py, =V (u()) Tv (o))
H compute the SVD Py, = U/Joz/JoZ/T/o
compute Q; = U/7,02I10

m the associated computational cost scales with k

— step A can be performed either online or offline

36/51



AA216/CME345: MODEL REDUCTION
|—Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

LConsistent Interpolation on Matrix Manifolds

Two-step solution (continue)

m step B: Note that (assuming a Galerkin PROM and orthogonal local
ROBs)

(1)) 8 (6) (v 4 2) =T

and therefore
m first, transform directly each PROM

(3 (1) 8. {u) € (7)., ()
(@7, (4) 075, (1) .. () .0 ()

m then, identify for each element of the transformed tuple an

appropriate matrix manifold and perform the interpolation on this
matrix manifold
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|—Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)
|—Consistent Interpolation on Matrix Manifolds

m Result is shown in cyan color

3.5

B B Precomputed Points
% % %% Exact Eigenvalues
3| AAAA Eigenvalues Obtained by Step B Only

Figenvalues Obtained by Steps A and B

0 0.5 1 1.5 2 25 3
I

m Observe that the result is very accurate
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|—lnterpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

LApplication: Structural Analysis of a Wing-Tank Configuration
m More challenging example: Wing with tank and sloshing effects
m The hydro-elastic effects affect the eigenfrequencies and eigenmodes

of the structure
m The parameter p defines the fuel fill level in the tank 0 < p < 100%
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|—Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)
LApplicatitm: Structural Analysis of a Wing-Tank Configuration

180

Frequency (Hz)

201

20 30 40 50 60 70 80 90 100
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|—Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)
|—Application: Structural Analysis of a Wing-Tank Configuration

220 T T T T T T T
B—® Exact Eigenvalues
A— - —A Eigenvalues Obtained by Step B Only

180f Eigenvalues Obtained by Steps A and B | |

Z
N
o

n
(<3

g

Frequency (Hz)

@
=]

T R———y ] T R 1

20

20 30 40 50 60 70 80 90 100
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AA216/CME345: MODEL REDUCTION
|—Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

L Link with Modal Assurance Criterion
m Modal Assurance Criterion (MAC) between two modes ¢ and v
T
9 ¥)?

MACL® %) = (5T ) wTw)

42/
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|—lnterpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

L Link with Modal Assurance Criterion
m Modal Assurance Criterion (MAC) between two modes ¢ and v
XS
C D)
m What is the MAC between the vectors in the ROBs
V (p)) before and after Step A?

MAC(9,¢) =
\) (u(’)) and
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L Link with Modal Assurance Criterion
m Modal Assurance Criterion (MAC) between two modes ¢ and v
XS
C D)
m What is the MAC between the vectors in the ROBs
V (p)) before and after Step A?

MAC(9,¢) =
\) (u(’)) and

m When ¢ and v are normalized, MAC(¢, ¢) = | ’l/)|2
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|—Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

L Link with Modal Assurance Criterion
m Modal Assurance Criterion (MAC) between two modes ¢ and v
XS
(@7 @) (¥ )
m What is the MAC between the vectors in the ROBs V (u(’)) and
V (p)) before and after Step A?

MAC(¢, ) =

m When ¢ and 1 are normalized, MAC(¢, ¥) = |¢ 1/)|2
m P, is the matrix of square roots of the MACs between the modes

contained in V (u(’)) and those contained in V (u(’ﬂ))
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|—Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)
L Link with Modal Assurance Criterion

m Modal Assurance Criterion (MAC) between two modes ¢ and v
XS
(@7 D)W %)
m What is the MAC between the vectors in the ROBs V (u(’)) and
V (p)) before and after Step A?

MAC(¢, ) =

m When ¢ and % are normalized, MAC(¢, ) = |¢" 9>

m P, is the matrix of square roots of the MACs between the modes
contained in V (u(’)) and those contained in V (u(’ﬂ))

m This is the Modal Assurance Criterion Square Root (MACSR)
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|—Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)
LApplication: Aeroelastic Analysis of a Wing-Tank Configuration

m Aeroelastic study of a wing-tank system

m 2 parameters, namely, the fuel fill level and the free-stream Mach
number M.,

m Database approach

100 @ ® o o o
75
_ @ Database 1
xX
Ts0® L o o ¢ D @ Database 2
2
= @ Database 3
25
o L J o o o

0.6 0.7 0.8 0.9
Mach number

-

11
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|—Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)
|—Application: Aeroelastic Analysis of a Wing-Tank Configuration

HFM Database

0.9

Fill Level % 0 08 Mach Number Fill Level % 0 08 Mach Number

Response Surface ROM Interpolation - Choice 1

Fill Level % 0 o8 Mach Number Fill Level % 0 o8 Mach Number

44 /51



AA216/CME345: MODEL REDUCTION
|—Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)
|—Application: Aeroelastic Analysis of a Wing-Tank Configuration

m Effect of Step A

ROM Interpolation - Choice 1 ROM Interpolation - Choice 1

Fill Level % 06 . Mach Number Fill Level % 0 o8 } Mach Number

m Skipping Step A leads to inaccurate interpolation results (left figure)
m Step A ensures a consistent interpolation (right figure)
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|—Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)
|—Application: Aeroelastic Analysis of a Wing-Tank Configuration

m The consistent interpolation on a matrix manifold is able to detect
aeroelastic bifurcations

HFM

o7
10 06
Fill Level % 0108 Mach Number

Response Surface ROM Interpolation - Choice 1

107 o7

1o 108 10 108
Fill Level % 0 1o Mach Number Fill Level % 0 1o Mach Number
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|—lnterpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)
LApplication: Aeroelastic Analysis of a Wing-Tank Configuration

m The consistent interpolation
aeroelastic bifurcations (0% fuel fill level)
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g
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on a matrix manifold is able to detect
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AA216/CME345: MODEL REDUCTION

|—lnterpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

LApplication: Aeroelastic Analysis of a Wing-Tank Configuration

m The consistent interpolation on a matrix manifold is able to detect
aeroelastic bifurcations (0% fuel fill level)
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|—Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)
LApplication: Aeroelastic Analysis of a Wing-Tank Configuration

m CPU performance

Approach Offline phase Online phase
CPU time (# procs) CPU time (# procs)
HDM - (- 9,152,000 s ~ 106 days (32)
Response Surface 28,000 s = 7 h (32) 2s (1)
PROM Interpolation | 28,000 s ~ 7 h (32) 30s (1)

m Online speedup = 305, 000x
m Offline+Online speedup = 327x
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|—Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)
LMobile Computing

m Mobile computing using a database of PROMs
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