AA216/CME345: PROJECTION-BASED MODEL ORDER REDUCTION

Moment Matching Methods (M³)

Charbel Farhat Stanford University cfarhat@stanford.edu

These slides are based on: the recommended textbook, A.C. Antoulas, "Approximation of Large-Scale Dynamical Systems," Advances in Design and Control, SIAM, ISBN-0-89871-529-6; and on papers co-authored by Hetmaniuk, Tezaur, and Farhat

Outline

- 2 Moment Matching Method
- 3 Krylov-based Moment Matching Methods
- 4 Error Bounds
- 5 Comparisons with POD and BPOD in the Frequency Domain
- 6 Applications

-Moments of a Function

LTI High-Dimensional Systems

$$\begin{aligned} \frac{d\mathbf{w}}{dt}(t) &= \mathbf{A}\mathbf{w}(t) + \mathbf{B}\mathbf{u}(t) \\ \mathbf{y}(t) &= \mathbf{C}\mathbf{w}(t) + \mathbf{D}\mathbf{u}(t) \\ \mathbf{w}(0) &= \mathbf{w}_0 \end{aligned}$$

• $\mathbf{w} \in \mathbb{R}^N$: Vector of state variables

- $\mathbf{u} \in \mathbb{R}^{in}$: Vector of input variables typically $in \ll N$
- **v** $\mathbf{y} \in \mathbb{R}^q$: Vector of output variables typically $q \ll N$

-Moments of a Function

Petrov-Galerkin Projection-Based PROMs

Goal: Construct a Projection-based Reduced-Order Model (PROM)

$$\frac{d\mathbf{q}}{dt}(t) = \mathbf{A}_r \mathbf{q}(t) + \mathbf{B}_r \mathbf{u}(t)$$
$$\mathbf{y}(t) = \mathbf{C}_r \mathbf{q}(t) + \mathbf{D}_r \mathbf{u}(t)$$

q ∈ ℝ^k: Reduced-order vector of state variables (or vector of generalized coordinates) - k ≪ N

-Moments of a Function

Petrov-Galerkin Projection-Based PROMs

Goal: Construct a Projection-based Reduced-Order Model (PROM)

$$\frac{d\mathbf{q}}{dt}(t) = \mathbf{A}_r \mathbf{q}(t) + \mathbf{B}_r \mathbf{u}(t)$$
$$\mathbf{y}(t) = \mathbf{C}_r \mathbf{q}(t) + \mathbf{D}_r \mathbf{u}(t)$$

q ∈ ℝ^k: Reduced-order vector of state variables (or vector of generalized coordinates) - k ≪ N

For a Petrov-Galerkin PROM

$$\begin{array}{lll} \mathbf{A}_{r} &= & (\mathbf{W}^{T}\mathbf{V})^{-1}\mathbf{W}^{T}\mathbf{A}\mathbf{V} \in \mathbb{R}^{k \times k} \\ \mathbf{B}_{r} &= & (\mathbf{W}^{T}\mathbf{V})^{-1}\mathbf{W}^{T}\mathbf{B} \in \mathbb{R}^{k \times in} \\ \mathbf{C}_{r} &= & \mathbf{C}\mathbf{V} \in \mathbb{R}^{q \times k} \\ \mathbf{D}_{r} &= & \mathbf{D} \in \mathbb{R}^{q \times in} \end{array}$$

└─Moments of a Function

└─Transfer Functions

Let h denote a matrix-valued function of time representing the kernel of an LTI system

$$\mathbf{h}: t \in \mathbb{R} \longmapsto \mathbb{R}^{q \times in}$$

Example: Impulse response of an LTI system

$$\mathbf{h}(t) = \underbrace{\mathbf{C}e^{\mathbf{A}t}\mathbf{B}}_{\mathbf{h}_{a}(t)} + \underbrace{\mathbf{D}}_{\mathbf{h}_{0}}\delta(t)$$

└─Moments of a Function

└─Transfer Functions

Let h denote a matrix-valued function of time representing the kernel of an LTI system

 $\mathbf{h}: t \in \mathbb{R} \longmapsto \mathbb{R}^{q \times in}$

Example: Impulse response of an LTI system

$$\mathbf{h}(t) = \underbrace{\mathbf{C}e^{\mathbf{A}t}\mathbf{B}}_{\mathbf{h}_{a}(t)} + \underbrace{\mathbf{D}}_{\mathbf{h}_{0}}\delta(t)$$

Let $\mathbf{H}(s) \in \mathbb{R}^{q \times in}$ denote its Laplace transform

$$\mathbf{H}(s) = \int_0^\infty e^{-st} \mathbf{h}(t) dt$$

Example: Impulse response of an LTI system

$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{I}_N - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$$

5 / 35

イロン 不得 とうじょう マーマー

-Moments of a Function

└─Transfer Functions

Let h denote a matrix-valued function of time representing the kernel of an LTI system

 $\mathbf{h}: t \in \mathbb{R} \longmapsto \mathbb{R}^{q \times in}$

Example: Impulse response of an LTI system

$$\mathbf{h}(t) = \underbrace{\mathbf{C}e^{\mathbf{A}t}\mathbf{B}}_{\mathbf{h}_{a}(t)} + \underbrace{\mathbf{D}}_{\mathbf{h}_{0}}\delta(t)$$

Let $\mathbf{H}(s) \in \mathbb{R}^{q \times in}$ denote its Laplace transform

$$\mathbf{H}(s) = \int_0^\infty e^{-st} \mathbf{h}(t) dt$$

Example: Impulse response of an LTI system

$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{I}_N - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$$

H(s) is the transfer function associated with the HDM defined by (A, B, C, D) as for each input U(s), it defines the output
 Y(s) = H(s)U(s)

-Moments of a Function

└─Moment of a Function

■ Let
$$m \in \{0, 1, \dots, \}$$

The *m*-th **moment** of **h** : $t \in \mathbb{R} \mapsto \mathbb{R}^{q \times in}$ at $s_0 \in \mathbb{C}$ is

$$\eta_m(s_0) = \int_0^\infty t^m e^{-s_0 t} \mathbf{h}(t) \, dt$$

└─Moments of a Function

└─Moment of a Function

Let $m \in \{0, 1, \dots, \}$ The *m*-th **moment** of $\mathbf{h}: t \in \mathbb{R} \mapsto \mathbb{R}^{q \times in}$ at $s_0 \in \mathbb{C}$ is

$$\eta_m(s_0) = \int_0^\infty t^m e^{-s_0 t} \mathbf{h}(t) \, dt$$

Hence, the *m*-th moment of h can be written in terms of the transfer function H(s) as follows

$$\left|\eta_m(s_0) = (-1)^m \left. \frac{d^m \mathbf{H}}{ds^m}(s) \right|_{s=s_0}\right|_{s=s_0}$$

└─Moments of a Function

└─Moment of a Function

Let $m \in \{0, 1, \dots, \}$ The *m*-th **moment** of $\mathbf{h}: t \in \mathbb{R} \mapsto \mathbb{R}^{q \times in}$ at $s_0 \in \mathbb{C}$ is

$$\eta_m(s_0) = \int_0^\infty t^m e^{-s_0 t} \mathbf{h}(t) \, dt$$

Hence, the *m*-th moment of h can be written in terms of the transfer function H(s) as follows

$$\boxed{\eta_m(s_0) = (-1)^m \left. \frac{d^m \mathbf{H}}{ds^m}(s) \right|_{s=s_0}}$$

Example: Impulse response of an LTI system

$$\eta_0(s_0) = \mathbf{H}(s_0) = \mathbf{C}(s_0\mathbf{I}_N - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$$

$$\eta_m(s_0) = m! \mathbf{C}(s_0\mathbf{I}_N - \mathbf{A})^{-(m+1)}\mathbf{B}, \quad \forall m \ge 1$$

└ Moments of a Function

LInterpretation in Terms of Taylor Series

• Development of H(s) in Taylor series

$$\begin{aligned} \mathbf{H}(s) &= \mathbf{H}(s_0) + \left. \frac{d\mathbf{H}}{ds}(s) \right|_{s=s_0} \frac{(s-s_0)}{1!} + \cdots \\ &+ \left. \frac{d^m \mathbf{H}}{ds^m}(s) \right|_{s=s_0} \frac{(s-s_0)^m}{m!} + \cdots \\ &= \left. \eta_0(s_0) - \eta_1(s_0) \frac{(s-s_0)}{1!} + \cdots + (-1)^m \eta_m(s_0) \frac{(s-s_0)^m}{m!} + \cdots \right. \\ &= \left. \eta_0(s_0) + \eta_1(s_0) \frac{(s_0-s)}{1!} + \cdots + \eta_m(s_0) \frac{(s_0-s)^m}{m!} + \cdots \right. \end{aligned}$$

・ロト・西ト・田・・田・ うらぐ

└─Moments of a Function

└─Markov Parameters

The **Markov parameters** of the system defined by **h** are defined as the coefficients $\eta_m(\infty)$ of the expansion in Laurent series of the transfer function at infinity

$$\mathbf{H}(s) = \eta_0(\infty) + \frac{1}{s}\eta_1(\infty) + \frac{1}{s^2}\eta_2(\infty) + \cdots + \frac{1}{s^m}\eta_m(\infty) + \cdots$$

└─Moments of a Function

└─Markov Parameters

The **Markov parameters** of the system defined by **h** are defined as the coefficients $\eta_m(\infty)$ of the expansion in Laurent series of the transfer function at infinity

$$\mathbf{H}(s) = \eta_0(\infty) + \frac{1}{s}\eta_1(\infty) + \frac{1}{s^2}\eta_2(\infty) + \cdots + \frac{1}{s^m}\eta_m(\infty) + \cdots$$

Example: Impulse response of an LTI system

$$\eta_0(\infty) = \mathbf{D}$$

 $\eta_m(\infty) = \mathbf{C}\mathbf{A}^{m-1}\mathbf{B}, \ \forall m \ge 1$

-Moments of a Function

└─Markov Parameters

The **Markov parameters** of the system defined by **h** are defined as the coefficients $\eta_m(\infty)$ of the expansion in Laurent series of the transfer function at infinity

$$\mathbf{H}(s) = \eta_0(\infty) + \frac{1}{s}\eta_1(\infty) + \frac{1}{s^2}\eta_2(\infty) + \cdots + \frac{1}{s^m}\eta_m(\infty) + \cdots$$

Example: Impulse response of an LTI system

$$\begin{aligned} \eta_0(\infty) &= \mathbf{D} \\ \eta_m(\infty) &= \mathbf{C}\mathbf{A}^{m-1}\mathbf{B}, \ \forall m \geq 1 \end{aligned}$$

Proof: Use the property that for $s
ightarrow \infty$,

$$(\mathbf{sI}_N - \mathbf{A})^{-1} = \frac{1}{s}\mathbf{I}_N + \frac{1}{s^2}\mathbf{A} + \cdots + \frac{1}{s^{m+1}}\mathbf{A}^m + \cdots$$

pre-multiply by C, post-multiply by B, and identify with the expansion given above

└─Moment Matching Method

└-General Idea

■ Let $\mathbf{H}(s) = \mathbf{C}(s\mathbf{I}_N - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$ represent the HDM defined by $(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ and let $s_0 \in \mathbb{C}$

-Moment Matching Method

└-General Idea

- Let $\mathbf{H}(s) = \mathbf{C}(s\mathbf{I}_N \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$ represent the HDM defined by $(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ and let $s_0 \in \mathbb{C}$
- Objective: Construct a PROM $(\mathbf{A}_r, \mathbf{B}_r, \mathbf{C}_r, \mathbf{D}_r)$ such that the first *l* moments $\{\eta_{r,j}(s_0)\}_{j=0}^{l-1}$ of its transfer function at s_0 , $\mathbf{H}_r = \mathbf{C}_r(s_0\mathbf{I}_r - \mathbf{A}_r)^{-1}\mathbf{B}_r + \mathbf{D}_r \in \mathbb{R}^{q \times in}$, match the first *l* moments $\{\eta_j(s_0)\}_{j=0}^{l-1}$ of the transfer function $\mathbf{H}(s) \in \mathbb{R}^{q \times in}$ of the HDM

$$\eta_{r,j}(s_0) = \eta_j(s_0) \Leftrightarrow \mathbf{H}_r^{(j)}(s_0) = \mathbf{H}^{(j)}(s_0), \ \forall j = 0, \cdots, l-1$$

- the direct matching of the moments is in general a numerically unstable procedure
- today, moment matching is best performed using an equivalent procedure based on Krylov subspaces

-Moment Matching Method

└-General Idea

- Let $\mathbf{H}(s) = \mathbf{C}(s\mathbf{I}_N \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$ represent the HDM defined by $(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ and let $s_0 \in \mathbb{C}$
- Objective: Construct a PROM $(\mathbf{A}_r, \mathbf{B}_r, \mathbf{C}_r, \mathbf{D}_r)$ such that the first *l* moments $\{\eta_{r,j}(s_0)\}_{j=0}^{l-1}$ of its transfer function at s_0 , $\mathbf{H}_r = \mathbf{C}_r(s_0\mathbf{I}_r - \mathbf{A}_r)^{-1}\mathbf{B}_r + \mathbf{D}_r \in \mathbb{R}^{q \times in}$, match the first *l* moments $\{\eta_j(s_0)\}_{j=0}^{l-1}$ of the transfer function $\mathbf{H}(s) \in \mathbb{R}^{q \times in}$ of the HDM

$$\eta_{r,j}(s_0) = \eta_j(s_0) \Leftrightarrow \mathbf{H}_r^{(j)}(s_0) = \mathbf{H}^{(j)}(s_0), \ \forall j = 0, \cdots, l-1$$

- the *direct* matching of the moments is in general a numerically unstable procedure
- today, moment matching is best performed using an equivalent procedure based on Krylov subspaces
- For simplicity, focus is set on the Single Input-Single Output (SISO) (in = q = 1) case throughout the remainder of this chapter

$$\mathbf{B} = \mathbf{b} \in \mathbb{R}^N, \ \mathbf{C}^T = \mathbf{c}^T \in \mathbb{R}^N$$

-Moment Matching Method

Partial Realization - Moment Matching at Infinity

Theorem

Let **V** be a right Reduced-Order Basis (ROB) such that

$$range(\mathbf{V}) = \mathcal{K}_k(\mathbf{A}, \mathbf{b}) = span \{\mathbf{b}, \mathbf{A}\mathbf{b}, \cdots, \mathbf{A}^{k-1}\mathbf{b}\}$$

and W be a left ROB satisfying

$\mathbf{W}^{\mathsf{T}}\mathbf{V} = \mathbf{I}$

Then, the PROM of dimension k obtained by Petrov-Galerkin projection of the HDM $(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ using **W** and **V** satisfies

$$\eta_{r,j}(\infty) = \eta_j(\infty) \Leftrightarrow \mathbf{H}_r^{(j)}(\infty) = \mathbf{H}^{(j)}(\infty), \ \forall j = 0, \cdots, k-1$$

-Moment Matching Method

Partial Realization - Moment Matching at Infinity

Definition

The order-*k* Krylov subspace generated by $\mathbf{A} \in \mathbb{R}^{N \times N}$ and $\mathbf{b} \in \mathbb{R}^N$ is

$$\mathcal{K}_k(\mathsf{A}, \mathsf{b}) = \mathsf{span}\{\mathsf{b}, \mathsf{A}\mathsf{b}, \cdots, \mathsf{A}^{k-1}\mathsf{b}\}$$

Remark: Constructing $\mathcal{K}_k(\mathbf{A}, \mathbf{b})$ requires only the ability to compute the action of the matrix \mathbf{A} on a vector. In many applications, such a computation can be performed without forming explicitly the matrix \mathbf{A} .

-Moment Matching Method

Partial Realization - Moment Matching at Infinity

The following lemma is introduced to prove the previous theorem

Lemma

The moments of the transfer function of a PROM do not depend on the underlying left and right ROBs, but only on the subspaces associated with these ROBs

Proof of the Theorem.

From the above lemma, it follows that ${\boldsymbol{\mathsf{V}}}$ can be chosen as follows

$$\mathbf{V} = [\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_i \ \cdots \ \mathbf{v}_k] = [\mathbf{b} \ \mathbf{A}\mathbf{b} \ \cdots \ \mathbf{A}^{i-1}\mathbf{b} \ \cdots , \ \mathbf{A}^{k-1}\mathbf{b}]$$

 $\mathbf{W}^{T}\mathbf{V} = \mathbf{I}_{k} \Rightarrow \mathbf{A}\mathbf{V}\mathbf{W}^{T}\mathbf{v}_{i} = \mathbf{A}\mathbf{V}\mathbf{e}_{i} = \mathbf{A}\mathbf{v}_{i} = \mathbf{v}_{i+1} = \mathbf{A}^{i}\mathbf{b}$

$$\Rightarrow \eta_{r,0}(\infty) = \mathbf{D} = \eta_0(\infty) \eta_{r,1}(\infty) = \mathbf{c}_r \mathbf{b}_r = \mathbf{c} \mathbf{V} \mathbf{W}^T \mathbf{b} = \mathbf{c} \mathbf{V} \mathbf{W}^T \mathbf{v}_1 = \mathbf{c} \mathbf{V} \mathbf{e}_1 = \mathbf{c} \mathbf{b} = \eta_1(\infty) \eta_{r,j+1}(\infty) = \mathbf{c}_r \mathbf{A}_r^j \mathbf{b}_r = \mathbf{c} \mathbf{V} \mathbf{W}^T (\mathbf{A} \mathbf{V} \mathbf{W}^T)^j \mathbf{b} = \mathbf{c} \mathbf{V} \mathbf{W}^T (\mathbf{A} \mathbf{V} \mathbf{W}^T)^j \mathbf{v}_1 = \mathbf{c} \mathbf{V} \mathbf{W}^T \mathbf{v}_{j+1} = \mathbf{c} \mathbf{V} \mathbf{e}_{j+1} = \mathbf{c} \mathbf{A}^j \mathbf{b} = \eta_{j+1}(\infty)$$

-Moment Matching Method

Rational Interpolation - Multiple Moment Matching at a Single Point

Theorem

Let $s_0 \in \mathbb{C}$, **V** be a right ROB satisfying

range (**V**) =
$$\mathcal{K}_k \left((s_0 \mathbf{I}_N - \mathbf{A})^{-1}, (s_0 \mathbf{I}_N - \mathbf{A})^{-1} \mathbf{b} \right)$$

= $span \left\{ (s_0 \mathbf{I}_N - \mathbf{A})^{-1} \mathbf{b}, \cdots, (s_0 \mathbf{I}_N - \mathbf{A})^{-k} \mathbf{b} \right\}$

and W be a left ROB satisfying

$$\mathbf{W}^T \mathbf{V} = \mathbf{I}$$

Then, the PROM of dimension k obtained by Petrov-Galerkin projection of the HDM (A, B, C, D) using W and V satisfies

$$\eta_{r,j}(s_0) = \eta_j(s_0) \Leftrightarrow \mathbf{H}_r^{(j)}(s_0) = \mathbf{H}^{(j)}(s_0), \ \forall j = 0, \cdots, k-1$$

and therefore is an interpolatory PROM

This is a more computationally expensive procedure as the computation of each Krylov basis vector requires the solution of a large-scale system of equations

-Moment Matching Method

Rational Interpolation - Moment Matching at Multiple Points

Theorem

Let $s_i \in \mathbb{C}, i = 1, \cdots, k$, **V** be a right ROB satisfying

$$\mathsf{range}\left(\mathsf{V}
ight)=\mathsf{span}\left\{(\mathsf{s}_{1}\mathsf{I}_{N}-\mathsf{A})^{-1}\mathsf{b},\cdots,(\mathsf{s}_{k}\mathsf{I}_{N}-\mathsf{A})^{-1}\mathsf{b}
ight\}$$

and W be a left ROB satisfying

$$\mathbf{W}^T \mathbf{V} = \mathbf{I}$$

Then, the PROM of dimension k obtained by Petrov-Galerkin projection of the HDM (A, B, C, D) using W and V satisfies

$$\eta_{r,0}(s_i) = \eta_0(s_i) \Leftrightarrow \mathbf{H}_r(s_i) = \mathbf{H}(s_i), \ \forall i = 1, \cdots, k$$

and therefore is an interpolatory PROM

-Moment Matching Method

Multiple Moment Matching at Multiple Points

Theorem

Let $s_i \in \mathbb{C}, \ i = 1, \cdots, I$, **V** be a right ROB satisfying

$$range(\mathbf{V}) = \bigcup_{i=1}^{l} \mathcal{K}_k \left((s_i \mathbf{I}_N - \mathbf{A})^{-1}, (s_i \mathbf{I}_N - \mathbf{A})^{-1} \mathbf{b} \right)$$

and W be a left ROB satisfying

 $\mathbf{W}^T \mathbf{V} = \mathbf{I}$

Then, the PROM of dimension lk obtained by Petrov-Galerkin projection of the HDM (A, B, C, D) using W and V satisfies

$$\eta_{r,j}(s_i) = \eta_j(s_i) \Leftrightarrow \mathbf{H}_r^{(j)}(s_i) = \mathbf{H}^{(j)}(s_i), \ \forall i = 1, \cdots, l, \ \forall j = 0, \cdots, k-1$$

and therefore is an interpolatory PROM

-Moment Matching Method

└─Multiple Moment Matching at Multiple Points using Two-Sided Projections

Theorem

et
$$s_i \in \mathbb{C}$$
, $i = 1, \cdots, 2l$, \mathbf{V} be a right ROB satisfying
range $(\mathbf{V}) = \bigcup_{i=1}^{l} \mathcal{K}_k \left((s_i \mathbf{I}_N - \mathbf{A})^{-1}, (s_i \mathbf{I}_N - \mathbf{A})^{-1} \mathbf{b} \right)$

and $\boldsymbol{\mathsf{W}}$ be a left ROB satisfying

$$\textit{range}(\mathbf{W}) = \bigcup_{i=l+1}^{2l} \mathcal{K}_k \left((s_i \mathbf{I}_N - \mathbf{A}^T)^{-1}, (s_i \mathbf{I}_N - \mathbf{A}^T)^{-1} \mathbf{c}^T \right)$$

and $\mathbf{W}^{\mathsf{T}}\mathbf{V}$ is nonsingular

Then, the PROM of dimension 2lk obtained by Petrov-Galerkin projection of the HDM (A, B, C, D) using W and V satisfies

$$\eta_{r,j}(s_i) = \eta_j(s_i) \Leftrightarrow \mathbf{H}_r^{(j)}(s_i) = \mathbf{H}^{(j)}(s_i), \ \forall i = 1, \cdots, 2l, \ \forall j = 0, \cdots, k-1$$

and therefore is an interpolatory PROM

Krylov-based Moment Matching Methods

└─Moment Matching by Krylov Methods

Partial realization requires the construction of $\mathcal{K}_k(\mathbf{A}, \mathbf{b})$ – that is, the knowledge of the action of \mathbf{A} on vectors

Krylov-based Moment Matching Methods

Moment Matching by Krylov Methods

- Partial realization requires the construction of $\mathcal{K}_k(\mathbf{A}, \mathbf{b})$ that is, the knowledge of the action of \mathbf{A} on vectors
- Rational interpolation requires the following Krylov space

$$\mathcal{K}_k((s_0\mathbf{I}_N-\mathbf{A})^{-1},(s_0\mathbf{I}_N-\mathbf{A})^{-1}\mathbf{b})$$

and therefore the knowledge of the action of $(s_0 \mathbf{I}_N - \mathbf{A})^{-1} \in \mathbb{R}^{N \times N}$ on vectors; two computationally efficient approaches are possible:

Krylov-based Moment Matching Methods

Moment Matching by Krylov Methods

- Partial realization requires the construction of $\mathcal{K}_k(\mathbf{A}, \mathbf{b})$ that is, the knowledge of the action of \mathbf{A} on vectors
- Rational interpolation requires the following Krylov space

$$\mathcal{K}_k((s_0\mathbf{I}_N-\mathbf{A})^{-1},(s_0\mathbf{I}_N-\mathbf{A})^{-1}\mathbf{b})$$

and therefore the knowledge of the action of $(s_0 \mathbf{I}_N - \mathbf{A})^{-1} \in \mathbb{R}^{N \times N}$ on vectors; two computationally efficient approaches are possible:

• if N is sufficiently small, an LU factorization of $s_0 I_N - A$ can be performed and for any vector $\mathbf{v} \in \mathbb{R}^N$, $(s_0 I_N - A)^{-1}\mathbf{v}$ can be computed using forward and backward substitutions

Krylov-based Moment Matching Methods

Moment Matching by Krylov Methods

- Partial realization requires the construction of $\mathcal{K}_k(\mathbf{A}, \mathbf{b})$ that is, the knowledge of the action of \mathbf{A} on vectors
- Rational interpolation requires the following Krylov space

$$\mathcal{K}_k((s_0\mathbf{I}_N-\mathbf{A})^{-1},(s_0\mathbf{I}_N-\mathbf{A})^{-1}\mathbf{b})$$

and therefore the knowledge of the action of $(s_0 \mathbf{I}_N - \mathbf{A})^{-1} \in \mathbb{R}^{N \times N}$ on vectors; two computationally efficient approaches are possible:

- if N is sufficiently small, an LU factorization of $s_0 I_N A$ can be performed and for any vector $\mathbf{v} \in \mathbb{R}^N$, $(s_0 I_N A)^{-1}\mathbf{v}$ can be computed using forward and backward substitutions
- if N is too large for an LU factorization to be affordable, Krylov subspace recycling techniques allowing the reuse of Krylov subspaces for multiple right-hand sides can be used

Krylov-based Moment Matching Methods

L The Arnoldi Method for Partial Realization

K_k(**A**, **b**) can be efficiently constructed using the Arnoldi factorization method

Input: $\mathbf{A} \in \mathbb{R}^{N \times N}$, $\mathbf{b} \in \mathbb{R}^{N}$ Output: Orthogonal basis $\mathbf{V}_k \in \mathbb{R}^{N \times k}$ for $\mathcal{K}_k(\mathbf{A}, \mathbf{b})$

• In this case, \mathbf{V}_k satisfies the following recursion

$$\mathbf{A}\mathbf{V}_k = \mathbf{V}_k\mathbf{H}_k + \mathbf{f}_k\mathbf{e}_k^{\mathsf{T}}$$

where $\mathbf{H}_k = \mathbf{V}_k^T \mathbf{A} \mathbf{V}_k$ is an upper Hessenberg matrix, $\mathbf{V}_k^T \mathbf{V}_k = \mathbf{I}_k$, and $\mathbf{V}_k^T \mathbf{f}_k = \mathbf{0}$

Krylov-based Moment Matching Methods

The Arnoldi Method for Partial Realization

Algorithm Input: $\mathbf{A} \in \mathbb{R}^{N \times N}$. $\mathbf{b} \in \mathbb{R}^{N}$ **Output:** Orthogonal basis $\mathbf{V}_k \in \mathbb{R}^{N \times k}$ for $\mathcal{K}_k(\mathbf{A}, \mathbf{b})$ 1: $\mathbf{v}_1 = \mathbf{b} / \|\mathbf{b}\|$; 2: $\mathbf{w} = \mathbf{A}\mathbf{v}_{1}; \ \alpha_{1} = \mathbf{v}_{1}^{T}\mathbf{w};$ 3: $\mathbf{f}_1 = \mathbf{w} - \alpha_1 \mathbf{v}_1$: 4: $V_1 = [v_1]; H = [\alpha_1];$ 5: for $i = 1, \dots, k - 1$ do 6: $\beta_i = \|\mathbf{f}_i\|; \mathbf{v}_{i+1} = \mathbf{f}_i / \beta_i;$ 7: $\mathbf{V}_{i+1} = [\mathbf{V}_i, \mathbf{v}_{i+1}];$ $\hat{\mathbf{H}}_{j} = \begin{bmatrix} \mathbf{H}_{j} \\ \beta_{j} \mathbf{e}_{i}^{T} \end{bmatrix};$ 8: 9: $\mathbf{w} = \mathbf{A}\mathbf{v}_{i+1};$ 10: $\mathbf{h} = \mathbf{V}_{i+1}^T \mathbf{w}; \ \mathbf{f}_{i+1} = \mathbf{w} - \mathbf{V}_{i+1} \mathbf{h};$ $H_{i+1} = [\hat{H}_i, h];$ 11: 12: end for

Krylov-based Moment Matching Methods

L The Two-Sided Lanczos Method for Partial Realization

■ K_k(A, b) and K_k(A^T, c^T) can be efficiently simultaneously constructed using the two-sided Lanczos process

Input: $\mathbf{A} \in \mathbb{R}^{N \times N}$, $\mathbf{b} \in \mathbb{R}^{N}$, $\mathbf{c}^{T} \in \mathbb{R}^{N}$ Output: Bi-orthogonal bases $\mathbf{V}_{k} \in \mathbb{R}^{N \times k}$ and $\mathbf{W}_{k} \in \mathbb{R}^{N \times k}$ $(\mathbf{W}_{k}^{T}\mathbf{V}_{k} = \mathbf{I}_{k})$ for $\mathcal{K}_{k}(\mathbf{A}, \mathbf{b})$ and $\mathcal{K}_{k}(\mathbf{A}^{T}, \mathbf{c}^{T})$, respectively

In this case, V_k and W_k satisfy the following recursions

$$\mathbf{A}\mathbf{V}_k = \mathbf{V}_k \mathbf{T}_k + \mathbf{f}_k \mathbf{e}_k^T$$

$$\mathbf{A}^T \mathbf{W}_k = \mathbf{W}_k \mathbf{T}_k^T + \mathbf{g}_k \mathbf{e}_k^T$$

where $\mathbf{T}_k = \mathbf{W}_k^T \mathbf{A} \mathbf{V}_k$ is a tridiagonal matrix, $\mathbf{W}_k^T \mathbf{V}_k = \mathbf{I}_k$, $\mathbf{W}_k^T \mathbf{f}_k = \mathbf{0}$, and $\mathbf{V}^T \mathbf{g}_k = \mathbf{0}$

20 / 35

Krylov-based Moment Matching Methods

L The Two-Sided Lanczos Method for Partial Realization

Algorithm
Input:
$$\mathbf{A} \in \mathbb{R}^{N \times N}$$
, $\mathbf{b} \in \mathbb{R}^{N}$, $\mathbf{c}^{T} \in \mathbb{R}^{N}$
Output: Bi-orthogonal bases $\mathbf{V}_{k} \in \mathbb{R}^{N \times k}$ and $\mathbf{W}_{k} \in \mathbb{R}^{N \times k}$
($\mathbf{W}_{k}^{T}\mathbf{V}_{k} = \mathbf{I}_{k}$) for $\mathcal{K}_{k}(\mathbf{A}, \mathbf{b})$ and $\mathcal{K}_{k}(\mathbf{A}^{T}, \mathbf{c}^{T})$, respectively

1:
$$\beta_1 = \sqrt{|\mathbf{b}^T \mathbf{c}^T|}, \gamma_1 = \operatorname{sign}(\mathbf{b}^T \mathbf{c}^T)\beta_1;$$

2: $\mathbf{v}_1 = \mathbf{b}/\beta_1, \mathbf{w}_1 = \mathbf{c}^T/\gamma_1;$
3: for $j = 1, \dots, k-1$ do
4: $\alpha_j = \mathbf{w}_j^T \mathbf{A} \mathbf{v}_j;$
5: $\mathbf{r}_j = \mathbf{A} \mathbf{v}_j - \alpha_j \mathbf{v}_j - \gamma_j \mathbf{v}_{j-1};$
6: $\mathbf{q}_j = \mathbf{A}^T \mathbf{w}_j - \alpha_j \mathbf{w}_j - \beta_j \mathbf{w}_{j-1};$
7: $\beta_{j+1} = \sqrt{|\mathbf{r}_j^T \mathbf{q}_j|}, \gamma_{j+1} = \operatorname{sign}(\mathbf{r}_j^T \mathbf{q}_j)\beta_{j+1};$
8: $\mathbf{v}_{j+1} = \mathbf{r}_j/\beta_{j+1};$
9: $\mathbf{w}_{j+1} = \mathbf{q}_j/\gamma_{j+1};$
10: end for
11: $\mathbf{V}_k = [\mathbf{v}_1, \dots, \mathbf{v}_k], \mathbf{W}_k = [\mathbf{w}_1, \dots, \mathbf{w}_k];$

21 / 35

Error Bounds

 $L_{\mathcal{H}_2}$ Norm

Definition

The \mathcal{H}_2 norm of a continuous dynamical system $S = (\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ is the \mathcal{L}_2 norm of its associated impulse response $\mathbf{h}(\cdot)$. When \mathbf{A} is stable and $\mathbf{D} = \mathbf{0}$, the norm is bounded and

$$\|S\|_{\mathcal{H}_2} = \left(\int_0^\infty \operatorname{trace}\left(\mathbf{h}^{\mathsf{T}}(t)\mathbf{h}(t)\right)dt\right)^{1/2}$$

• Using Parseval's theorem and the transfer function $\mathbf{H}(\cdot)$, one can obtain the corresponding expression in the frequency domain

$$\|S\|_{\mathcal{H}_2} = \left(\frac{1}{2\pi}\int_{-\infty}^{\infty} \operatorname{trace}\left(\mathbf{H}^*(-i\omega)\mathbf{H}(i\omega)\right)d\omega\right)^{1/2}$$

• One can also derive the expression of $||S||_{\mathcal{H}_2}$ in terms of the reachability and observability Gramians \mathcal{P} and \mathcal{Q}

$$\|S\|_{\mathcal{H}_2} = \sqrt{\operatorname{trace}\left(\mathbf{B}^{\mathsf{T}}\mathcal{Q}\mathbf{B}\right)} = \sqrt{\operatorname{trace}\left(\mathbf{C}\mathcal{P}\mathbf{C}^{\mathsf{T}}\right)}_{\mathbb{C} \to \mathbb{C} \to \mathbb{C$$

Error Bounds

 $\sqcup \mathcal{H}_2$ Norm-Based Error Bounds

• In the SISO case, the transfer function is a rational function: Assuming (for simplicity) that it has distinct poles λ_i associated with the residues h_i , $i = 1, \dots, N^{-1}$, it can be written as

$$\mathsf{H}(s) = \sum_{i=1}^{N} rac{h_i}{s-\lambda_i}$$

Then, the following theorem can be established

Theorem

Let $\mathbf{H}_{r}(\cdot)$ denote the transfer function associated with the reduced system S_{r} obtained using moment matching, the Lanczos procedure, and the high-dimensional system S. Denoting by $h_{r,i}$ and $\lambda_{r,i}$, $i = 1, \dots, k$, the residues and poles of $\mathbf{H}_{r}(\cdot)$, respectively, the following result holds $\|S - S_{r}\|_{\mathcal{H}_{2}}^{2} = \sum_{i=1}^{N} h_{i} (\mathbf{H}(-\lambda_{i}^{*}) - \mathbf{H}_{r}(-\lambda_{i}^{*})) + \sum_{i=1}^{k} h_{r,i} (\mathbf{H}_{r}(-\lambda_{r,i}) - \mathbf{H}(-\lambda_{r,i}))$

Error Bounds

■ One would like to build ROBs (**V**, **W**) of a given dimension k such that the corresponding reduced system S_r is H₂-optimal, i.e. solves the following optimization problem

$$\min_{\mathcal{S}_r, \text{ rank}(\mathbf{V})=\text{rank}(\mathbf{W})=k} \|\mathcal{S} - \mathcal{S}_r\|_{\mathcal{H}_2}$$

In this case, one can show that a **necessary condition** is that the reduced-order model matches the first two moments of the HDM at the points $-\lambda_{r,i}$, mirror images of the poles $\lambda_{r,i}$ of the reduced transfer function $\mathbf{H}_r(\cdot)$

$$\mathbf{H}_{r}(-\lambda_{r,i}) = \mathbf{H}(-\lambda_{r,i}), \ \mathbf{H}_{r}^{(1)}(-\lambda_{r,i}) = \mathbf{H}^{(1)}(-\lambda_{r,i}), \ s = 1, \cdots, k$$

- Unfortunately, moment matching ensures that the moments of the transfer function are matched at $\lambda_{r,i}$, not $-\lambda_{r,i}$
- The IRKA (Iterative Rational Krylov Approximation) procedure is an iterative procedure to conciliate these two contradicting goals

Comparisons with POD and BPOD in the Frequency Domain

POD in the Frequency Domain and Moment Matching

POD in the frequency domain for LTI systems

$$range(\mathbf{V}) = = span\{\mathcal{X}(\omega_1), \cdots, \mathcal{X}(\omega_k)\}$$

= span $\{(j\omega_1\mathbf{I}_N - \mathbf{A})^{-1}\mathbf{b}, \cdots, (j\omega_k\mathbf{I}_N - \mathbf{A})^{-1}\mathbf{b}\}$

where $\omega_1, \cdots, \omega_k \in \mathbb{R}^+$

Rational interpolation with first moment matching at multiple points

$$\mathsf{range}(\mathbf{V}) = \mathsf{span}\left\{(s_1\mathbf{I}_N - \mathbf{A})^{-1}\mathbf{b}, \cdots, (s_k\mathbf{I}_N - \mathbf{A})^{-1}\mathbf{b}\right\}$$

where $s_1, \cdots, s_k \in \mathbb{C}$

- Question: is it possible to extend the two-sided moment matching approach to POD?
- Answer: yes, this is the Balanced POD

Comparisons with POD and BPOD in the Frequency Domain

└─The Balanced POD Method

The Balanced POD method generates snapshots for the dual system in addition to the POD snapshots

$$\mathbf{S} = [(j\omega_1\mathbf{I}_N - \mathbf{A})^{-1}\mathbf{b} \cdots (j\omega_k\mathbf{I}_N - \mathbf{A})^{-1}\mathbf{b}]$$

$$\mathbf{S}_{\text{dual}} = [(-j\omega_1\mathbf{I}_N - \mathbf{A}^T)^{-1}\mathbf{c}^T \cdots (-j\omega_k\mathbf{I}_N - \mathbf{A}^T)^{-1}\mathbf{c}^T]$$

The associated right and left ROBs are then computed as follows

$$\begin{aligned} \mathbf{S}_{\text{dual}}^{T} \mathbf{S} &= \mathbf{U} \mathbf{\Sigma} \mathbf{Z}^{T} \quad \text{(SVD)} \\ \mathbf{V} &= \mathbf{S} \mathbf{Z}_{k} \mathbf{\Sigma}_{k}^{-1/2} \\ \mathbf{W} &= \mathbf{S}_{\text{dual}} \mathbf{U}_{k} \mathbf{\Sigma}_{k}^{-1/2} \end{aligned}$$

where the subscript k refers to the first k components of the singular value decomposition

-Applications

Frequency Sweeps

Structural vibrations and interior noise/acoustics

Structural dynamics (Navier)

Interior Helmholtz

Scattering (acoustics and electromagnetics)

Exterior Helmholtz

Electromagnetics (Maxwell) Aeroacoustics (Helmholtz)

Applications

- **Frequency Response Problems**
 - Structural dynamics

$$\mathbf{w}_{s}(\omega) = \left(\underbrace{\mathbf{K}_{s}}_{\mathbf{K}} + i\omega\underbrace{\mathbf{D}_{s}}_{\mathbf{D}} - \omega^{2}\underbrace{\mathbf{M}_{s}}_{\mathbf{M}}\right)^{-1} \mathbf{f}_{s}(\omega)$$

Rayleigh damping: $\mathbf{D}_s = \alpha \mathbf{K}_s + \beta \mathbf{M}_s$

Acoustics

$$\mathbf{w}_{f}(\omega) = \left(\underbrace{\mathbf{K}_{f}}_{\mathbf{K}} - \underbrace{\frac{\omega^{2}}{c_{f}^{2}}}_{\omega^{2}} \underbrace{\mathbf{M}_{f}}_{\mathbf{M}} + \underbrace{\mathbf{S}_{a}(\omega)}_{i\omega\mathbf{D}}\right)^{-1} \mathbf{f}_{f}(\omega)$$

Structural (or vibro)-acoustics

$$= \left(\underbrace{\begin{pmatrix} \mathbf{w}_{v}(\omega) = (\mathbf{K}_{v} - \omega^{2}\mathbf{M}_{v} + \mathbf{S}_{v}(\omega))^{-1}\mathbf{f}_{v}(\omega) \\ \mathbf{M}_{v}(\omega) = (\mathbf{K}_{v} - \omega^{2}\mathbf{M}_{v} + \mathbf{S}_{v}(\omega))^{-1}\mathbf{f}_{v}(\omega) \\ \begin{bmatrix} \mathbf{K}_{s} & \mathbf{C}^{T} \\ \mathbf{0} & \frac{1}{\rho_{f}}\mathbf{K}_{f} \end{bmatrix} - \omega^{2} \underbrace{\begin{bmatrix} \mathbf{M}_{s} & \mathbf{0} \\ -\mathbf{C} & \frac{1}{\rho_{f}}c_{f}^{2}\mathbf{M}_{f} \end{bmatrix}}_{\mathbf{M}} + \underbrace{\begin{bmatrix} i\omega\mathbf{D}_{s} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}}_{\mathbf{K} = v \in \mathbb{R}} \underbrace{\begin{bmatrix} \mathbf{f}_{s}(\omega) \\ \frac{1}{\rho_{f}}\mathbf{f}_{f}(\omega) \end{bmatrix}}_{\mathbf{K} = v \in \mathbb{R}} \underbrace{\begin{bmatrix} \mathbf{K}_{v} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}}_{\mathbf{K} = v \in \mathbb{R}} \underbrace{\begin{bmatrix} \mathbf{K}_{v} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}}_{\mathbf{K} = v \in \mathbb{R}} \underbrace{\begin{bmatrix} \mathbf{K}_{v} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}}_{\mathbf{K} = v \in \mathbb{R}} \underbrace{\begin{bmatrix} \mathbf{K}_{v} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}}_{\mathbf{K} = v \in \mathbb{R}} \underbrace{\begin{bmatrix} \mathbf{K}_{v} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}}_{\mathbf{K} = v \in \mathbb{R}} \underbrace{\begin{bmatrix} \mathbf{K}_{v} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}}_{\mathbf{K} = v \in \mathbb{R}} \underbrace{\begin{bmatrix} \mathbf{K}_{v} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}}_{\mathbf{K} = v \in \mathbb{R}} \underbrace{\begin{bmatrix} \mathbf{K}_{v} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}}_{\mathbf{K} = v \in \mathbb{R}} \underbrace{\begin{bmatrix} \mathbf{K}_{v} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}}_{\mathbf{K} = v \in \mathbb{R}} \underbrace{\begin{bmatrix} \mathbf{K}_{v} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}}_{\mathbf{K} = v \in \mathbb{R}} \underbrace{\begin{bmatrix} \mathbf{K}_{v} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}}_{\mathbf{K} = v \in \mathbb{R}} \underbrace{\begin{bmatrix} \mathbf{K}_{v} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}}_{\mathbf{K} = v \in \mathbb{R}} \underbrace{\begin{bmatrix} \mathbf{K}_{v} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}}_{\mathbf{K} = v \in \mathbb{R}} \underbrace{\begin{bmatrix} \mathbf{K}_{v} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}}_{\mathbf{K} = v \in \mathbb{R}} \underbrace{\begin{bmatrix} \mathbf{K}_{v} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}}_{\mathbf{K} = v \in \mathbb{R}} \underbrace{\begin{bmatrix} \mathbf{K}_{v} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}}_{\mathbf{K} = v \in \mathbb{R}} \underbrace{\begin{bmatrix} \mathbf{K}_{v} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}}_{\mathbf{K} = v \in \mathbb{R}} \underbrace{\begin{bmatrix} \mathbf{K}_{v} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}}_{\mathbf{K} = v \in \mathbb{R}} \underbrace{\begin{bmatrix} \mathbf{K}_{v} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}}_{\mathbf{K} = v \in \mathbb{R}} \underbrace{\begin{bmatrix} \mathbf{K}_{v} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}}_{\mathbf{K} = v \in \mathbb{R}} \underbrace{\begin{bmatrix} \mathbf{K}_{v} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}}_{\mathbf{K} = v \in \mathbb{R}} \underbrace{\begin{bmatrix} \mathbf{K}_{v} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}}_{\mathbf{K} = v \in \mathbb{R}} \underbrace{\begin{bmatrix} \mathbf{K}_{v} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}}_{\mathbf{K} = v \in \mathbb{R}} \underbrace{\begin{bmatrix} \mathbf{K}_{v} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}}_{\mathbf{K} = v \in \mathbb{R}} \underbrace{\begin{bmatrix} \mathbf{K}_{v} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}}_{\mathbf{K} = v \in \mathbb{R}} \underbrace{\begin{bmatrix} \mathbf{K}_{v} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}}_{\mathbf{K} = v \in \mathbb{R}} \underbrace{\begin{bmatrix} \mathbf{K}_{v} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}}_{\mathbf{K} = v \in \mathbb{R}} \underbrace{\begin{bmatrix} \mathbf{K}_{v} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}}_{\mathbf{K} = v \in \mathbb{R}} \underbrace{\begin{bmatrix} \mathbf{K}_{v} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}}_{\mathbf{K} = v \in \mathbb{R}} \underbrace{\begin{bmatrix} \mathbf{K}_{v} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}}_{\mathbf{K} =$$

-Applications

└-Frequency Sweeps

■ Frequency response function w = w(ω) ⇒ problem with multiple left hand sides - very CPU intensive (1,000s of frequencies)

イロト イボト イヨト イヨト

- Applications

└-Interpolatory Reduced-Order Model by Krylov-based Moment Matching

Approximate $\mathbf{w}(\omega)$ by a Galerkin projection: $\mathbf{w} \approx \tilde{\mathbf{w}} = \mathbf{V} \mathbf{q}$

$$\tilde{\mathbf{w}}(\omega) = \mathbf{V} \underbrace{\left(\mathbf{V}^{\star}\mathbf{K}\mathbf{V} + i\omega\mathbf{V}^{\star}\mathbf{D}\mathbf{V} - \omega^{2}\mathbf{V}^{\star}\mathbf{M}\mathbf{V}\right)^{-1}}_{\mathsf{PROM}}\mathbf{V}^{\star}\mathbf{f}$$

- If the columns of V span the solution and its derivatives at some frequency, the projection is interpolatory
- Two ways to compute the vectors in V
 - recursive differentiation with respect to ω at the interpolating frequency
 - construction of a Krylov space that spans the derivatives (special cases)

$$\operatorname{span} \left\{ (\mathbf{K} - \omega^{2} \mathbf{M} + i\omega \mathbf{D})^{-1} \mathbf{f}, \\ (\mathbf{K} - \omega^{2} \mathbf{M} + i\omega \mathbf{D})^{-1} \mathbf{M} (\mathbf{K} - \omega^{2} \mathbf{M} + i\omega \mathbf{D})^{-1} \mathbf{f}, \\ \cdots \\ [(\mathbf{K} - \omega^{2} \mathbf{M} + i\omega \mathbf{D})^{-1} \mathbf{M}]^{n-1} (\mathbf{K} - \omega^{2} \mathbf{M} + i\omega \mathbf{D})^{-1} \mathbf{f} \right\}$$

-Applications

└─Structural-Acoustic Vibrations

- Frequency sweep analysis of a thick spherical steel shell submerged in water and excited by a point load on its inner surface
- Finite element model using isoparametric cubic elements with roughly N = 1,200,000 dofs

-Applications

Structural-Acoustic Vibrations

^{32 / 35}

-Applications

Structural-Acoustic Vibrations

- Applications

Structural-Acoustic Vibrations

- Applications

└ Parameter Selection

How to choose

number of interpolating frequencies

location of interpolating frequencies

number of derivatives (Krylov vectors)

Error indicator: relative residual

$$\frac{\|(\mathbf{K} - \omega^2 \mathbf{M} + i\omega \mathbf{D})\tilde{\mathbf{w}}(\omega) - \mathbf{f}\|}{\|\mathbf{f}\|}$$

where

$$ilde{\mathbf{w}}(\omega) = \mathbf{V} \left(\mathbf{V}^{\star} \mathbf{K} \mathbf{V} + i \omega \mathbf{V}^{\star} \mathbf{D} \mathbf{V} - \omega^2 \mathbf{V}^{\star} \mathbf{M} \mathbf{V}
ight)^{-1} \mathbf{V}^{\star} \mathbf{f}$$

<ロト < 部ト < 言ト < 言ト 言 のへの 33/35

-Applications

-Automatic Residual-Based Adaptivity by a Greedy Approach

- Specify the number of derivatives per frequency and an accuracy threshold
- **2** Use two interpolations frequencies at the extremities of the frequency band of interest and construct the ROB
- 3 Evaluate the residual at some *small* set of in between frequencies
- 4 Add a frequency where the residual is largest and update the projection
- 5 Repeat until the residual is below a threshold at all sampling points
- Check at the end the residual at all sampled (or user-specified) frequencies

-Applications

-Automatic Residual-Based Adaptivity by a Greedy Approach

Frequency sweep analysis of a submerged shell

-Applications

-Automatic Residual-Based Adaptivity by a Greedy Approach

^{35 / 35}

-Applications

-Automatic Residual-Based Adaptivity by a Greedy Approach

Frequency sweep analysis of a submerged shell

^{35 / 35}

-Applications

-Automatic Residual-Based Adaptivity by a Greedy Approach

Frequency sweep analysis of a submerged shell

- Applications

Automatic Residual-Based Adaptivity by a Greedy Approach

- Applications

-Automatic Residual-Based Adaptivity by a Greedy Approach

Frequency sweep analysis of a submerged shell

-Applications

-Automatic Residual-Based Adaptivity by a Greedy Approach

Frequency sweep analysis of a submerged shell

- Applications

-Automatic Residual-Based Adaptivity by a Greedy Approach

Frequency sweep analysis of a submerged shell

-Applications

Automatic Residual-Based Adaptivity by a Greedy Approach

Frequency sweep analysis of a submerged shell

-Applications

Automatic Residual-Based Adaptivity by a Greedy Approach

Frequency sweep analysis of a submerged shell

