AA216/CME345: MODEL REDUCTION

Local Parametric Approaches

Charbel Farhat Stanford University cfarhat@stanford.edu

Outline

1 Concept of a Database of Local PROMs

- **2** Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)
- **3** Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

- Note: The material covered in this chapter is based on the following published papers:
 - D. Amsallem, C. Farhat. Interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA Journal 2008; 46(7):1803–1813.
 - D. Amsallem, J. Cortial, C. Farhat. Towards real-time CFD-based aeroelastic computations using a database of reduced-order models. AIAA Journal 2010; 48(9):2029-2037.
 - D. Amsallem, C. Farhat. An online method for interpolating linear parametric reduced-order models. SIAM Journal on Scientific Computing 2011; 33(5): 2169-2198.
 - D. Amsallem, Interpolation on manifolds of CFD-based fluid and finite element-based structural reduced-order models for on-line aeroelastic predictions. Ph.D. Thesis, Stanford University, 2010.

Concept of a Database of Local PROMs

Parameterized Linear Time-Invariant Systems

$$\begin{aligned} &\frac{d\mathbf{w}}{dt}(t;\mu) &= \mathbf{A}(\mu)\mathbf{w}(t;\mu) + \mathbf{B}(\mu)\mathbf{u}(t) \\ &\mathbf{y}(t;\mu) &= \mathbf{C}(\mu)\mathbf{w}(t;\mu) + \mathbf{D}(\mu)\mathbf{u}(t) \\ &\mathbf{w}(0;\mu) &= \mathbf{w}_0(\mu) \end{aligned}$$

- $\mathbf{w} \in \mathbb{R}^N$: Vector of state variables
- $\mathbf{u} \in \mathbb{R}^{p}$: Vector of input variables typically $p \ll N$
- **v** $\mathbf{y} \in \mathbb{R}^q$: Vector of output variables typically $q \ll N$
- $\mu \in \mathcal{D} \subset \mathbb{R}^m$: Vector of parameters typically $m \ll N$

-Concept of a Database of Local PROMs

Parametric Petrov-Galerkin Projection-Based PROMs

 Goal: Construct a parametric Projection-based Reduced-Order Model (PROM)

$$\begin{aligned} \frac{d\mathbf{q}}{dt}(t;\mu) &= \mathbf{A}_r(\mu)\mathbf{q}(t;\mu) + \mathbf{B}_r(\mu)\mathbf{u}(t) \\ \mathbf{y}(t;\mu) &= \mathbf{C}_r(\mu)\mathbf{q}(t;\mu) + \mathbf{D}_r(\mu)\mathbf{u}(t) \end{aligned}$$

• based on **local** Reduced-Order Bases (ROBs) $(V(\mu^{(l)}), W(\mu^{(l)}))$ and the approximation

$$\mathsf{w}(t;\mu)pprox\mathsf{V}(\mu)\mathsf{q}(t;\mu)$$

µ^(l) ∈ D; q ∈ ℝ^k
all ROBs have the same dimension k ≪ N
PROM resulting from Petrov-Galerkin projection

$$\begin{aligned} \mathbf{A}_{r}(\mu) &= (\mathbf{W}(\mu)^{T}\mathbf{V}(\mu))^{-1}\mathbf{W}(\mu)^{T}\mathbf{A}(\mu)\mathbf{V}(\mu) \in \mathbb{R}^{k \times k} \\ \mathbf{B}_{r}(\mu) &= (\mathbf{W}(\mu)^{T}\mathbf{V}(\mu))^{-1}\mathbf{W}(\mu)^{T}\mathbf{B}(\mu) \in \mathbb{R}^{k \times p} \\ \mathbf{C}_{r}(\mu) &= \mathbf{C}(\mu)\mathbf{V}(\mu) \in \mathbb{R}^{q \times k}; \quad \mathbf{D}_{r}(\mu) = \mathbf{D}(\mu) \in \mathbb{R}^{q \times p} \\ &= \mathbf{C}(\mu)\mathbf{V}(\mu) \in \mathbb{R}^{q \times k}; \quad \mathbf{D}_{r}(\mu) = \mathbf{D}(\mu) \in \mathbb{R}^{q \times p} \end{aligned}$$

5/51

Concept of a Database of Local PROMs

Sample Application: Aeroelastic Analysis of a Complete Aircraft Configuration

- Hundreds of flight conditions $\mu = (M_{\infty}, \alpha)$ for flutter clearance
- Multiple aircraft configurations

•
$$\mathit{N}_{\mathrm{fluid}} pprox 2 imes 10^{6}$$
, $\mathit{N}_{\mathrm{structure}} pprox 1.6 imes 10^{5}$

Concept of a Database of Local PROMs

Lack of Robustness of Local ROBs for Parameter Changes

Consider the following procedure
 construct local ROBs (V (µ⁽¹⁾), W (µ⁽¹⁾)) at the parametric configuration/flight condition µ⁽¹⁾

Concept of a Database of Local PROMs

Lack of Robustness of Local ROBs for Parameter Changes

- Consider the following procedure
 - **1** construct local ROBs $(\mathbf{V}(\boldsymbol{\mu}^{(1)}), \mathbf{W}(\boldsymbol{\mu}^{(1)}))$ at the parametric

configuration/flight condition $\mu^{(1)}$

2 use these two bases to reduce the HDM at $\mu^{(2)}$

Concept of a Database of Local PROMs

Lack of Robustness of Local ROBs for Parameter Changes

- Consider the following procedure
 - **1** construct local ROBs $\left(\mathbf{V} \left(\boldsymbol{\mu}^{(1)} \right), \mathbf{W} \left(\boldsymbol{\mu}^{(1)} \right) \right)$ at the parametric

configuration/flight condition $\mu^{(1)}$

2 use these two bases to reduce the HDM at $\mu^{(2)}$

3 avoid reconstructing a ROB every time the configuration/flight condition is varied

Concept of a Database of Local PROMs

Lack of Robustness of Local ROBs for Parameter Changes

- Consider the following procedure
 - 1 construct local ROBs $\left(\mathbf{V} \left(\boldsymbol{\mu}^{(1)} \right), \mathbf{W} \left(\boldsymbol{\mu}^{(1)} \right) \right)$ at the parametric configuration/flight condition $\boldsymbol{\mu}^{(1)}$

2 use these two bases to reduce the HDM at $\mu^{(2)}$

- **3** avoid reconstructing a ROB every time the configuration/flight condition is varied
- 4 build the resulting PROM

$$\begin{array}{lll} \frac{d\mathbf{q}}{dt}\left(t;\boldsymbol{\mu}^{(2)}\right) &=& \mathbf{A}_{r}\left(\boldsymbol{\mu}^{(2)}\right)\mathbf{q}\left(t;\boldsymbol{\mu}^{(2)}\right) + \mathbf{B}_{r}\left(\boldsymbol{\mu}^{(2)}\right)\mathbf{u}(t) \\ \mathbf{y}\left(t;\boldsymbol{\mu}^{(2)}\right) &=& \mathbf{C}_{r}\left(\boldsymbol{\mu}^{(2)}\right)\mathbf{q}\left(t;\boldsymbol{\mu}^{(2)}\right) + \mathbf{D}_{r}\left(\boldsymbol{\mu}^{(2)}\right)\mathbf{u}(t) \\ \mathbf{w}\left(t,\boldsymbol{\mu}^{(2)}\right) &\approx& \mathbf{V}\left(\boldsymbol{\mu}^{(1)}\right)\mathbf{q}\left(t;\boldsymbol{\mu}^{(2)}\right) \end{array}$$

where

$$\begin{aligned} \mathbf{A}_{r}\left(\boldsymbol{\mu}^{(2)}\right) &= \left(\mathbf{W}\left(\boldsymbol{\mu}^{(1)}\right)^{T}\mathbf{V}\left(\boldsymbol{\mu}^{(1)}\right)\right)^{-1}\mathbf{W}\left(\boldsymbol{\mu}^{(1)}\right)^{T}\mathbf{A}\left(\boldsymbol{\mu}^{(2)}\right)\mathbf{V}\left(\boldsymbol{\mu}^{(1)}\right) \in \mathbb{R}^{k \times k} \\ \mathbf{B}_{r}\left(\boldsymbol{\mu}^{(2)}\right) &= \left(\mathbf{W}\left(\boldsymbol{\mu}^{(1)}\right)^{T}\mathbf{V}\left(\boldsymbol{\mu}^{(1)}\right)\right)^{-1}\mathbf{W}\left(\boldsymbol{\mu}^{(1)}\right)^{T}\mathbf{B}\left(\boldsymbol{\mu}^{(2)}\right) \in \mathbb{R}^{k \times p} \\ \mathbf{C}_{r}\left(\boldsymbol{\mu}^{(2)}\right) &= \mathbf{C}\left(\boldsymbol{\mu}^{(2)}\right)\mathbf{V}\left(\boldsymbol{\mu}^{(1)}\right) \in \mathbb{R}^{q \times k}; \quad \mathbf{D}_{r}\left(\boldsymbol{\mu}^{(2)}_{+}\right) = \mathbf{D}_{r}\left(\boldsymbol{\mu}^{(2)}_{+}\right) \in \mathbb{R}^{q \times p} \\ \overset{\gamma \in \mathcal{S}}{\to} \mathbf{V}\left(\boldsymbol{\mu}^{(2)}_{+}\right) = \mathbf{V}\left(\boldsymbol{\mu}^{($$

Concept of a Database of Local PROMs

Application: Aeroelastic Analysis of a Complete Aircraft Configuration

Queried flight conditions

•
$$\mu^{(1)} = (M_{\infty,1}, \alpha^{(1)}) = (0.71, \alpha_{\text{trimmed}}(0.71))$$

• $\mu^{(2)} = (M_{\infty,2}, \alpha^{(2)}) = (0.8, \alpha_{\text{trimmed}}(0.8))$

 \Rightarrow the ROBs lack robustness with respect to parameter changes

Concept of a Database of Local PROMs

└─Reconstruction of the ROBs

- The lack of robustness of the ROBs with respect to parameter changes implies that the ROBs should be reconstructed every time the parameters are varied
- Procedure

1 given a queried but unsampled parameter point $oldsymbol{\mu}^{\star} \in \mathcal{D}$

Concept of a Database of Local PROMs

-Reconstruction of the ROBs

- The lack of robustness of the ROBs with respect to parameter changes implies that the ROBs should be reconstructed every time the parameters are varied
- Procedure

1 given a queried but unsampled parameter point $\mu^\star \in \mathcal{D}$

2 construct the HDM operators $(\mathbf{A}(\mu^{\star}), \mathbf{B}(\mu^{\star}), \mathbf{C}(\mu^{\star}), \mathbf{D}(\mu^{\star}))$

Concept of a Database of Local PROMs

- The lack of robustness of the ROBs with respect to parameter changes implies that the ROBs should be reconstructed every time the parameters are varied
- Procedure
 - 1 given a queried but unsampled parameter point $oldsymbol{\mu}^{\star} \in \mathcal{D}$
 - **2** construct the HDM operators $(\mathbf{A}(\mu^{\star}), \mathbf{B}(\mu^{\star}), \mathbf{C}(\mu^{\star}), \mathbf{D}(\mu^{\star}))$
 - 3 generate the ROBs $(V(\mu^*), W(\mu^*))$ using a preferred projection-based model order reduction method

Concept of a Database of Local PROMs

- The lack of robustness of the ROBs with respect to parameter changes implies that the ROBs should be reconstructed every time the parameters are varied
- Procedure
 - f 1 given a queried but unsampled parameter point $m \mu^\star\in \mathcal D$
 - **2** construct the HDM operators $(\mathbf{A}(\mu^*), \mathbf{B}(\mu^*), \mathbf{C}(\mu^*), \mathbf{D}(\mu^*))$
 - **3** generate the ROBs $(V(\mu^*), W(\mu^*))$ using a preferred projection-based model order reduction method
 - 4 construct the PROM operators $(\mathbf{A}_r(\mu^*), \mathbf{B}_r(\mu^*), \mathbf{C}_r(\mu^*), \mathbf{D}_r(\mu^*))$ using a Petrov-Galerkin projection

Concept of a Database of Local PROMs

- The lack of robustness of the ROBs with respect to parameter changes implies that the ROBs should be reconstructed every time the parameters are varied
- Procedure
 - 1 given a queried but unsampled parameter point $oldsymbol{\mu}^{\star} \in \mathcal{D}$
 - **2** construct the HDM operators $(\mathbf{A}(\mu^*), \mathbf{B}(\mu^*), \mathbf{C}(\mu^*), \mathbf{D}(\mu^*))$
 - **3** generate the ROBs $(V(\mu^*), W(\mu^*))$ using a preferred projection-based model order reduction method
 - 4 construct the PROM operators $(\mathbf{A}_r(\mu^*), \mathbf{B}_r(\mu^*), \mathbf{C}_r(\mu^*), \mathbf{D}_r(\mu^*))$ using a Petrov-Galerkin projection
 - 5 exploit the constructed PROM

Concept of a Database of Local PROMs

- The lack of robustness of the ROBs with respect to parameter changes implies that the ROBs should be reconstructed every time the parameters are varied
- Procedure
 - f 1 given a queried but unsampled parameter point $m \mu^\star\in \mathcal D$
 - **2** construct the HDM operators $(\mathbf{A}(\mu^{\star}), \mathbf{B}(\mu^{\star}), \mathbf{C}(\mu^{\star}), \mathbf{D}(\mu^{\star}))$
 - 3 generate the ROBs $(V(\mu^*), W(\mu^*))$ using a preferred projection-based model order reduction method
 - 4 construct the PROM operators $(\mathbf{A}_r(\mu^*), \mathbf{B}_r(\mu^*), \mathbf{C}_r(\mu^*), \mathbf{D}_r(\mu^*))$ using a Petrov-Galerkin projection
 - 5 exploit the constructed PROM
- Question: Is this procedure computationally efficient?

Concept of a Database of Local PROMs

Application: Aeroelastic Analysis of a Complete Aircraft Configuration

• Construction and exploitation in $t \in [0,1]s$ of a linearized aeroelastic F-16 PROM

- The direct generation of the ROB accounts for 89% of the total CPU time
- The overall procedure takes 56 minutes, which renders this approach non-amenable to real-time parametric applications

Concept of a Database of Local PROMs

└One Strategy

- Idea: Pre-compute some quantities offline
- Interpolate these quantities online

-Concept of a Database of Local PROMs

└One Strategy

- Idea: Pre-compute some quantities offline
- Interpolate these quantities online
- What entities should be interpolated and how?

 \Rightarrow interpolate the ROBs given the above CPU time analysis

・ロン ・回 と ・ ヨ と ・ ヨ と

Concept of a Database of Local PROMs

└One Strategy

Idea

■ pre-compute ROBs at a number of sampled parameter points $\left\{\mu^{(l)} \in \mathcal{D}\right\}_{l=1}^{N_s}$

interpolate these ROBs to obtain a ROB at a queried but unsampled parameter configuration $\mu^* \notin \left\{\mu^{(l)}\right\}_{l=1}^{N_s}$

Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

└-Interpolation of the ROBs

For simplicity, assume an orthogonal Galerkin projection

$$\mathbf{V}(\mu) = \mathbf{W}(\mu)$$
 and $\mathbf{V}(\mu)^T \mathbf{V}(\mu) = \mathbf{I}_k$

Procedure

Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

└-Interpolation of the ROBs

For simplicity, assume an orthogonal Galerkin projection

$$\mathbf{V}(\mu) = \mathbf{W}(\mu)$$
 and $\mathbf{V}(\mu)^T \mathbf{V}(\mu) = \mathbf{I}_k$

Procedure

1 given a queried but unsampled parameter point $\mu^{\star} \in \mathcal{D}$

└─Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

└-Interpolation of the ROBs

For simplicity, assume an orthogonal Galerkin projection

$$\mathbf{V}(\mu) = \mathbf{W}(\mu)$$
 and $\mathbf{V}(\mu)^T \mathbf{V}(\mu) = \mathbf{I}_k$

- Procedure
 - f 1 given a queried but unsampled parameter point $m \mu^\star \in \mathcal{D}$.
 - **2** construct the HDM operators $(\mathbf{A}(\mu^{\star}), \mathbf{B}(\mu^{\star}), \mathbf{C}(\mu^{\star}), \mathbf{D}(\mu^{\star}))$

Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

└-Interpolation of the ROBs

For simplicity, assume an orthogonal Galerkin projection

$$\mathbf{V}(\mu) = \mathbf{W}(\mu)$$
 and $\mathbf{V}(\mu)^{ op} \mathbf{V}(\mu) = \mathbf{I}_k$

Procedure

- **1** given a queried but unsampled parameter point $\mu^{\star} \in \mathcal{D}$
- 2 construct the HDM operators $(A(\mu^*), B(\mu^*), C(\mu^*), D(\mu^*))$
- 3 compute the ROB $V(\mu^{\star})$ by interpolating the pre-computed ROBs

Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

└-Interpolation of the ROBs

For simplicity, assume an orthogonal Galerkin projection

$$\mathbf{V}(\mu) = \mathbf{W}(\mu)$$
 and $\mathbf{V}(\mu)^T \mathbf{V}(\mu) = \mathbf{I}_k$

Procedure

- **1** given a queried but unsampled parameter point $\mu^{\star} \in \mathcal{D}$
- **2** construct the HDM operators $(\mathbf{A}(\mu^*), \mathbf{B}(\mu^*), \mathbf{C}(\mu^*), \mathbf{D}(\mu^*))$
- **3** compute the ROB $V(\mu^*)$ by interpolating the pre-computed ROBs
- 4 construct the PROM operators $(\mathbf{A}_r(\mu^*), \mathbf{B}_r(\mu^*), \mathbf{C}_r(\mu^*), \mathbf{D}_r(\mu^*))$ by Galerkin projection

Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

└-Interpolation of the ROBs

For simplicity, assume an orthogonal Galerkin projection

$$\mathbf{V}(\mu) = \mathbf{W}(\mu)$$
 and $\mathbf{V}(\mu)^T \mathbf{V}(\mu) = \mathbf{I}_k$

Procedure

- **1** given a queried but unsampled parameter point $\mu^{\star} \in \mathcal{D}$
- **2** construct the HDM operators $(\mathbf{A}(\mu^*), \mathbf{B}(\mu^*), \mathbf{C}(\mu^*), \mathbf{D}(\mu^*))$
- **3** compute the ROB $V(\mu^*)$ by interpolating the pre-computed ROBs
- 4 construct the PROM operators $(\mathbf{A}_r(\mu^*), \mathbf{B}_r(\mu^*), \mathbf{C}_r(\mu^*), \mathbf{D}_r(\mu^*))$ by Galerkin projection

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへ()

13/51

5 exploit the constructed PROM

Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

└-Interpolation of the ROBs

For simplicity, assume an orthogonal Galerkin projection

$$\mathbf{V}(\mu) = \mathbf{W}(\mu)$$
 and $\mathbf{V}(\mu)^T \mathbf{V}(\mu) = \mathbf{I}_k$

Procedure

- f 1 given a queried but unsampled parameter point $m \mu^\star\in \mathcal D$
- **2** construct the HDM operators $(\mathbf{A}(\mu^*), \mathbf{B}(\mu^*), \mathbf{C}(\mu^*), \mathbf{D}(\mu^*))$
- **3** compute the ROB $V(\mu^*)$ by interpolating the pre-computed ROBs
- 4 construct the PROM operators $(\mathbf{A}_r(\mu^*), \mathbf{B}_r(\mu^*), \mathbf{C}_r(\mu^*), \mathbf{D}_r(\mu^*))$ by Galerkin projection
- 5 exploit the constructed PROM
- Question: How does one interpolate pre-computed ROBs?

Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

Direct Interpolation of the ROBs

• Tempting idea: Interpolate the matrices $\mathbf{V}\left(\boldsymbol{\mu}^{(\prime)}
ight)\in\mathbb{R}^{N imes k}$ entry-by-entry

└─Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

Direct Interpolation of the ROBs

- Tempting idea: Interpolate the matrices $\mathbf{V}(\boldsymbol{\mu}^{(l)}) \in \mathbb{R}^{N imes k}$ entry-by-entry
- Input
 - queried parameter μ^*
 - pre-computed ROBs $\left\{ \mathbf{V} \left(\mu^{(l)} \right) \right\}_{l=1}^{N_s}$
 - multi-variate interpolation in \mathbb{R}^{m} (operator \mathcal{I})

$$m{a}(m{\mu}) = \mathcal{I}\left(m{\mu}; \left\{m{a}\left(m{\mu}^{(l)}
ight), m{\mu}^{(l)}
ight\}_{l=1}^{N_s}
ight)$$

Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

└─Direct Interpolation of the ROBs

Tempting idea: Interpolate the matrices $\mathbf{V}\left(\boldsymbol{\mu}^{(l)}
ight) \in \mathbb{R}^{N imes k}$ entry-by-entry

Input

queried parameter μ^*

- pre-computed ROBs $\left\{ \mathbf{V} \left(\boldsymbol{\mu}^{(l)} \right) \right\}_{l=1}^{N_s}$
- multi-variate interpolation in \mathbb{R}^{m} (operator \mathcal{I})

$$\boldsymbol{a}(\boldsymbol{\mu}) = \mathcal{I}\left(\boldsymbol{\mu}; \left\{ \boldsymbol{a}\left(\boldsymbol{\mu}^{(l)}\right), \boldsymbol{\mu}^{(l)}
ight\}_{l=1}^{N_{s}}
ight)$$

14/51

Algorithm

- 1: for i = 1 : N do 2: for j = 1 : k do 3: compute $v_{ij}(\mu^*) = \mathcal{I}\left(\mu^*; \{v_{ij}(\mu^{(l)}), \mu^{(l)}\}_{l=1}^{N_s}\right)$ 4: end for
- 5: end for
- 6: form $\mathbf{V}(\mu^{\star}) = [v_{ij}(\mu^{\star})]$

Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

Direct Interpolation Does Not Work

• Example • N = 3, k = 2, m = 1• for $\mu^{(1)} = 0$: $\mathbf{V}(\mu^{(1)}) = \mathbf{V}(0) = (\mathbf{v}_1 \ \mathbf{v}_2)^T$ • for $\mu^{(2)} = 1$: $\mathbf{V}(\mu^{(2)}) = \mathbf{V}(1) = (-\mathbf{v}_1 \ \mathbf{v}_2)^T$ • target parameter $\mu = 0.5$ • linear interpolation

 $_$ Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

└─Direct Interpolation Does Not Work

Example N = 3, k = 2, m = 1 for $\mu^{(1)} = 0$: $\mathbf{V} (\mu^{(1)}) = \mathbf{V}(0) = (\mathbf{v}_1 \ \mathbf{v}_2)^T$ for $\mu^{(2)} = 1$: $\mathbf{V} (\mu^{(2)}) = \mathbf{V}(1) = (-\mathbf{v}_1 \ \mathbf{v}_2)^T$ target parameter $\mu = 0.5$ linear interpolation Interpolatory result

$$oldsymbol{V}(0.5) = 0.5 \left(oldsymbol{V}(0) + oldsymbol{V}(1)
ight) = \left(0.5(oldsymbol{v}_1 - oldsymbol{v}_1) \ 0.5(oldsymbol{v}_2 + oldsymbol{v}_2)
ight)^{ au} = \left(0 \ oldsymbol{v}_2
ight)^{ au}$$

 $_$ Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

Direct Interpolation Does Not Work

• Example • N = 3, k = 2, m = 1• for $\mu^{(1)} = 0$: $\mathbf{V} (\mu^{(1)}) = \mathbf{V}(0) = (\mathbf{v}_1 \ \mathbf{v}_2)^T$ • for $\mu^{(2)} = 1$: $\mathbf{V} (\mu^{(2)}) = \mathbf{V}(1) = (-\mathbf{v}_1 \ \mathbf{v}_2)^T$ • target parameter $\mu = 0.5$ • linear interpolation • Interpolatory result

$$oldsymbol{V}(0.5) = 0.5 \left(oldsymbol{V}(0) + oldsymbol{V}(1)
ight) = \left(0.5(oldsymbol{v}_1 - oldsymbol{v}_1) \ 0.5(oldsymbol{v}_2 + oldsymbol{v}_2)
ight)^{ au} = \left(0 \ oldsymbol{v}_2
ight)^{ au}$$

- What went wrong?
 - a relevant constraint was neither identified nor preserved
 - the wrong entity was interpolated

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

└─Subspace Interpolation

Reduced-order equation

$$rac{d \mathbf{q}}{d t}(t; oldsymbol{\mu}) = \mathbf{V}(oldsymbol{\mu})^{\mathsf{T}} \mathbf{A}(oldsymbol{\mu}) \mathbf{V}(oldsymbol{\mu}) \mathbf{q}(t; oldsymbol{\mu}) + \mathbf{V}(oldsymbol{\mu})^{\mathsf{T}} \mathbf{B}(oldsymbol{\mu}) \mathbf{u}(t)$$

Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

└─Subspace Interpolation

Reduced-order equation

$$rac{d\mathbf{q}}{dt}(t;\mu) = \mathbf{V}(\mu)^{\mathsf{T}} \mathbf{A}(\mu) \mathbf{V}(\mu) \mathbf{q}(t;\mu) + \mathbf{V}(\mu)^{\mathsf{T}} \mathbf{B}(\mu) \mathbf{u}(t)$$

Equivalent high-dimensional equation for $\widetilde{\mathbf{w}}(t; \mu) = \mathbf{V}(\mu)\mathbf{q}(t; \mu)$

$$\frac{d\widetilde{\mathbf{w}}}{dt}(t;\mu) = \mathbf{\Pi}_{\mathbf{V}(\mu),\mathbf{V}(\mu)}\mathbf{A}(\mu)\widetilde{\mathbf{w}}(t;\mu) + \mathbf{\Pi}_{\mathbf{V}(\mu),\mathbf{V}(\mu)}\mathbf{B}(\mu)\mathbf{u}(t)$$
\square Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

└─Subspace Interpolation

Reduced-order equation

$$rac{d\mathbf{q}}{dt}(t;\mu) = \mathbf{V}(\mu)^{\mathsf{T}} \mathbf{A}(\mu) \mathbf{V}(\mu) \mathbf{q}(t;\mu) + \mathbf{V}(\mu)^{\mathsf{T}} \mathbf{B}(\mu) \mathbf{u}(t)$$

Equivalent high-dimensional equation for $\widetilde{\mathbf{w}}(t; \mu) = \mathbf{V}(\mu)\mathbf{q}(t; \mu)$

$$\frac{d\widetilde{\mathbf{w}}}{dt}(t;\mu) = \mathbf{\Pi}_{\mathbf{V}(\mu),\mathbf{V}(\mu)}\mathbf{A}(\mu)\widetilde{\mathbf{w}}(t;\mu) + \mathbf{\Pi}_{\mathbf{V}(\mu),\mathbf{V}(\mu)}\mathbf{B}(\mu)\mathbf{u}(t)$$

The PROM solution is independent of the choice of ROB associated with the projection subspace

 \implies the correct entity to interpolate is $S(\mu) = \text{range}(V(\mu))$

Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

L The Grassmann Manifold

 \blacksquare A subspace ${\mathcal S}$ is typically represented by a ROB

└─Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

- \blacksquare A subspace ${\mathcal S}$ is typically represented by a ROB
- The appropriate choice of a ROB is not unique

$$S = \mathsf{range}(\mathbf{VQ}) = \mathsf{range}(\mathbf{VQ}), \ \forall \mathbf{Q} \in \mathsf{GL}(k)$$

Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

- \blacksquare A subspace ${\mathcal S}$ is typically represented by a ROB
- The appropriate choice of a ROB is not unique

$$S = \mathsf{range}(\mathbf{VQ}) = \mathsf{range}(\mathbf{VQ}), \ \forall \mathbf{Q} \in \mathsf{GL}(k)$$

- Manifolds of interest
 - $\mathcal{G}(k, N)$ (Grassmann manifold): Set of subspaces in \mathbb{R}^N of dimension k
 - ST(k, N) (orthogonal Stiefel manifold): Set of orthogonal ROB matrices in ℝ^{N×k}
 - GL(k) (general linear group): Set of non-singular square matrices of size k
 - $\mathcal{O}(k)$: Set of orthogonal square matrices of size k

Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

L The Grassmann Manifold

- \blacksquare A subspace ${\mathcal S}$ is typically represented by a ROB
- The appropriate choice of a ROB is not unique

$$S = \mathsf{range}(\mathbf{VQ}) = \mathsf{range}(\mathbf{VQ}), \ \forall \mathbf{Q} \in \mathsf{GL}(k)$$

- Manifolds of interest
 - $\mathcal{G}(k, N)$ (Grassmann manifold): Set of subspaces in \mathbb{R}^N of dimension k
 - ST(k, N) (orthogonal Stiefel manifold): Set of orthogonal ROB matrices in ℝ^{N×k}
 - GL(k) (general linear group): Set of non-singular square matrices of size k
 - $\mathcal{O}(k)$: Set of orthogonal square matrices of size k

Properties

- $\mathcal{O}(k) \subset \mathsf{GL}(k)$
- $\mathcal{ST}(N, N) = \mathcal{O}(N)$

Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

- Case of projection-based model order reduction with orthogonal ROBs
 - $\mathbf{V}(\boldsymbol{\mu}) \in \mathcal{ST}(k, N)$
 - range($V(\mu)$) $\in G(k, N)$

└─Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

- Case of projection-based model order reduction with orthogonal ROBs
 - $V(\mu) \in \mathcal{ST}(k, N)$
 - range($V(\mu)$) $\in G(k, N)$
- Equivalence class

└─Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

- Case of projection-based model order reduction with orthogonal ROBs
 - $\mathbf{V}(\boldsymbol{\mu}) \in \mathcal{ST}(k, N)$
 - range($\mathbf{V}(\boldsymbol{\mu})$) $\in \mathcal{G}(k, N)$
- Equivalence class

Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

- Case of projection-based model order reduction with orthogonal ROBs
 - $\mathbf{V}(\boldsymbol{\mu}) \in \mathcal{ST}(k, N)$
 - range($\mathbf{V}(\boldsymbol{\mu})$) $\in \mathcal{G}(k, N)$
- Equivalence class

 - an element of the Grassmann manifold defines an entire class of equivalence on the Stiefel manifold

Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

- Case of projection-based model order reduction with orthogonal ROBs
 - $\mathbf{V}(\boldsymbol{\mu}) \in \mathcal{ST}(k, N)$
 - range($\mathbf{V}(\boldsymbol{\mu})$) $\in \mathcal{G}(k, N)$
- Equivalence class

 - an element of the Grassmann manifold defines an entire class of equivalence on the Stiefel manifold
 - this class of equivalence is defined by the range operation

$$\forall \mathbf{V}_1, \mathbf{V}_2 \in \mathcal{ST}(k, N), \ \mathbf{V}_1 \sim \mathbf{V}_2 \quad \Leftrightarrow \quad \mathsf{range}(\mathbf{V}_1) = \mathsf{range}(\mathbf{V}_2) \\ \Leftrightarrow \quad \exists \mathbf{Q} \in \mathcal{O}(k) \text{ s.t } \mathbf{V}_1 = \mathbf{V}_2 \mathbf{Q}$$

Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

L The Grassmann Manifold

- Case of projection-based model order reduction with orthogonal ROBs
 - $\mathbf{V}(\boldsymbol{\mu}) \in \mathcal{ST}(k, N)$
 - range($\mathbf{V}(\boldsymbol{\mu})$) $\in \mathcal{G}(k, N)$
- Equivalence class

 - an element of the Grassmann manifold defines an entire class of equivalence on the Stiefel manifold
 - this class of equivalence is defined by the range operation

$$\begin{array}{ll} \forall \ \mathbf{V}_1, \mathbf{V}_2 \in \mathcal{ST}(k, N), \ \mathbf{V}_1 \sim \mathbf{V}_2 & \Leftrightarrow & \mathsf{range}(\mathbf{V}_1) = \mathsf{range}(\mathbf{V}_2) \\ & \Leftrightarrow & \exists \mathbf{Q} \in \mathcal{O}(k) \ \mathsf{s.t} \ \mathbf{V}_1 = \mathbf{V}_2 \mathbf{Q} \end{array}$$

• therefore, the Grassmann manifold is a **quotient manifold** denoted as

$$\mathcal{G}(k, N) = \mathcal{ST}(k, N) / \mathcal{O}(k)$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへ()

18/51

Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

L The Grassmann Manifold

- Case of projection-based model order reduction with orthogonal ROBs
 - $\mathbf{V}(\boldsymbol{\mu}) \in \mathcal{ST}(k, N)$
 - range($\mathbf{V}(\boldsymbol{\mu})$) $\in \mathcal{G}(k, N)$
- Equivalence class

 - an element of the Grassmann manifold defines an entire class of equivalence on the Stiefel manifold
 - this class of equivalence is defined by the range operation

$$\begin{array}{ll} \forall \ \mathbf{V}_1, \mathbf{V}_2 \in \mathcal{ST}(k, N), \ \mathbf{V}_1 \sim \mathbf{V}_2 & \Leftrightarrow & \mathsf{range}(\mathbf{V}_1) = \mathsf{range}(\mathbf{V}_2) \\ & \Leftrightarrow & \exists \mathbf{Q} \in \mathcal{O}(k) \ \mathsf{s.t} \ \mathbf{V}_1 = \mathbf{V}_2 \mathbf{Q} \end{array}$$

therefore, the Grassmann manifold is a quotient manifold denoted as

$$\mathcal{G}(k, N) = \mathcal{ST}(k, N) / \mathcal{O}(k)$$

 Hence, one should interpolate subspaces, but has access in practice to (orthogonal) ROBs

ackslash Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

L The Grassmann Manifold

- Case of projection-based model order reduction with orthogonal ROBs
 - $\mathbf{V}(\boldsymbol{\mu}) \in \mathcal{ST}(k, N)$
 - range($\mathbf{V}(\boldsymbol{\mu})$) $\in \mathcal{G}(k, N)$
- Equivalence class

 - an element of the Grassmann manifold defines an entire class of equivalence on the Stiefel manifold
 - this class of equivalence is defined by the range operation

$$\begin{array}{ll} \forall \ \mathbf{V}_1, \mathbf{V}_2 \in \mathcal{ST}(k, N), \ \mathbf{V}_1 \sim \mathbf{V}_2 & \Leftrightarrow & \mathsf{range}(\mathbf{V}_1) = \mathsf{range}(\mathbf{V}_2) \\ & \Leftrightarrow & \exists \mathbf{Q} \in \mathcal{O}(k) \ \mathsf{s.t} \ \mathbf{V}_1 = \mathbf{V}_2 \mathbf{Q} \end{array}$$

• therefore, the Grassmann manifold is a quotient manifold denoted as

$$\mathcal{G}(k, N) = \mathcal{ST}(k, N) / \mathcal{O}(k)$$

- Hence, one should interpolate subspaces, but has access in practice to (orthogonal) ROBs
- Solution: Perform interpolation on the Grasmann manifold using entities belonging to the (orthogonal) Stiefel manifold

 ackslash Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

- Matrix manifolds of interest
 - $\mathcal{G}(k, N)$ (Grassmann manifold): Set of subspaces in \mathbb{R}^N of dimension k
 - ST(k, N) (orthogonal Stiefel manifold): Set of orthogonal ROB matrices in ℝ^{N×k}

Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

└─Matrix Manifolds

- Embedded matrix manifolds
 - the sphere

$$\mathbb{S}(\mathsf{N}) = \left\{ \mathsf{w} \in \mathbb{R}^{\mathsf{N}} ext{ s.t. } \| \mathsf{w} \|_2 = 1
ight\}$$

the manifold of orthogonal matrices

$$\mathcal{O}(N) = \left\{ \mathbf{M} \in \mathbb{R}^{N \times N} \text{ s.t. } \mathbf{M}^{T} \mathbf{M} = \mathbf{I}_{N} \right\}$$

the general linear group

$$\mathsf{GL}(N) = \left\{ \mathbf{M} \in \mathbb{R}^{N \times N} \text{ s.t. } \mathsf{det}\left(\mathbf{M}\right) \neq 0 \right\}$$

the manifold of symmetric positive definite matrices

$$\mathsf{SPD}(N) = \left\{ \mathsf{M} \in \mathbb{R}^{N \times N} \text{ s.t. } \mathsf{M} = \mathsf{M}^{\mathsf{T}} \& \mathsf{w}^{\mathsf{T}} \mathsf{M} \mathsf{w} > 0 \ \forall \mathsf{w} \neq \mathbf{0} \right\}$$

the orthogonal Stiefel manifold

$$\mathcal{ST}(k,N) = \left\{ \mathbf{M} \in \mathbb{R}^{N \times k} \text{ s.t. } \mathbf{M}^T \mathbf{M} = \mathbf{I}_k \right\}$$

Quotient matrix manifold
 the Grassmann manifold

 \square Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

Interpolation on Matrix Manifolds

• First example: The circle (sphere $\mathbb{S}(N)$ for N = 2)

 \square Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

LInterpolation on Matrix Manifolds

• First example: The circle (sphere $\mathbb{S}(N)$ for N = 2)

 Standard interpolation fails to preserve a nonlinear manifold (essentially because standard interpolation applies only in vector spaces)

 \square Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

LInterpolation on Matrix Manifolds

• First example: The circle (sphere $\mathbb{S}(N)$ for N = 2)

- Standard interpolation fails to preserve a nonlinear manifold (essentially because standard interpolation applies only in vector spaces)
- Idea: perform interpolation in a linear space ⇒ on a tangent space to the manifold

 \square Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

Interpolation on the Tangent Space to a Matrix Manifold

Input

• pre-computed matrices $\left\{ \mathbf{A}(\boldsymbol{\mu}^{(l)}) \in \mathbb{R}^{N imes M} \right\}_{l=1}^{N_{s}}$

• map $m_{\mathbf{A}}$ from the manifold \mathcal{M} to the tangent space of \mathcal{M} at \mathbf{A} • multi-variate interpolation in \mathbb{R}^m

$$\left(\mathsf{operator} \; \pmb{a}(\pmb{\mu}) = \mathcal{I}\left(\pmb{\mu}; \left\{ \pmb{a}\left(\pmb{\mu}^{(l)}
ight), \pmb{\mu}^{(l)}
ight\}_{l=1}^{N_s}
ight)
ight)$$

• inverse map $m_{\mathbf{A}}^{-1}$ from the tangent space to \mathcal{M} at \mathbf{A} to the manifold \mathcal{M}

Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

Interpolation on the Tangent Space to a Matrix Manifold

Input

- pre-computed matrices $\left\{ \mathbf{A}(\boldsymbol{\mu}^{(l)}) \in \mathbb{R}^{N imes M} \right\}_{l=1}^{N_{s}}$
- map $m_{\mathbf{A}}$ from the manifold \mathcal{M} to the tangent space of \mathcal{M} at \mathbf{A} • multi-variate interpolation in \mathbb{R}^m

$$\left(\mathsf{operator} \; \pmb{a}(\pmb{\mu}) = \mathcal{I}\left(\pmb{\mu}; \left\{ \pmb{a}\left(\pmb{\mu}^{(l)}
ight), \pmb{\mu}^{(l)}
ight\}_{l=1}^{N_s}
ight)
ight)$$

- inverse map $m_{\mathbf{A}}^{-1}$ from the tangent space to \mathcal{M} at \mathbf{A} to the manifold \mathcal{M}
- Requirement: The interpolation operator *I* must preserve the tangent space ⇒ for example,

$$m{a}(m{\mu}^{\star}) = \mathcal{I}\left(m{\mu}^{\star}; \left\{m{a}\left(m{\mu}^{(l)}
ight), m{\mu}^{(l)}
ight\}_{l=1}^{N_{s}}
ight) = \sum_{l=1}^{N_{s}} heta_{l}(m{\mu}^{\star})m{a}\left(m{\mu}^{(l)}
ight)$$

Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

Interpolation on the Tangent Space to a Matrix Manifold

• Algorithm 1: for l = 1: N_s do 2: compute $\Gamma(\mu^{(l)}) = m_A(A(\mu^{(l)}))$ 3: end for 4: for i = 1: N do 5: for j = 1: M do 6: compute $\Gamma_{ij}(\mu^*) = \mathcal{I}(\mu^*; \{\Gamma_{ij}(\mu^{(l)}), \mu^{(l)}\}_{l=1}^{N_s})$ 7: end for 8: end for 9: form $\Gamma(\mu^*) = [\Gamma_{ij}(\mu^*)]$ and compute $A(\mu^*) = m_A^{-1}(\Gamma(\mu^*))$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへ()

23/51

igsquirin Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

└─Differential Geometry

• How does one find m_A and its inverse m_A^{-1} ?

Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

└─Differential Geometry

- How does one find m_A and its inverse m_A^{-1} ?
- Idea: Use concepts from differential geometry

Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

Differential Geometry

- How does one find m_A and its inverse m_A^{-1} ?
- Idea: Use concepts from differential geometry
- Geodesic
 - is a generalization of a "straight line" to "curved spaces" (manifolds)
 - is uniquely defined given a point x on the manifold and a tangent vector χ at this point

$$egin{aligned} &\gamma(t;x,\xi):[0,1]
ightarrow\mathcal{M}\ &\gamma(0;x,\xi)=x,\ \dot{\gamma}(0,x,\xi)=s \end{aligned}$$

 ackslash Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

Differential Geometry

- How does one find m_A and its inverse m_A^{-1} ?
- Idea: Use concepts from differential geometry
- Geodesic
 - is a generalization of a "straight line" to "curved spaces" (manifolds)
 - is uniquely defined given a point x on the manifold and a tangent vector χ at this point

$$\gamma(t; x, \xi) : [0, 1] \to \mathcal{M}$$

$$\gamma(0; x, \xi) = x, \quad \dot{\gamma}(0, x, \xi) = \xi$$

Exponential map

 $\mathsf{Exp}_{x}:\mathcal{T}_{x}\mathcal{M}\to\mathcal{M}\;\;\xi\longmapsto\gamma(1;x,\xi)$

 ackslash Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

Differential Geometry

- How does one find m_A and its inverse m_A^{-1} ?
- Idea: Use concepts from differential geometry
- Geodesic
 - is a generalization of a "straight line" to "curved spaces" (manifolds)
 - is uniquely defined given a point x on the manifold and a tangent vector χ at this point

$$\gamma(t; x, \xi) : [0, 1] \rightarrow \mathcal{M}$$

 $\gamma(0; x, \xi) = x, \quad \dot{\gamma}(0, x, \xi) = \xi$

Exponential map

$$\mathsf{Exp}_{x}:\mathcal{T}_{x}\mathcal{M}\to\mathcal{M}\;\;\xi\longmapsto\gamma(1;x,\xi)$$

• Logarithmic map (defined in a neighborhood U_x of x)

 $\mathsf{Log}_x:\mathcal{U}_x\subset\mathcal{M}\to\mathcal{T}_x\mathcal{M}\ \ y\longmapsto\mathsf{Exp}_x^{-1}(y)=\mathsf{Log}_x(y)=\dot{\gamma}(0,x,\xi)=\xi$

 \square Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

LInterpolation on a Tangent Space to a Matrix Manifold

Application to the interpolation of points on a circle

25 / 51

└─Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

LInterpolation on a Tangent Space to the Grassmann Manifold

- Logarithmic map
 - 1 compute a thin SVD

$$(\mathbf{I} - \mathbf{V}_0 \mathbf{V}_0^T) \mathbf{V}_i (\mathbf{V}_0^T \mathbf{V}_i)^{-1} = \mathbf{U} \mathbf{\Sigma} \mathbf{Z}^T$$

2 compute

$$\mathbf{\Gamma} = \mathbf{U} ext{tan}^{-1}(\mathbf{\Sigma}) \mathbf{Z}^{\mathcal{T}} \in \mathbb{R}^{N imes k}$$

$$\textbf{3} \ \mathbf{\Gamma} \leftrightarrow \mathsf{Log}_{\mathcal{S}_0}(\mathcal{S}_i) \in \mathcal{T}_{\mathcal{S}_0}\mathcal{G}(k, N)$$

└─Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

LInterpolation on a Tangent Space to the Grassmann Manifold

- Logarithmic map
 - 1 compute a thin SVD

$$(\mathbf{I} - \mathbf{V}_0 \mathbf{V}_0^T) \mathbf{V}_i (\mathbf{V}_0^T \mathbf{V}_i)^{-1} = \mathbf{U} \mathbf{\Sigma} \mathbf{Z}^T$$

2 compute

$$\boldsymbol{\Gamma} = \boldsymbol{\mathsf{U}} \tan^{-1}(\boldsymbol{\Sigma}) \boldsymbol{\mathsf{Z}}^{\mathcal{T}} \in \mathbb{R}^{N \times k}$$

$$\textbf{3} \ \mathbf{\Gamma} \leftrightarrow \text{Log}_{\mathcal{S}_0}(\mathcal{S}_i) \in \mathcal{T}_{\mathcal{S}_0}\mathcal{G}(k,N)$$

• Exponential map of
$$\widetilde{\chi} \in \mathcal{T}_{S_0}\mathcal{G}(k, N) \leftrightarrow \Gamma$$

• compute a thin SVD
 $\widetilde{\Gamma} = \mathsf{U}\Sigma\mathsf{Z}^{\mathsf{T}}$

2 compute

$$\mathbf{V} = (\mathbf{V}_0 \mathbf{Z} \cos \mathbf{\Sigma} + \mathbf{U} \sin \mathbf{\Sigma}) \in \mathcal{ST}(k, N)$$

3 range(\mathbf{V}) = Exp $_{\mathcal{S}_0}(\widetilde{\boldsymbol{\chi}}) \in \mathcal{G}(k, N)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 \square Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

LInterpolation on a Tangent Space to the Grassmann Manifold

- Logarithmic map
 - 1 compute a thin SVD

$$(\mathbf{I} - \mathbf{V}_0 \mathbf{V}_0^T) \mathbf{V}_i (\mathbf{V}_0^T \mathbf{V}_i)^{-1} = \mathbf{U} \mathbf{\Sigma} \mathbf{Z}^T$$

2 compute

$$\boldsymbol{\Gamma} = \boldsymbol{\mathsf{U}} \, \mathsf{tan}^{-1}(\boldsymbol{\Sigma}) \boldsymbol{\mathsf{Z}}^{\mathcal{T}} \in \mathbb{R}^{N \times k}$$

$$\textbf{3} \hspace{0.1 in} \textbf{\Gamma} \leftrightarrow \mathsf{Log}_{\mathcal{S}_0}(\mathcal{S}_i) \in \mathcal{T}_{\mathcal{S}_0}\mathcal{G}(k,N)$$

• Exponential map of
$$\widetilde{\chi} \in \mathcal{T}_{\mathcal{S}_0}\mathcal{G}(k, N) \leftrightarrow \Gamma$$

• compute a thin SVD
 $\widetilde{\Gamma} = \mathbf{U}\Sigma\mathbf{Z}^{\mathcal{T}}$

2 compute

$$\mathbf{V} = (\mathbf{V}_0 \mathbf{Z} \cos \mathbf{\Sigma} + \mathbf{U} \sin \mathbf{\Sigma}) \in \mathcal{ST}(k, N)$$

3 range(
$$oldsymbol{V}$$
) = Exp $_{\mathcal{S}_0}(\widetilde{oldsymbol{\chi}})\in\mathcal{G}(k,N)$

Note: The trigonometric operators apply only to the diagonal entries of the relevant matrices

└─Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

LInterpolation on a Tangent Space to the Grassmann Manifold

Interpolation on the tangent space to $\mathcal{G}(k, N)$

\square Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

Application to Linearized Aeroelasticity

Prediction of the linearized aeroelastic behavior of an F-16 configuration

28/51

 \square Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

Application to Linearized Aeroelasticity

Prediction of the linearized aeroelastic behavior of an F-18 configuration: Effect of the choice of the tangent plane

\square Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

Application to Linearized Aeroelasticity

 Prediction of the linearized aeroelastic behavior of the wing of a commercial aircraft (Airbus)

30 / 51

 \square Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

Application to Linearized Aeroelasticity

• Construction and exploitation in $t \in [0, 1]$ s of a linearized aeroelastic PROM

Overall CPU time is decreased from 55 minutes to 8 minutes

└ Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

Application to Linearized Aeroelasticity

Construction and exploitation in $t \in [0, 1]$ s of a linearized aeroelastic PROM

Overall CPU time is decreased from 55 minutes to 8 minutes
 New dominant cost: Construction of the HDM operators

 $(\mathsf{A}(\mu^{\star}),\mathsf{B}(\mu^{\star}),\mathsf{C}(\mu^{\star}),\mathsf{D}(\mu^{\star}))$
-Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

Application to Linearized Aeroelasticity

Construction and exploitation in $t \in [0, 1]$ s of a linearized aeroelastic PROM

Overall CPU time is decreased from 55 minutes to 8 minutes
New dominant cost: Construction of the HDM operators

 $(\mathsf{A}(\mu^{\star}),\mathsf{B}(\mu^{\star}),\mathsf{C}(\mu^{\star}),\mathsf{D}(\mu^{\star}))$

 \Longrightarrow alternative approach is to interpolate the reduced-order operators

$$\left(\mathsf{A}_{r}(\mu^{(l)}),\mathsf{B}_{r}(\mu^{(l)}),\mathsf{C}_{r}(\mu^{(l)}),\mathsf{D}_{r}(\mu^{(l)})
ight)$$

31 / 51

└─Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

Application: Structural Analysis of a Simple Mass-Spring System

Simple example: Mass-spring system with two degrees of freedom

$$\mathsf{M}\frac{d^{2}\mathbf{w}}{dt^{2}}(t) + \mathsf{K}(\mu)\mathsf{w}(t) = \mathsf{Bu}(t), \quad \boxed{\mu = k_{1} - 0.1}$$

$$k_{1} \qquad \widetilde{k} \qquad k_{2}$$

$$m_{1} \qquad m_{2} \qquad m_{2}$$

$$m_{2} \qquad m_{2}$$

$$m_{1} \qquad m_{2} \qquad m_{2}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

Application: Structural Analysis of a Simple Mass-Spring System

Projection-based model order reduction by modal truncation: $V(\mu)$ is the matrix of the two eigenmodes of the structural system

 $\mathsf{K}(oldsymbol{\mu})\mathsf{v}_{j}(oldsymbol{\mu})=\lambda_{j}(oldsymbol{\mu})\mathsf{M}\mathsf{v}_{j}(oldsymbol{\mu})$

 \square Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

Application: Structural Analysis of a Simple Mass-Spring System

Projection-based model order reduction by modal truncation: V(µ) is the matrix of the two eigenmodes of the structural system

 $\mathsf{K}(oldsymbol{\mu})\mathsf{v}_{j}(oldsymbol{\mu})=\lambda_{j}(oldsymbol{\mu})\mathsf{M}\mathsf{v}_{j}(oldsymbol{\mu})$

• Matrix of eigenvalues: $\mathbf{K}_r(\mu) = \mathbf{V}(\mu)^T \mathbf{K}(\mu) \mathbf{V}(\mu) = \mathbf{\Lambda}(\mu)$

Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

└─Application: Structural Analysis of a Simple Mass-Spring System

Projection-based model order reduction by modal truncation: V(µ) is the matrix of the two eigenmodes of the structural system

$$\mathsf{K}(oldsymbol{\mu}) \mathsf{v}_j(oldsymbol{\mu}) = \lambda_j(oldsymbol{\mu}) \mathsf{M} \mathsf{v}_j(oldsymbol{\mu})$$

- Matrix of eigenvalues: $\mathbf{K}_r(\mu) = \mathbf{V}(\mu)^T \mathbf{K}(\mu) \mathbf{V}(\mu) = \mathbf{\Lambda}(\mu)$
- Variations of the eigenvalues and eigenmodes with the parameter µ
 (first eigenmode is shown in blue color, second is shown in red color)

Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

LInterpolation on a Matrix Manifold

Note that Λ(μ) belongs to the manifold of (diagonal) symmetric positive definite matrices

Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

└ Interpolation on a Matrix Manifold

- Note that Λ(μ) belongs to the manifold of (diagonal) symmetric positive definite matrices
- Perform interpolation of $\Lambda(\mu)$ on this manifold using $(\Lambda(0), \Lambda(2.9))$

 \square Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

└ Interpolation on a Matrix Manifold

- Note that Λ(μ) belongs to the manifold of (diagonal) symmetric positive definite matrices
- Perform interpolation of $\Lambda(\mu)$ on this manifold using $(\Lambda(0), \Lambda(2.9))$

Result is shown in magenta color

-Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

LInterpolation on a Matrix Manifold

- Note that Λ(μ) belongs to the manifold of (diagonal) symmetric positive definite matrices
- Perform interpolation of $\Lambda(\mu)$ on this manifold using $(\Lambda(0), \Lambda(2.9))$

Result is shown in magenta color

Observe that the result is wrong, even for such a simple system

イロト イポト イヨト

Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

└─Mode Veering and Mode Crossing

The issue is the lack of consistency between the coordinates of the reduced-order matrices, triggered in this case by mode veering

 \square Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

└─Mode Veering and Mode Crossing

The issue is the lack of consistency between the coordinates of the reduced-order matrices, triggered in this case by mode veering

 Mode crossing would trigger a similar issue (the eigenfrequencies are ordered increasingly in Λ(μ))

└ Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

Consistent Interpolation on Matrix Manifolds

Two-step solution

- step A: Pre-process the reduced-order matrices
 - enforce consistency by solving the following N_s orthogonal Procrustes problems

$$\min_{\mathbf{Q}_{I}} \min_{\mathbf{Q}_{I}^{T} \mathbf{Q}_{I}=\mathbf{I}_{k}} \left\| \mathbf{V} \left(\boldsymbol{\mu}^{(l)} \right) \mathbf{Q}_{I} - \mathbf{V} \left(\boldsymbol{\mu}^{(l_{0})} \right) \right\|_{F}, \ \forall I = 1, \cdots, N_{s}$$

Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

Consistent Interpolation on Matrix Manifolds

Two-step solution

- step A: Pre-process the reduced-order matrices
 - enforce consistency by solving the following N_s orthogonal Procrustes problems

$$\min_{\mathbf{Q}_{l} \mathbf{Q}_{l}^{T}\mathbf{Q}_{l}=\mathbf{I}_{k}}\left\|\mathbf{V}\left(\boldsymbol{\mu}^{\left(l\right)}\right)\mathbf{Q}_{l}-\mathbf{V}\left(\boldsymbol{\mu}^{\left(l_{0}\right)}\right)\right\|_{F}, \ \forall l=1,\cdots,N_{s}$$

▲□▶ ▲□▶ ★ □▶ ★ □▶ = □ • ○ �

36 / 51

- compute analytical solutions of above problems as follows
 - **1** compute $\mathbf{P}_{l,l_0} = \mathbf{V} \left(\boldsymbol{\mu}^{(l)} \right)^T \mathbf{V} \left(\boldsymbol{\mu}^{(l_0)} \right)$
 - **2** compute the SVD $\mathbf{P}_{I,I_0} = \mathbf{U}_{I,I_0} \mathbf{\Sigma}_{I,I_0} \mathbf{Z}_{I,I_0}^T$
 - **3** compute $\mathbf{Q}_I = \mathbf{U}_{I,l_0} \mathbf{Z}_{I,l_0}^T$

Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

Consistent Interpolation on Matrix Manifolds

Two-step solution

- step A: Pre-process the reduced-order matrices
 - enforce consistency by solving the following N_s orthogonal Procrustes problems

$$\min_{\mathbf{Q}_{l} \mathbf{Q}_{l}^{T}\mathbf{Q}_{l}=\mathbf{I}_{k}}\left\|\mathbf{V}\left(\boldsymbol{\mu}^{\left(l\right)}\right)\mathbf{Q}_{l}-\mathbf{V}\left(\boldsymbol{\mu}^{\left(l_{0}\right)}\right)\right\|_{F}, \ \forall l=1,\cdots,N_{s}$$

- compute analytical solutions of above problems as follows
 - **1** compute $\mathbf{P}_{l,l_0} = \mathbf{V} \left(\boldsymbol{\mu}^{(l)} \right)^T \mathbf{V} \left(\boldsymbol{\mu}^{(l_0)} \right)$
 - **2** compute the SVD $\mathbf{P}_{l,l_0} = \mathbf{U}_{l,l_0} \mathbf{\Sigma}_{l,l_0} \mathbf{Z}_{l,l_0}^T$
 - **3** compute $\mathbf{Q}_{l} = \mathbf{U}_{l, l_0} \mathbf{Z}_{l, l_0}^T$
- the associated computational cost scales with k

 \implies step A can be performed either online or offline

Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

Consistent Interpolation on Matrix Manifolds

Two-step solution

- step A: Pre-process the reduced-order matrices
 - enforce consistency by solving the following N_s orthogonal Procrustes problems

$$\min_{\mathbf{Q}_{l} \mathbf{Q}_{l}^{T}\mathbf{Q}_{l}=\mathbf{I}_{k}}\left\|\mathbf{V}\left(\boldsymbol{\mu}^{\left(l\right)}\right)\mathbf{Q}_{l}-\mathbf{V}\left(\boldsymbol{\mu}^{\left(l_{0}\right)}\right)\right\|_{F}, \ \forall l=1,\cdots,N_{s}$$

- compute analytical solutions of above problems as follows
 - **1** compute $\mathbf{P}_{l,l_0} = \mathbf{V} \left(\boldsymbol{\mu}^{(l)} \right)^T \mathbf{V} \left(\boldsymbol{\mu}^{(l_0)} \right)$
 - **2** compute the SVD $\mathbf{P}_{l,l_0} = \mathbf{U}_{l,l_0} \mathbf{\Sigma}_{l,l_0} \mathbf{Z}_{l,l_0}^T$
 - **3** compute $\mathbf{Q}_{l} = \mathbf{U}_{l, l_0} \mathbf{Z}_{l, l_0}^T$
- the associated computational cost scales with k

 \implies step A can be performed either online or offline

Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

Consistent Interpolation on Matrix Manifolds

Two-step solution (continue)

 step B: Note that (assuming a Galerkin PROM and orthogonal local ROBs)

$$\begin{pmatrix} \mathbf{v} \left(\boldsymbol{\mu}^{(l)}\right) \mathbf{Q}_{l} \end{pmatrix}^{T} \mathbf{A} \left(\boldsymbol{\mu}^{(l)}\right) \left(\mathbf{V} \left(\boldsymbol{\mu}^{(l)}\right) \mathbf{Q}_{l} \right) = \mathbf{Q}_{l}^{T} \mathbf{V} \left(\boldsymbol{\mu}^{(l)}\right)^{T} \mathbf{A} \left(\boldsymbol{\mu}^{(l)}\right) \mathbf{V} \left(\boldsymbol{\mu}^{(l)}\right) = \mathbf{Q}_{l}^{T} \mathbf{A}_{r} \left(\boldsymbol{\mu}^{(l)}\right) \mathbf{Q}_{l} \begin{pmatrix} \mathbf{V} \left(\boldsymbol{\mu}^{(l)}\right) \mathbf{Q}_{l} \end{pmatrix}^{T} \mathbf{B} \left(\boldsymbol{\mu}^{(l)}\right) = \mathbf{Q}_{l}^{T} \mathbf{V} \left(\boldsymbol{\mu}^{(l)}\right)^{T} \mathbf{B} \left(\boldsymbol{\mu}^{(l)}\right) = \mathbf{Q}_{l}^{T} \mathbf{B}_{r} \left(\boldsymbol{\mu}^{(l)}\right) \mathbf{C} \left(\boldsymbol{\mu}^{(l)}\right) \left(\mathbf{V} \left(\boldsymbol{\mu}^{(l)}\right) \mathbf{Q}_{l}\right) = \left(\mathbf{C} \left(\boldsymbol{\mu}^{(l)}\right) \mathbf{V} \left(\boldsymbol{\mu}^{(l)}\right)\right) \mathbf{Q}_{l} = \mathbf{C}_{r} \mathbf{Q}_{l}$$

and therefore

■ first, transform *directly* each PROM

$$\begin{pmatrix} \mathbf{A}_r \left(\boldsymbol{\mu}^{(l)} \right), \mathbf{B}_r \left(\boldsymbol{\mu}^{(l)} \right), \mathbf{C}_r \left(\boldsymbol{\mu}^{(l)} \right), \mathbf{D}_r \left(\boldsymbol{\mu}^{(l)} \right) \end{pmatrix} \text{ to } \\
\begin{pmatrix} \mathbf{Q}_l^T \mathbf{A}_r \left(\boldsymbol{\mu}^{(l)} \right) \mathbf{Q}_l, \mathbf{Q}_l^T \mathbf{B}_r \left(\boldsymbol{\mu}^{(l)} \right), \mathbf{C}_r \left(\boldsymbol{\mu}^{(l)} \right) \mathbf{Q}_l, \mathbf{D}_r \left(\boldsymbol{\mu}^{(l)} \right) \end{pmatrix} \end{pmatrix}$$

 then, identify for each element of the transformed tuple an appropriate matrix manifold and perform the interpolation on this matrix manifold

 \square Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

Consistent Interpolation on Matrix Manifolds

Result is shown in cyan color

Observe that the result is very accurate

 $_$ Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

Application: Structural Analysis of a Wing-Tank Configuration

- More challenging example: Wing with tank and sloshing effects
- The hydro-elastic effects affect the eigenfrequencies and eigenmodes of the structure
- The parameter μ defines the fuel fill level in the tank 0 $\leq \mu \leq$ 100%

 \square Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

Application: Structural Analysis of a Wing-Tank Configuration

Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

Application: Structural Analysis of a Wing-Tank Configuration

LInterpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

Link with Modal Assurance Criterion

 \blacksquare Modal Assurance Criterion (MAC) between two modes ϕ and ψ

$$\mathsf{MAC}(\phi,\psi) = \frac{|\phi^{\mathsf{T}}\psi|^2}{(\phi^{\mathsf{T}}\phi)(\psi^{\mathsf{T}}\psi)}$$

Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

Link with Modal Assurance Criterion

 \blacksquare Modal Assurance Criterion (MAC) between two modes ϕ and ψ

$$\mathsf{MAC}(\phi,\psi) = rac{|\phi^{\mathsf{T}}\psi|^2}{(\phi^{\mathsf{T}}\phi)(\psi^{\mathsf{T}}\psi)}$$

• What is the MAC between the vectors in the ROBs $V(\mu^{(l)})$ and $V(\mu^{(l_0)})$ before and after Step A?

 \square Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

Link with Modal Assurance Criterion

 \blacksquare Modal Assurance Criterion (MAC) between two modes ϕ and ψ

$$\mathsf{MAC}(\phi,\psi) = rac{|\phi^{\mathsf{T}}\psi|^2}{(\phi^{\mathsf{T}}\phi)(\psi^{\mathsf{T}}\psi)}$$

• What is the MAC between the vectors in the ROBs $V(\mu^{(l)})$ and $V(\mu^{(l_0)})$ before and after Step A?

• When ϕ and ψ are normalized, $\mathsf{MAC}(\phi,\psi) = |\phi^{\mathsf{T}}\psi|^2$

 \square Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

Link with Modal Assurance Criterion

 \blacksquare Modal Assurance Criterion (MAC) between two modes ϕ and ψ

$$\mathsf{MAC}(\phi,\psi) = rac{|\phi^{\mathsf{T}}\psi|^2}{(\phi^{\mathsf{T}}\phi)(\psi^{\mathsf{T}}\psi)}$$

• What is the MAC between the vectors in the ROBs $V(\mu^{(l)})$ and $V(\mu^{(b)})$ before and after Step A?

• When ϕ and ψ are normalized, $\mathsf{MAC}(\phi,\psi) = |\phi^{\mathsf{T}}\psi|^2$

• \mathbf{P}_{l,l_0} is the matrix of square roots of the MACs between the modes contained in $\mathbf{V}(\boldsymbol{\mu}^{(l)})$ and those contained in $\mathbf{V}(\boldsymbol{\mu}^{(l_0)})$

 \square Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

Link with Modal Assurance Criterion

 \blacksquare Modal Assurance Criterion (MAC) between two modes ϕ and ψ

$$\mathsf{MAC}(\phi,\psi) = rac{|\phi^{\mathsf{T}}\psi|^2}{(\phi^{\mathsf{T}}\phi)(\psi^{\mathsf{T}}\psi)}$$

• What is the MAC between the vectors in the ROBs $V(\mu^{(l)})$ and $V(\mu^{(l_0)})$ before and after Step A?

• When ϕ and ψ are normalized, MAC $(\phi, \psi) = |\phi^T \psi|^2$

- \mathbf{P}_{l,l_0} is the matrix of square roots of the MACs between the modes contained in $\mathbf{V}(\boldsymbol{\mu}^{(l)})$ and those contained in $\mathbf{V}(\boldsymbol{\mu}^{(l_0)})$
- This is the Modal Assurance Criterion Square Root (MACSR)

 $_$ Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

Application: Aeroelastic Analysis of a Wing-Tank Configuration

- Aeroelastic study of a wing-tank system
- \blacksquare 2 parameters, namely, the fuel fill level and the free-stream Mach number M_∞
- Database approach

Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

Application: Aeroelastic Analysis of a Wing-Tank Configuration

≣ •∕ ৭.ে 44/51

 \square Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

Application: Aeroelastic Analysis of a Wing-Tank Configuration

Effect of Step A

Skipping Step A leads to inaccurate interpolation results (left figure)

Step A ensures a consistent interpolation (right figure)

・ロト ・回ト ・ヨト ・ヨト

 $_$ Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

Application: Aeroelastic Analysis of a Wing-Tank Configuration

 The consistent interpolation on a matrix manifold is able to detect aeroelastic bifurcations

 $_$ Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

Application: Aeroelastic Analysis of a Wing-Tank Configuration

 The consistent interpolation on a matrix manifold is able to detect aeroelastic bifurcations (0% fuel fill level)

 $_$ Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

Application: Aeroelastic Analysis of a Wing-Tank Configuration

 The consistent interpolation on a matrix manifold is able to detect aeroelastic bifurcations (0% fuel fill level)

LInterpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

Application: Aeroelastic Analysis of a Wing-Tank Configuration

CPU performance

Approach	Offline phase	Online phase
	CPU time (# procs)	CPU time (# procs)
HDM	- (-)	9,152,000 s $pprox$ 106 days (32)
Response Surface	28,000 s $pprox$ 7 h (32)	2 s (1)
PROM Interpolation	28,000 s $pprox$ 7 h (32)	30 s (1)

- Online speedup = 305,000x
- Offline+Online speedup = 327x

Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

└-Mobile Computing

Mobile computing using a database of PROMs

References

- D. Amsallem, C. Farhat. Interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA Journal 2008; 46(7):1803–1813.
- D. Amsallem, J. Cortial, C. Farhat. Towards real-time CFD-based aeroelastic computations using a database of reduced-order models. AIAA Journal 2010; 48(9):2029-2037.
- D. Amsallem, C. Farhat. An online method for interpolating linear parametric reduced-order models. SIAM Journal on Scientific Computing 2011; 33(5): 2169-2198.
- D. Amsallem, Interpolation on manifolds of CFD-based fluid and finite element-based structural reduced-order models for on-line aeroelastic predictions. Ph.D. Thesis, Stanford University, 2010.