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Note: The material covered in this chapter is based on the following
published papers:

D. Amsallem, C. Farhat. Interpolation method for adapting
reduced-order models and application to aeroelasticity. AIAA Journal
2008; 46(7):1803–1813.
D. Amsallem, J. Cortial, C. Farhat. Towards real-time CFD-based
aeroelastic computations using a database of reduced-order models.
AIAA Journal 2010; 48(9):2029-2037.
D. Amsallem, C. Farhat. An online method for interpolating linear
parametric reduced-order models. SIAM Journal on Scientific
Computing 2011; 33(5): 2169-2198.
D. Amsallem, Interpolation on manifolds of CFD-based fluid and
finite element-based structural reduced-order models for on-line
aeroelastic predictions. Ph.D. Thesis, Stanford University, 2010.
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Concept of a Database of Local PROMs

Parameterized Linear Time-Invariant Systems

dw

dt
(t;µ) = A(µ)w(t;µ) + B(µ)u(t)

y(t;µ) = C(µ)w(t;µ) + D(µ)u(t)

w(0;µ) = w0(µ)

w ∈ RN : Vector of state variables

u ∈ Rp: Vector of input variables – typically p � N

y ∈ Rq: Vector of output variables – typically q � N

µ ∈ D ⊂ Rm: Vector of parameters – typically m� N
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Concept of a Database of Local PROMs

Parametric Petrov-Galerkin Projection-Based PROMs

Goal: Construct a parametric Projection-based Reduced-Order
Model (PROM)

dq

dt
(t;µ) = Ar (µ)q(t;µ) + Br (µ)u(t)

y(t;µ) = Cr (µ)q(t;µ) + Dr (µ)u(t)

based on local Reduced-Order Bases (ROBs)
(

V(µ(l)), W(µ(l))
)

and the approximation

w(t;µ) ≈ V(µ)q(t;µ)

µ(l) ∈ D; q ∈ Rk

all ROBs have the same dimension k � N

PROM resulting from Petrov-Galerkin projection

Ar (µ) = (W(µ)TV(µ))−1W(µ)TA(µ)V(µ) ∈ Rk×k

Br (µ) = (W(µ)TV(µ))−1W(µ)TB(µ) ∈ Rk×p

Cr (µ) = C(µ)V(µ) ∈ Rq×k ; Dr (µ) = D(µ) ∈ Rq×p
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Concept of a Database of Local PROMs

Sample Application: Aeroelastic Analysis of a Complete Aircraft Configuration

Hundreds of flight conditions µ = (M∞, α) for flutter clearance

Multiple aircraft configurations

Nfluid ≈ 2× 106, Nstructure ≈ 1.6× 105
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Concept of a Database of Local PROMs

Lack of Robustness of Local ROBs for Parameter Changes

Consider the following procedure

1 construct local ROBs
(

V
(
µ(1)

)
,W

(
µ(1)

))
at the parametric

configuration/flight condition µ(1)

2 use these two bases to reduce the HDM at µ(2)

3 avoid reconstructing a ROB every time the configuration/flight
condition is varied

4 build the resulting PROM

dq

dt

(
t;µ(2)

)
= Ar

(
µ(2)

)
q
(
t;µ(2)

)
+ Br

(
µ(2)

)
u(t)

y
(
t;µ(2)

)
= Cr

(
µ(2)

)
q
(
t;µ(2)

)
+ Dr

(
µ(2)

)
u(t)

w
(
t,µ(2)

)
≈ V

(
µ(1)

)
q
(
t;µ(2)

)
where

Ar

(
µ

(2)
)

=

(
W

(
µ

(1)
)T

V
(
µ

(1)
))−1

W
(
µ

(1)
)T

A
(
µ

(2)
)

V
(
µ

(1)
)
∈ Rk×k

Br

(
µ

(2)
)

=

(
W

(
µ

(1)
)T

V
(
µ

(1)
))−1

W
(
µ

(1)
)T

B
(
µ

(2)
)
∈ Rk×p

Cr

(
µ

(2)
)

= C
(
µ

(2)
)

V
(
µ

(1)
)
∈ Rq×k ; Dr

(
µ

(2)
)

= D
(
µ

(2)
)
∈ Rq×p

7 / 51



AA216/CME345: MODEL REDUCTION

Concept of a Database of Local PROMs

Lack of Robustness of Local ROBs for Parameter Changes

Consider the following procedure

1 construct local ROBs
(

V
(
µ(1)

)
,W

(
µ(1)

))
at the parametric

configuration/flight condition µ(1)

2 use these two bases to reduce the HDM at µ(2)

3 avoid reconstructing a ROB every time the configuration/flight
condition is varied

4 build the resulting PROM

dq

dt

(
t;µ(2)

)
= Ar

(
µ(2)

)
q
(
t;µ(2)

)
+ Br

(
µ(2)

)
u(t)

y
(
t;µ(2)

)
= Cr

(
µ(2)

)
q
(
t;µ(2)

)
+ Dr

(
µ(2)

)
u(t)

w
(
t,µ(2)

)
≈ V

(
µ(1)

)
q
(
t;µ(2)

)
where

Ar

(
µ

(2)
)

=

(
W

(
µ

(1)
)T

V
(
µ

(1)
))−1

W
(
µ

(1)
)T

A
(
µ

(2)
)

V
(
µ

(1)
)
∈ Rk×k

Br

(
µ

(2)
)

=

(
W

(
µ

(1)
)T

V
(
µ

(1)
))−1

W
(
µ

(1)
)T

B
(
µ

(2)
)
∈ Rk×p

Cr

(
µ

(2)
)

= C
(
µ

(2)
)

V
(
µ

(1)
)
∈ Rq×k ; Dr

(
µ

(2)
)

= D
(
µ

(2)
)
∈ Rq×p

7 / 51



AA216/CME345: MODEL REDUCTION

Concept of a Database of Local PROMs

Lack of Robustness of Local ROBs for Parameter Changes

Consider the following procedure

1 construct local ROBs
(

V
(
µ(1)

)
,W

(
µ(1)

))
at the parametric

configuration/flight condition µ(1)

2 use these two bases to reduce the HDM at µ(2)

3 avoid reconstructing a ROB every time the configuration/flight
condition is varied

4 build the resulting PROM

dq

dt

(
t;µ(2)

)
= Ar

(
µ(2)

)
q
(
t;µ(2)

)
+ Br

(
µ(2)

)
u(t)

y
(
t;µ(2)

)
= Cr

(
µ(2)

)
q
(
t;µ(2)

)
+ Dr

(
µ(2)

)
u(t)

w
(
t,µ(2)

)
≈ V

(
µ(1)

)
q
(
t;µ(2)

)
where

Ar

(
µ

(2)
)

=

(
W

(
µ

(1)
)T

V
(
µ

(1)
))−1

W
(
µ

(1)
)T

A
(
µ

(2)
)

V
(
µ

(1)
)
∈ Rk×k

Br

(
µ

(2)
)

=

(
W

(
µ

(1)
)T

V
(
µ

(1)
))−1

W
(
µ

(1)
)T

B
(
µ

(2)
)
∈ Rk×p

Cr

(
µ

(2)
)

= C
(
µ

(2)
)

V
(
µ

(1)
)
∈ Rq×k ; Dr

(
µ

(2)
)

= D
(
µ

(2)
)
∈ Rq×p

7 / 51



AA216/CME345: MODEL REDUCTION

Concept of a Database of Local PROMs

Lack of Robustness of Local ROBs for Parameter Changes

Consider the following procedure

1 construct local ROBs
(

V
(
µ(1)

)
,W

(
µ(1)

))
at the parametric

configuration/flight condition µ(1)

2 use these two bases to reduce the HDM at µ(2)

3 avoid reconstructing a ROB every time the configuration/flight
condition is varied

4 build the resulting PROM

dq

dt

(
t;µ(2)

)
= Ar

(
µ(2)

)
q
(
t;µ(2)

)
+ Br

(
µ(2)

)
u(t)

y
(
t;µ(2)

)
= Cr

(
µ(2)

)
q
(
t;µ(2)

)
+ Dr

(
µ(2)

)
u(t)

w
(
t,µ(2)

)
≈ V

(
µ(1)

)
q
(
t;µ(2)

)
where

Ar

(
µ

(2)
)

=

(
W

(
µ

(1)
)T

V
(
µ

(1)
))−1

W
(
µ

(1)
)T

A
(
µ

(2)
)

V
(
µ

(1)
)
∈ Rk×k

Br

(
µ

(2)
)

=

(
W

(
µ

(1)
)T

V
(
µ

(1)
))−1

W
(
µ

(1)
)T

B
(
µ

(2)
)
∈ Rk×p

Cr

(
µ

(2)
)

= C
(
µ

(2)
)

V
(
µ

(1)
)
∈ Rq×k ; Dr

(
µ

(2)
)

= D
(
µ

(2)
)
∈ Rq×p

7 / 51



AA216/CME345: MODEL REDUCTION

Concept of a Database of Local PROMs

Application: Aeroelastic Analysis of a Complete Aircraft Configuration

Queried flight conditions

µ(1) = (M∞,1, α
(1)) = (0.71, αtrimmed(0.71))

µ(2) = (M∞,2, α
(2)) = (0.8, αtrimmed(0.8))

HDM(µ(1))

PROM(µ(1))

HDM(µ(2))

PROM(µ(2))

⇒ the ROBs lack robustness with respect to parameter changes
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Concept of a Database of Local PROMs

Reconstruction of the ROBs

The lack of robustness of the ROBs with respect to parameter
changes implies that the ROBs should be reconstructed every time
the parameters are varied

Procedure

1 given a queried but unsampled parameter point µ? ∈ D

2 construct the HDM operators (A(µ?),B(µ?),C(µ?),D(µ?))
3 generate the ROBs (V(µ?),W(µ?)) using a preferred

projection-based model order reduction method
4 construct the PROM operators (Ar (µ

?),Br (µ
?),Cr (µ

?),Dr (µ
?))

using a Petrov-Galerkin projection
5 exploit the constructed PROM

Question: Is this procedure computationally efficient?
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Concept of a Database of Local PROMs

Application: Aeroelastic Analysis of a Complete Aircraft Configuration

Construction and exploitation in t ∈ [0, 1]s of a linearized aeroelastic
F-16 PROM

The direct generation of the ROB accounts for 89% of the total
CPU time

The overall procedure takes 56 minutes, which renders this approach
non-amenable to real-time parametric applications
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Concept of a Database of Local PROMs

One Strategy

Idea: Pre-compute some quantities offline

Interpolate these quantities online

What entities should be interpolated and how?

⇒ interpolate the ROBs given the above CPU time analysis
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Concept of a Database of Local PROMs

One Strategy

Idea
pre-compute ROBs at a number of sampled parameter points{
µ(l) ∈ D

}Ns

l=1
interpolate these ROBs to obtain a ROB at a queried but unsampled

parameter configuration µ? /∈
{
µ(l)
}Ns

l=1
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Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

Interpolation of the ROBs

For simplicity, assume an orthogonal Galerkin projection

V(µ) = W(µ) and V(µ)TV(µ) = Ik

Procedure

1 given a queried but unsampled parameter point µ? ∈ D
2 construct the HDM operators (A(µ?),B(µ?),C(µ?),D(µ?))
3 compute the ROB V(µ?) by interpolating the pre-computed ROBs
4 construct the PROM operators (Ar (µ

?),Br (µ
?),Cr (µ

?),Dr (µ
?)) by

Galerkin projection
5 exploit the constructed PROM

Question: How does one interpolate pre-computed ROBs?
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Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

Direct Interpolation of the ROBs

Tempting idea: Interpolate the matrices V
(
µ(l)
)
∈ RN×k

entry-by-entry

Input

queried parameter µ?

pre-computed ROBs
{

V
(
µ(l)
)}Ns

l=1

multi-variate interpolation in Rm (operator I)

a(µ) = I
(
µ;
{
a
(
µ(l)
)
,µ(l)

}Ns

l=1

)
Algorithm

1: for i = 1 : N do
2: for j = 1 : k do

3: compute vij(µ
?) = I

(
µ?;

{
vij
(
µ(l)
)
,µ(l)

}Ns

l=1

)
4: end for
5: end for
6: form V(µ?) = [vij(µ

?)]
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Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

Direct Interpolation Does Not Work

Example
N = 3, k = 2, m = 1

for µ(1) = 0: V
(
µ(1)

)
= V(0) = (v1 v2)T

for µ(2) = 1: V
(
µ(2)

)
= V(1) = (−v1 v2)T

target parameter µ = 0.5
linear interpolation

Interpolatory result

V(0.5) = 0.5 (V(0) + V(1)) =
(
0.5(v1 − v1) 0.5(v2 + v2))T = (0 v2

)T

What went wrong?
a relevant constraint was neither identified nor preserved
the wrong entity was interpolated
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a relevant constraint was neither identified nor preserved
the wrong entity was interpolated
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Direct Interpolation Does Not Work
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Subspace Interpolation

Reduced-order equation

dq

dt
(t;µ) = V(µ)TA(µ)V(µ)q(t;µ) + V(µ)TB(µ)u(t)

Equivalent high-dimensional equation for w̃(t;µ) = V(µ)q(t;µ)

dw̃

dt
(t;µ) = ΠV(µ),V(µ)A(µ)w̃(t;µ) + ΠV(µ),V(µ)B(µ)u(t)

The PROM solution is independent of the choice of ROB associated
with the projection subspace

=⇒ the correct entity to interpolate is S(µ) = range(V(µ))
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The Grassmann Manifold

A subspace S is typically represented by a ROB

The appropriate choice of a ROB is not unique

S = range(V) = range(VQ), ∀Q ∈ GL(k)

Manifolds of interest

G(k,N) (Grassmann manifold): Set of subspaces in RN of dimension
k
ST (k,N) (orthogonal Stiefel manifold): Set of orthogonal ROB
matrices in RN×k

GL(k) (general linear group): Set of non-singular square matrices of
size k
O(k): Set of orthogonal square matrices of size k

Properties

O(k) ⊂ GL(k)
ST (N,N) = O(N)
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The Grassmann Manifold

Case of projection-based model order reduction with orthogonal
ROBs

V(µ) ∈ ST (k,N)
range(V(µ)) ∈ G(k,N)

Equivalence class

S(µ) = range(V(µ)) = range(V(µ)Q), ∀Q ∈ O(k)
an element of the Grassmann manifold defines an entire class of
equivalence on the Stiefel manifold
this class of equivalence is defined by the range operation

∀ V1,V2 ∈ ST (k,N), V1 ∼ V2 ⇔ range(V1) = range(V2)

⇔ ∃Q ∈ O(k) s.t V1 = V2Q

therefore, the Grassmann manifold is a quotient manifold denoted as

G(k,N) = ST (k,N)/O(k)

Hence, one should interpolate subspaces, but has access in practice
to (orthogonal) ROBs
Solution: Perform interpolation on the Grasmann manifold using
entities belonging to the (orthogonal) Stiefel manifold
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The Grassmann Manifold

Matrix manifolds of interest
G(k,N) (Grassmann manifold): Set of subspaces in RN of dimension
k
ST (k,N) (orthogonal Stiefel manifold): Set of orthogonal ROB
matrices in RN×k
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Matrix Manifolds

Embedded matrix manifolds
the sphere

S(N) =
{

w ∈ RN s.t. ‖w‖2 = 1
}

the manifold of orthogonal matrices

O(N) =
{

M ∈ RN×N s.t. MTM = IN
}

the general linear group

GL(N) =
{

M ∈ RN×N s.t. det (M) 6= 0
}

the manifold of symmetric positive definite matrices

SPD(N) =
{

M ∈ RN×N s.t. M = MT& wTMw > 0 ∀w 6= 0
}

the orthogonal Stiefel manifold

ST (k,N) =
{

M ∈ RN×k s.t. MTM = Ik
}

Quotient matrix manifold
the Grassmann manifold
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Interpolation on Matrix Manifolds

First example: The circle (sphere S(N) for N = 2)

Standard interpolation fails to preserve a nonlinear manifold
(essentially because standard interpolation applies only in vector
spaces)

Idea: perform interpolation in a linear space ⇒ on a tangent space
to the manifold
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Interpolation on the Tangent Space to a Matrix Manifold

Input

pre-computed matrices
{

A(µ(l)) ∈ RN×M
}Ns

l=1
map mA from the manifold M to the tangent space of M at A
multi-variate interpolation in Rm(

operator a(µ) = I
(
µ;
{
a
(
µ(l)
)
,µ(l)

}Ns

l=1

))
inverse map m−1

A from the tangent space to M at A to the manifold
M

Requirement: The interpolation operator I must preserve the
tangent space ⇒ for example,

a(µ?) = I
(
µ?;

{
a
(
µ(l)
)
,µ(l)

}Ns

l=1

)
=

Ns∑
l=1

θl(µ
?)a
(
µ(l)
)
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Interpolation on the Tangent Space to a Matrix Manifold

Algorithm

1: for l = 1 : Ns do
2: compute Γ

(
µ(l)
)

= mA

(
A
(
µ(l)
))

3: end for
4: for i = 1 : N do
5: for j = 1 : M do

6: compute Γij(µ
?) = I

(
µ?;

{
Γij

(
µ(l)
)
,µ(l)

}Ns

l=1

)
7: end for
8: end for
9: form Γ(µ?) = [Γij(µ

?)] and compute A(µ?) = m−1
A (Γ(µ?))
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Differential Geometry

How does one find mA and its inverse m−1
A ?

Idea: Use concepts from differential geometry
Geodesic

is a generalization of a “straight line” to “curved spaces” (manifolds)
is uniquely defined given a point x on the manifold and a tangent
vector χ at this point

γ(t; x , ξ) : [0, 1]→M

γ(0; x , ξ) = x , γ̇(0, x , ξ) = ξ

Exponential map
Expx : TxM→M ξ 7−→ γ(1; x , ξ)

Logarithmic map (defined in a neighborhood Ux of x)

Logx : Ux ⊂M→ TxM y 7−→ Exp−1
x (y) = Logx (y) = γ̇(0, x , ξ) = ξ
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Interpolation on a Tangent Space to a Matrix Manifold

Application to the interpolation of points on a circle
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Interpolation on a Tangent Space to the Grassmann Manifold

Logarithmic map

1 compute a thin SVD

(I− V0VT
0 )Vi (VT

0 Vi )
−1 = UΣZT

2 compute
Γ = U tan−1(Σ)ZT ∈ RN×k

3 Γ↔ LogS0
(Si ) ∈ TS0G(k,N)

Exponential map of χ̃ ∈ TS0G(k,N)↔ Γ̃

1 compute a thin SVD
Γ̃ = UΣZT

2 compute
V = (V0Z cos Σ + U sin Σ) ∈ ST (k,N)

3 range(V) = ExpS0
(χ̃) ∈ G(k,N)

Note: The trigonometric operators apply only to the diagonal entries
of the relevant matrices
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Note: The trigonometric operators apply only to the diagonal entries
of the relevant matrices
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Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

Interpolation on a Tangent Space to the Grassmann Manifold

Interpolation on the tangent space to G(k ,N)
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Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

Application to Linearized Aeroelasticity

Prediction of the linearized aeroelastic behavior of an F-16
configuration
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Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

Application to Linearized Aeroelasticity

Prediction of the linearized aeroelastic behavior of an F-18
configuration: Effect of the choice of the tangent plane
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Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

Application to Linearized Aeroelasticity

Prediction of the linearized aeroelastic behavior of the wing of a
commercial aircraft (Airbus)
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Interpolation of ROBs on Quotient Manifolds (Amsallem and Farhat, 2008)

Application to Linearized Aeroelasticity

Construction and exploitation in t ∈ [0, 1] s of a linearized
aeroelastic PROM

Overall CPU time is decreased from 55 minutes to 8 minutes

New dominant cost: Construction of the HDM operators

(A(µ?),B(µ?),C(µ?),D(µ?))

=⇒ alternative approach is to interpolate the reduced-order operators(
Ar (µ

(l)),Br (µ
(l)),Cr (µ

(l)),Dr (µ
(l))
)
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Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

Application: Structural Analysis of a Simple Mass-Spring System

Simple example: Mass-spring system with two degrees of freedom

M
d2w

dt2
(t) + K(µ)w(t) = Bu(t), µ = k1 − 0.1

w(t) =

[
x1(t)
x2(t)

]
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Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

Application: Structural Analysis of a Simple Mass-Spring System

Projection-based model order reduction by modal truncation: V(µ)
is the matrix of the two eigenmodes of the structural system

K(µ)vj(µ) = λj(µ)Mvj(µ)

Matrix of eigenvalues: Kr (µ) = V(µ)TK(µ)V(µ) = Λ(µ)
Variations of the eigenvalues and eigenmodes with the parameter µ
(first eigenmode is shown in blue color, second is shown in red color)
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Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

Interpolation on a Matrix Manifold

Note that Λ(µ) belongs to the manifold of (diagonal) symmetric
positive definite matrices

Perform interpolation of Λ(µ) on this manifold using (Λ(0),Λ(2.9))

Result is shown in magenta color

Observe that the result is wrong, even for such a simple system
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Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

Mode Veering and Mode Crossing

The issue is the lack of consistency between the coordinates of the
reduced-order matrices, triggered in this case by mode veering

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

µ

λ

 

 

0 0.5 1 1.5 2 2.5 3
µ

 

 

Mode crossing would trigger a similar issue (the eigenfrequencies are
ordered increasingly in Λ(µ))
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Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

Consistent Interpolation on Matrix Manifolds

Two-step solution

step A: Pre-process the reduced-order matrices

enforce consistency by solving the following Ns orthogonal
Procrustes problems

min
Ql QT

l
Ql=Ik

∥∥∥V
(
µ(l)
)

Ql − V
(
µ(l0)

)∥∥∥
F
, ∀l = 1, · · · ,Ns

compute analytical solutions of above problems as follows

1 compute Pl,l0 = V
(
µ(l)

)T
V
(
µ(l0)

)
2 compute the SVD Pl,l0 = Ul,l0 Σl,l0 ZT

l,l0

3 compute Ql = Ul,l0 ZT
l,l0

the associated computational cost scales with k

=⇒ step A can be performed either online or offline
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Consistent Interpolation on Matrix Manifolds

Two-step solution (continue)

step B: Note that (assuming a Galerkin PROM and orthogonal local
ROBs)

(
V
(
µ

(l)
)

Ql

)T
A
(
µ

(l)
)(

V
(
µ

(l)
)

Ql

)
= QT

l V
(
µ

(l)
)T

A
(
µ

(l)
)

V
(
µ

(l)
)

= QT
l Ar

(
µ

(l)
)

Ql(
V
(
µ

(l)
)

Ql

)T
B
(
µ

(l)
)

= QT
l V

(
µ

(l)
)T

B
(
µ

(l)
)

= QT
l Br

(
µ

(l)
)

C
(
µ

(l)
)(

V
(
µ

(l)
)

Ql

)
=

(
C
(
µ

(l)
)

V
(
µ

(l)
))

Ql = CrQl

and therefore

first, transform directly each PROM(
Ar

(
µ(l)
)
,Br

(
µ(l)
)
,Cr

(
µ(l)
)
,Dr

(
µ(l)
))

to(
QT

l Ar

(
µ(l)
)

Ql ,Q
T
l Br

(
µ(l)
)
,Cr

(
µ(l)
)

Ql ,Dr

(
µ(l)
))

then, identify for each element of the transformed tuple an
appropriate matrix manifold and perform the interpolation on this
matrix manifold
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Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

Consistent Interpolation on Matrix Manifolds

Result is shown in cyan color

Observe that the result is very accurate
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Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

Application: Structural Analysis of a Wing-Tank Configuration

More challenging example: Wing with tank and sloshing effects
The hydro-elastic effects affect the eigenfrequencies and eigenmodes
of the structure
The parameter µ defines the fuel fill level in the tank 0 ≤ µ ≤ 100%
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Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

Application: Structural Analysis of a Wing-Tank Configuration
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Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

Application: Structural Analysis of a Wing-Tank Configuration
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Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

Link with Modal Assurance Criterion

Modal Assurance Criterion (MAC) between two modes φ and ψ

MAC(φ,ψ) =
|φTψ|2

(φTφ)(ψTψ)

What is the MAC between the vectors in the ROBs V
(
µ(l)
)

and

V
(
µ(l0)

)
before and after Step A?
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When φ and ψ are normalized, MAC(φ,ψ) = |φTψ|2
Pl,l0 is the matrix of square roots of the MACs between the modes
contained in V

(
µ(l)
)

and those contained in V
(
µ(l0)

)
This is the Modal Assurance Criterion Square Root (MACSR)
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Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

Application: Aeroelastic Analysis of a Wing-Tank Configuration

Aeroelastic study of a wing-tank system
2 parameters, namely, the fuel fill level and the free-stream Mach
number M∞
Database approach
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Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

Application: Aeroelastic Analysis of a Wing-Tank Configuration
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Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

Application: Aeroelastic Analysis of a Wing-Tank Configuration

Effect of Step A
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Skipping Step A leads to inaccurate interpolation results (left figure)

Step A ensures a consistent interpolation (right figure)
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Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

Application: Aeroelastic Analysis of a Wing-Tank Configuration

The consistent interpolation on a matrix manifold is able to detect
aeroelastic bifurcations
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Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

Application: Aeroelastic Analysis of a Wing-Tank Configuration

The consistent interpolation on a matrix manifold is able to detect
aeroelastic bifurcations (0% fuel fill level)
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Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

Application: Aeroelastic Analysis of a Wing-Tank Configuration

The consistent interpolation on a matrix manifold is able to detect
aeroelastic bifurcations (0% fuel fill level)
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Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

Application: Aeroelastic Analysis of a Wing-Tank Configuration

CPU performance

Approach Offline phase Online phase
CPU time (# procs) CPU time (# procs)

HDM - (-) 9,152,000 s ≈ 106 days (32)
Response Surface 28,000 s ≈ 7 h (32) 2 s (1)

PROM Interpolation 28,000 s ≈ 7 h (32) 30 s (1)

Online speedup = 305, 000x

Offline+Online speedup = 327x

49 / 51



AA216/CME345: MODEL REDUCTION

Interpolation of PROMs on Embedded Manifolds (Amsallem and Farhat, 2011)

Mobile Computing

Mobile computing using a database of PROMs
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