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I—Moments of a Function
L LTI High-Dimensional Systems

C;—‘;V(t) = Aw(t)+ Bu(t)
y(t) = Cw(t)+ Du(t)
w(0) = wg

m w € RV : Vector of state variables
m u € R™ : Vector of input variables — typically in < N
m y € R?: Vector of output variables — typically g < N
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I—Moments of a Function

LPetrov—GaIerkin Projection-Based PROMs

m Goal: Construct a Projection-based Reduced-Order Model (PROM)

dq
I(t)

y(t)

A.q(t) + B,u(t)
C.q(t) + D,u(t)

m q € R*: Reduced-order vector of state variables (or vector of

generalized coordinates) — k < N
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LPetrov—GaIerkin Projection-Based PROMs

m Goal: Construct a Projection-based Reduced-Order Model (PROM)

%(t) = A.q(t)+ B,u(t)

y(t) = Cra(t) + Du(t)

m q € R*: Reduced-order vector of state variables (or vector of
generalized coordinates) — k < N

m For a Petrov-Galerkin PROM

A, = (W'V)IWTAV ¢ RkxK
B, — (WTV)fleBERkXin
C, = CVcRI*k
D, = DeR"
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I—Moments of a Function

LTransfer Functions

m Let h denote a matrix-valued function of time representing the
kernel of an LTI system

h: teR~—s RIXM
Example: Impulse response of an LTI system
_ oAt
h(t) = Ce"'B+ D 6(t)
h,(t) ho
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I—Moments of a Function

LTransfer Functions

m Let h denote a matrix-valued function of time representing the

kernel of an LTI system
h: teR~—s RIXN
Example: Impulse response of an LTI system
_ oAt
h(t) = Ce"'B+ D 6(t)
h,(t) ho
m Let H(s) € R9%" denote its Laplace transform

H(s) = / e *'h(t)dt
0
Example: Impulse response of an LTI system
H(s) = C(sly —A)"'B+D
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I—Moments of a Function

LTramsfer Functions

m Let h denote a matrix-valued function of time representing the
kernel of an LTI system

h: t € R— RIXM
Example: Impulse response of an LTI system
— CoAt
h(t) = Ce"'B+ D 6(t)
h,(t) hg
m Let H(s) € R9%" denote its Laplace transform

H(s) = / e *'h(t)dt
0
Example: Impulse response of an LTI system
H(s) = C(sly —A)"'B+D

m H(s) is the transfer function associated with the HDM defined by
(A, B, C,D) as for each input U(s), it defines the output
Y(s) = H(s)U(s)
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I—Moments of a Function

LMoment of a Function

mletme{0, 1, --- .
The m-th moment of h: t e R+—— R at 55 € C is

)

Nm(s0) = / tMe %th(t) dt
0
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I—Moments of a Function

LMoment of a Function

mletme{0, 1, ---, } .
The m-th moment of h: t e R+—— R at 55 € C is

Nm(s0) = / tMe %th(t) dt
0

m Hence, the m-th moment of h can be written in terms of the
transfer function H(s) as follows

., d™H

(o) = (-1

()

s=sp
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I—Moments of a Function

LMoment of a Function

mletme{0, 1, ---, } .
The m-th moment of h: t e R+—— R at 55 € C is

Nm(s0) = / tMe %th(t) dt
0

m Hence, the m-th moment of h can be written in terms of the
transfer function H(s) as follows

d™H
1m(s0) = (=1)" (s)
dsm =5
Example: Impulse response of an LTI system
mo(s0) = H(s) =C(soly —A)"'B+D
Nm(so) = m! C(sply —A)"(™IB, ¥m>1

6/35



AA216/CME345: PMOR - M3
I—Moments of a Function

LInterpretation in Terms of Taylor Series

m Development of H(s) in Taylor series

H(s) = H(so)+ %(5) . (SI!SO)JFN
d™H ( _ )m
*gem )] Rt
- 770(50)77]1(50)( I!SO) T +(*1)m71m(50)(5_70)m +
- 770(50)+7]1(50)(50— )+"'+Tim(50)( 0 — )™ .
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L Moments of a Function
LMarkov Parameters
m The Markov parameters of the system defined by h are defined as

the coefficients 7,(c0) of the expansion in Laurent series of the
transfer function at infinity

H(s) = mo(00) + 1 (00) + m(00) -+ Zim(00) +
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LMarkov Parameters
m The Markov parameters of the system defined by h are defined as
the coefficients 7,(c0) of the expansion in Laurent series of the
transfer function at infinity

H(s) = mo(00) + 1 (00) + m(00) -+ Zim(00) +

Example: Impulse response of an LTI system

no(cc) = D
Nm(o0) = CA™ !B, Vm>1
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L Moments of a Function
LMarkov Parameters
m The Markov parameters of the system defined by h are defined as

the coefficients 7,(c0) of the expansion in Laurent series of the
transfer function at infinity

H(s) = mo(00) + 1 (00) + m(00) -+ Zim(00) +

Example: Impulse response of an LTI system

mo() = D
Nm(o0) = CA™ !B, Vm>1
Proof: Use the property that for s — oo,
1 1 1
-1 _ m
(sly — A) —;IN+S—2A+--~+ 5m+1A + e

pre-multiply by C, post-multiply by B, and identify with the
expansion given above
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I—Moment Matching Method
LGeneralldea

m Let H(s) = C(sly — A)~!B + D represent the HDM defined by
(A,B,C,D) and let s € C
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I—Moment Matching Method
LGeneral Idea

m Let H(s) = C(sly — A)~!B + D represent the HDM defined by
(A,B,C,D) and let s € C

m Objective: Construct a PROM (A,,B,, C,,D,) such that the first /
moments {n,,j(so)}j-;(l) of its transfer function at sp,
H, = C,(sol, — A,)7!B, + D, € R9%" match the first / moments
{nj(s0) J’.;é of the transfer function H(s) € R9*" of the HDM

1. j(s0) = mj(s0) & HY (s9) = HU)(s), Vj =0, ,/ -1

m the direct matching of the moments is in general a numerically
unstable procedure

m today, moment matching is best performed using an equivalent
procedure based on Krylov subspaces
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I—Moment Matching Method
LGeneral Idea

m Let H(s) = C(sly — A)~!B + D represent the HDM defined by
(A,B,C,D) and let s € C

m Objective: Construct a PROM (A,,B,, C,,D,) such that the first /
moments {n,,j(so)}j-;(l) of its transfer function at sp,
H, = C,(sol, — A,)7!B, + D, € R9%" match the first / moments
{nj(s0) J’.;é of the transfer function H(s) € R9*" of the HDM

1. j(s0) = mj(s0) & HY (s9) = HU)(s), Vj =0, ,/ -1

m the direct matching of the moments is in general a numerically
unstable procedure
m today, moment matching is best performed using an equivalent
procedure based on Krylov subspaces
m For simplicity, focus is set on the Single Input-Single Output (SISO)
(in = g = 1) case throughout the remainder of this chapter

B=beR"N CT=c" eR"
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I—Moment Matching Method
LPartial Realization - Moment Matching at Infinity

Let V be a right Reduced-Order Basis (ROB) such that
range (V) = IC«(A,b) = span {b,Ab, S ,Akilb}
and W be a left ROB satisfying
W7V =1

Then, the PROM of dimension k obtained by Petrov-Galerkin projection
of the HDM (A, B, C, D) using W and V satisfies

nr.j(00) = nj(00) & HY(00) = HD(0), ¥j =0,--- ,k—1
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I—Moment Matching Method
LPartial Realization - Moment Matching at Infinity

Definition
The order-k Krylov subspace generated by A € RV*N and b € RV is

K«(A,b) = span{b,Ab, --- ,A*"'h}

Remark: Constructing KCx (A, b) requires only the ability to compute the
action of the matrix A on a vector. In many applications, such a
computation can be performed without forming explicitly the matrix A.
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I—Moment Matching Method
LPartial Realization - Moment Matching at Infinity

The following lemma is introduced to prove the previous theorem

Lemma

The moments of the transfer function of a PROM do not depend on the
underlying left and right ROBs, but only on the subspaces associated
with these ROBs

Proof of the Theorem.

From the above lemma, it follows that V can be chosen as follows
V=[viVvs v ---v]=[bAb ... Al7lp ... Ak 1lp]

W7V = I, = AVWTV,' = AVe; = Av; = Vitl = A'b

= nro(00) = D=no(c0)
nr.1(00) = ¢/b, =cVW'b =cVW'v; = cVe; = cb = 7;(0)
M js1(00) = ¢ Aib, = cVWT(AVWT )b = cVWT (AVWT Yy,

= CVWTVJ'_H = cVeJ-+1 =CVj;1 = cA’b = 77j+1(00)

O
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I—Moment Matching Method
LRational Interpolation - Multiple Moment Matching at a Single Point

Let so € C, V be a right ROB satisfying

range(V) = K ((solv —A)™*, (soly —A)~'b)
= span{(soly —A)"'b,- -, (soly — A)"“b}

and W be a left ROB satisfying
WiV =1

Then, the PROM of dimension k obtained by Petrov-Galerkin projection
of the HDM (A, B, C, D) using W and V satisfies

mr,(50) = 15(s0) & HY(50) = HY(s0), ¥j =0, .k — 1
and therefore is an interpolatory PROM

m This is a more computationally expensive procedure as the computation of each Krylov basis
vector requires the solution of a large-scale system of equations
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I—Moment Matching Method
LRational Interpolation - Moment Matching at Multiple Points

Lets;e C, i=1,---,k, V be a right ROB satisfying
range(V) = span{(sily — A)"'b, -+, (scly — A)"'b}
and W be a left ROB satisfying
W'V =1

Then, the PROM of dimension k obtained by Petrov-Galerkin projection
of the HDM (A, B, C, D) using W and V satisfies

nro(si) = no(si) < He(s;)) = H(s;), Vi=1,--- k

and therefore is an interpolatory PROM
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I—Moment Matching Method
LMultiple Moment Matching at Multiple Points

Lets;e C, i=1,---,1, V be a right ROB satisfying

i
range(V) = | J Ki ((sily — A) ™", (sily — A)'b)

i=1
and W be a left ROB satisfying
W'V =1

Then, the PROM of dimension |k obtained by Petrov-Galerkin projection
of the HDM (A, B, C, D) using W and V satisfies

nri(s) = ni(s)) & HY(s) = HY(s), Vi=1,--- I, Vj=0,--- k-1

and therefore is an interpolatory PROM

15/35



AA216/CME345: PMOR - M3
I—Moment Matching Method
LMultiple Moment Matching at Multiple Points using Two-Sided Projections

Lets;e C, i=1,---,2/, V be a right ROB satisfying

/
range(V) = U K ((sity — A)~L, (sily — A)~'b)

and W be a left ROB satisfying

range(W) = | J Ky ((silv — A7) (sily — AT)"'c")
i=I+1

and W'V s nonsingular

Then, the PROM of dimension 21k obtained by Petrov-Galerkin
projection of the HDM (A, B, C, D) using W and V satisfies

ne(s) = nj(si) & HY(s)) = HUX(s), ¥i=1,---,2I, ¥j=0,---,

and therefore is an interpolatory PROM
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I—Krylov-based Moment Matching Methods
LMoment Matching by Krylov Methods

m Partial realization requires the construction of ICx(A, b) — that is,
the knowledge of the action of A on vectors
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I—Krylov-based Moment Matching Methods
L Moment Matching by Krylov Methods

m Partial realization requires the construction of ICx(A, b) — that is,
the knowledge of the action of A on vectors

m Rational interpolation requires the following Krylov space
Ki((soly — A) 71, (soly — A)~'b)

and therefore the knowledge of the action of (sply — A)~! € RV*N
on vectors; two computationally efficient approaches are possible:
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m Partial realization requires the construction of ICx(A, b) — that is,
the knowledge of the action of A on vectors

m Rational interpolation requires the following Krylov space
Ki((soly — A) 71, (soly — A)~'b)

and therefore the knowledge of the action of (sply — A)~! € RV*N
on vectors; two computationally efficient approaches are possible:
m if N is sufficiently small, an LU factorization of sply — A can be
performed and for any vector v € RV, (soly — A)"!v can be
computed using forward and backward substitutions
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I—Krylov-based Moment Matching Methods
L Moment Matching by Krylov Methods

m Partial realization requires the construction of ICx(A, b) — that is,
the knowledge of the action of A on vectors

m Rational interpolation requires the following Krylov space
Ki((soly — A) 71, (soly — A)~'b)

and therefore the knowledge of the action of (sply — A)~! € RV*N
on vectors; two computationally efficient approaches are possible:

m if N is sufficiently small, an LU factorization of sply — A can be
performed and for any vector v € RV, (soly — A)"!v can be
computed using forward and backward substitutions

m if N is too large for an LU factorization to be affordable, Krylov
subspace recycling techniques allowing the reuse of Krylov subspaces
for multiple right-hand sides can be used
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I—Krylov-based Moment Matching Methods
L The Arnoldi Method for Partial Realization

m KCk(A, b) can be efficiently constructed using the Arnoldi
factorization method

Input: A € RVXN p e RV
Output: Orthogonal basis V, € RV*k for K, (A, b)

m In this case, Vj satisfies the following recursion

AVk = Vka + fke,z—

where H, = VkTAVk is an upper Hessenberg matrix, VkTV,< =y,
and V,(Tfk =0
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I—Krylov-based Moment Matching Methods
L The Arnoldi Method for Partial Realization

Algorithm

Input: A € RV*N b e RV

Output: Orthogonal basis V, € RV*k for C (A, b)

vi = b/|[b[};

w=Av;; a1 =V

fl = W — 1V,

V= [Vl]; H= [041];

forj=1,--- ,k—1do
Bi = I6; visr =i/ 5
Vit = [V), vjali

8: ﬁj—{ H‘i

{w;

Noahswen e

9 w=Avj;

10: h= VJ-TJ-rlAW; fj+1 =W — VJ'+1|’I;
11: Hj+1 = [HJ', h],

12: end for
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I—Krylov-based Moment Matching Methods
L The Two-Sided Lanczos Method for Partial Realization

m Cx(A,b) and K, (AT, cT) can be efficiently simultaneously
constructed using the two-sided Lanczos process

Input: A e RV*N bRV, ¢ ¢ RV
Output: Bi-orthogonal bases V, € RV*k and W, € RN*k
(W] Vi =1y) for Ki(A,b) and Kx(AT,cT), respectively

m In this case, Vi and W satisfy the following recursions
AV, =V, T, + fkekT

ATW, =W, T/ +ge]

where T, = W/ AV, is a tridiagonal matrix, W]V, = I,
W,;rfk = 0, and VTgk =0
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I—Krylov-based Moment Matching Methods
L The Two-Sided Lanczos Method for Partial Realization

Algorithm

Input: A e RV*N bRV, T e RV

Output: Bi-orthogonal bases V, € RVN*k and W, € RN*k
(W] Vi =1y) for Ki(A,b) and Kx(AT,cT), respectively

=
= O

: [31 = |bTCT
cvi=b/B1, wi=cT/y;

© P N kWb

y V1= Sign(chT)ﬂl;

forj=1,--- k—1do
T Ay
aj = w; Avj;
rj = AV7J_ — QjVj — YiVi_1;
q; = Alw; — a;w; — fiwj1;

Bi+1 = \/W i1 = sign(r] a;)Bjs1;

Vjit1 =¥/ Bji1;
Wji1 = qj'/%'ﬂ;
end for

: vk:["h'" ,Vk], Wk:[wlv"' 7Wk];
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I—Error Bounds
LHQ Norm

Definition

The H; norm of a continuous dynamical system S = (A, B, C, D) is the
L5 norm of its associated impulse response h(-).
When A is stable and D = 0, the norm is bounded and

1S3, = </0°0 trace (h' (t)h(t)) dt>

m Using Parseval’s theorem and the transfer function H(-), one can
obtain the corresponding expression in the frequency domain

1Sl = (;ﬁ | wace (b (-iwH( ))dw)m

m One can also derive the expression of ||S||4, in terms of the
reachability and observability Gramians P and Q

IS, = /trace (BT OB) = \ftrace (CPCT)

1/2
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I—Error Bounds
LHQ Norm-Based Error Bounds

m In the SISO case, the transfer function is a rational function:
Assuming (for simplicity) that it has distinct poles A; associated
with the residues h;, i =1,--- , N !, it can be written as

H(s)zzsﬁi)\i

i=1
m Then, the following theorem can be established

Theorem

Let H,(-) denote the transfer function associated with the reduced
system S, obtained using moment matching, the Lanczos procedure and
the high- d/menSIona/ system S. Denoting by h.; and X\, ;, i =1,-

the residues and po/es of H,(+), respect/ve/y, the fo//owmg result holds
HS_SfH’ZHZ Zh H( >‘ )_ (_A;k +Zhr,l H’(_Ar,l)_H(_Ar,l))
i=1

’

LWhen a transfer function is expressed as a sum of simpler fractions, the residues
are the coefficients corresponding to each pole
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I—Error Bounds
L #,-Optimal Model Order Reduction

m One would like to build ROBs (V, W) of a given dimension k such
that the corresponding reduced system S, is Hy-optimal, i.e. solves
the following optimization problem

min S-S§
Sr, rank(V)=rank(W)=k || r||7—£2

m In this case, one can show that a necessary condition is that the
reduced-order model matches the first two moments of the HDM at

the points —\, j, mirror images of the poles A, ; of the reduced
transfer function H,(+)

Ho(=A) = H(=An), HY(=A) = HO(=A), s =1,k

m Unfortunately, moment matching ensures that the moments of the
transfer function are matched at A, j, not —A, ;

m The IRKA (Iterative Rational Krylov Approximation) procedure is an
iterative procedure to conciliate these two contradicting goals
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|—Comparisons with POD and BPOD in the Frequency Domain
LPOD in the Frequency Domain and Moment Matching

m POD in the frequency domain for LTI systems

range(V) = = span{X (w1), -+, X'(wi)}
= span {(jwily — A)'b, -, (jwkly — A) b}

where wy, -+ ,wi € RT

m Rational interpolation with first moment matching at multiple points
_ -1 -1
range(V) 7span{(51|N—A) b, (skly — A) b}

where s1,--- ,5, € C

m Question: is it possible to extend the two-sided moment matching
approach to POD?

m Answer: yes, this is the Balanced POD
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|—Comparisons with POD and BPOD in the Frequency Domain
L The Balanced POD Method

m The Balanced POD method generates snapshots for the dual system
in addition to the POD snapshots

S [(jwily = A) b -+ (jwxly — A)'b]
Squal = [(—jwily —AT) ™ - (—jwdy — AT) T

m The associated right and left ROBs are then computed as follows

SiaS = UXZT (SVD)
vV = sz,x.'/?
W = sduaIUkz;l/Q

where the subscript k refers to the first k components of the
singular value decomposition

m If no truncation is performed, Balanced POD is equivalent to
two-sided moment matching at s; € {wy, -+ ,wk}
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|—Applications
I—Frequency Sweeps

m Structural vibrations and interior noise/acoustics

Structural dynamics (Navier) Interior Helmholtz

m Scattering (acoustics and electromagnetics)

Exterior Helmholtz Electromagnetics (Maxwell)

Aeroacoustics (Helmholtz)
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I—Applications

LFrequency Response Problems

m Structural dynamics

wi(w) = | Ks +iw Dy —w? M, fs(w)
K D M

Rayleigh damping: D; = aK, + M,
m Acoustics
-1

2
w
wr(w)=| K — o M¢ +S,(w) fr(w)
K \i" M iwD
UJ2

m Structural (or vibro)-acoustics

w, (@) = (K, — w?M, + S, (w)) " f,(w)\ !

-
B Ks ]-C _w2 Ms 1 0 + |: Ist 0 :| fs(w)
0 —K¢ -C M 0 o0 —fr(w)

pPf f

iwD
K M 28/35
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|—Applications
LFrequency Sweeps

m Frequency response function w = w(w) = problem with multiple
left hand sides - very CPU intensive (1,000s of frequencies)

NN

20
AN
151
" (;fﬂ)
o 10]-
3 "
o . " T eerenens
£ 0 -
< 01° 015 02 025 03 035 04 045 &5
-5 .. Lootes”
0 Tl Wavenumber (frequencly)
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I—Applications
LInterpolatory Reduced-Order Model by Krylov-based Moment Matching

m Approximate w(w) by a Galerkin projection: w ~ w = Vq

W(w) = V (V'KV + iwV*DV — w?V*MV) "' V*f

PROM

m If the columns of V span the solution and its derivatives at some
frequency, the projection is interpolatory
m Two ways to compute the vectors in V
m recursive differentiation with respect to w at the interpolating

frequency
m construction of a Krylov space that spans the derivatives (special

cases)
SWQM—JM+mm*ﬂ
(K — w’M + iwD) 'M(K — w’M + iwD)'f,

KK—JM+mm*MVHK—JM+mm*@
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I—Applications

|—Structural-Acoustic Vibrations

m Frequency sweep analysis of a thick spherical steel shell submerged
in water and excited by a point load on its inner surface

m Finite element model using isoparametric cubic elements with
roughly N = 1,200,000 dofs
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|—Applications
L Structural-Acoustic Vibrations

m Frequency sweep analysis of a submerged shell
250

200 f 1

150 1

100 b m reference

50 1

—50F E

Real part of pressure

—100 f E

—150 4

—200

1500 2000 2500 3000 3500 4000

Frequency [Hz]
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|—Applications

LStructuraI-Acoustic Vibrations

m Frequency sweep analysis of a submerged shell

250
200 F E
150 | 1
® 100} m reference
@ m interpolating
s 50F 1 frequencies:
s 1,430Hz,
g 0 2,860Hz, and
= 4,290Hz
g —sof 1
—100 f E
—150 4
—200
1500 2000 2500 3000 3500 4000

Frequency [Hz]
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|—Applications

|—StructuraI-Acoustic Vibrations

m Frequency sweep analysis of a submerged shell

250

200 f

150

100

50

Real part of pressure

—50

—100

—150

—200

1500

2000 2500 3000 3500 4000

Frequency [Hz]

©)

reference

interpolating
frequencies:
1,430Hz,
2,860Hz, and
4,290Hz

3-points with
32432432
vectors

sampling every
12Hz
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I—Applications

L Parameter Selection

m How to choose

m number of interpolating frequencies
m location of interpolating frequencies

m number of derivatives (Krylov vectors)

m Error indicator: relative residual

(K — w?M + iwD)W(w) — f||
Il

where

W(w) = V (V'KV + iwV*DV — w?V*MV) "' V*f
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LAutomatic Residual-Based Adaptivity by a Greedy Approach

Specify the number of derivatives per frequency and an accuracy
threshold

A Use two interpolations frequencies at the extremities of the
frequency band of interest and construct the ROB

Evaluate the residual at some small set of in between frequencies

A Add a frequency where the residual is largest and update the
projection

H Repeat until the residual is below a threshold at all sampling points

@ Check at the end the residual at all sampled (or user-specified)
frequencies
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|—Automatic Residual-Based Adaptivity by a Greedy Approach

Relative error/residual

m Frequency sweep analysis of a submerged shell
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m Frequency sweep analysis of a submerged shell
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