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Moments of a Function

LTI High-Dimensional Systems

dw

dt
(t) = Aw(t) + Bu(t)

y(t) = Cw(t) +Du(t)

w(0) = w0

w ∈ RN : Vector of state variables

u ∈ Rin : Vector of input variables – typically in ≪ N

y ∈ Rq : Vector of output variables – typically q ≪ N
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Moments of a Function

Petrov-Galerkin Projection-Based PROMs

Goal: Construct a Projection-based Reduced-Order Model (PROM)

dq

dt
(t) = Arq(t) + Bru(t)

y(t) = Crq(t) +Dru(t)

q ∈ Rk : Reduced-order vector of state variables (or vector of
generalized coordinates) – k ≪ N

For a Petrov-Galerkin PROM

Ar = (WTV)−1WTAV ∈ Rk×k

Br = (WTV)−1WTB ∈ Rk×in

Cr = CV ∈ Rq×k

Dr = D ∈ Rq×in
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Moments of a Function

Transfer Functions

Let h denote a matrix-valued function of time representing the
kernel of an LTI system

h : t ∈ R 7−→ Rq×in

Example: Impulse response of an LTI system

h(t) = CeAtB︸ ︷︷ ︸
ha(t)

+ D︸︷︷︸
h0

δ(t)

Let H(s) ∈ Rq×in denote its Laplace transform

H(s) =

∫ ∞

0

e−sth(t)dt

Example: Impulse response of an LTI system

H(s) = C(sIN − A)−1B+D

H(s) is the transfer function associated with the HDM defined by
(A,B,C,D) as for each input U(s), it defines the output

Y(s) = H(s)U(s)
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Moments of a Function

Moment of a Function

Let m ∈ {0, 1, · · · , }
The m-th moment of h : t ∈ R 7−→ Rq×in at s0 ∈ C is

ηm(s0) =

∫ ∞

0

tme−s0th(t) dt

Hence, the m-th moment of h can be written in terms of the
transfer function H(s) as follows

ηm(s0) = (−1)m
dmH

dsm
(s)

∣∣∣∣
s=s0

Example: Impulse response of an LTI system

η0(s0) = H(s0) = C(s0IN − A)−1B+D

ηm(s0) = m! C(s0IN − A)−(m+1)B, ∀m ≥ 1
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Moments of a Function

Interpretation in Terms of Taylor Series

Development of H(s) in Taylor series

H(s) = H(s0) +
dH

ds
(s)

∣∣∣∣
s=s0

(s − s0)

1!
+ · · ·

+
dmH

dsm
(s)

∣∣∣∣
s=s0

(s − s0)
m

m!
+ · · ·

= η0(s0)− η1(s0)
(s − s0)

1!
+ · · ·+ (−1)mηm(s0)

(s − s0)
m

m!
+ · · ·

= η0(s0) + η1(s0)
(s0 − s)

1!
+ · · ·+ ηm(s0)

(s0 − s)m

m!
+ · · ·
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Moments of a Function

Markov Parameters

The Markov parameters of the system defined by h are defined as
the coefficients ηm(∞) of the expansion in Laurent series of the
transfer function at infinity

H(s) = η0(∞) +
1

s
η1(∞) +

1

s2
η2(∞) + · · ·+ 1

sm
ηm(∞) + · · ·

Example: Impulse response of an LTI system

η0(∞) = D

ηm(∞) = CAm−1B, ∀m ≥ 1

Proof: Use the property that for s → ∞,

(sIN − A)−1 =
1

s
IN +

1

s2
A+ · · ·+ 1

sm+1
Am + · · ·

pre-multiply by C, post-multiply by B, and identify with the
expansion given above
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Moment Matching Method

General Idea

Let H(s) = C(sIN − A)−1B+D represent the HDM defined by
(A,B,C,D) and let s0 ∈ C

Objective: Construct a PROM (Ar ,Br ,Cr ,Dr ) such that the first l
moments {ηr , j(s0)}l−1

j=0 of its transfer function at s0,

Hr = Cr (s0Ir − Ar )
−1Br +Dr ∈ Rq×in, match the first l moments

{ηj(s0)}l−1
j=0 of the transfer function H(s) ∈ Rq×in of the HDM

ηr , j(s0) = ηj(s0) ⇔ H(j)
r (s0) = H(j)(s0), ∀j = 0, · · · , l − 1

the direct matching of the moments is in general a numerically
unstable procedure
today, moment matching is best performed using an equivalent
procedure based on Krylov subspaces

For simplicity, focus is set on the Single Input-Single Output (SISO)
(in = q = 1) case throughout the remainder of this chapter

B = b ∈ RN , CT = cT ∈ RN
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Moment Matching Method

Partial Realization - Moment Matching at Infinity

Theorem

Let V be a right Reduced-Order Basis (ROB) such that

range (V) = Kk(A,b) = span
{
b,Ab, · · · ,Ak−1b

}
and W be a left ROB satisfying

WTV = I

Then, the PROM of dimension k obtained by Petrov-Galerkin projection
of the HDM (A,B,C,D) using W and V satisfies

ηr , j(∞) = ηj(∞) ⇔ H(j)
r (∞) = H(j)(∞), ∀j = 0, · · · , k − 1
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Moment Matching Method

Partial Realization - Moment Matching at Infinity

Definition

The order-k Krylov subspace generated by A ∈ RN×N and b ∈ RN is

Kk(A,b) = span{b,Ab, · · · ,Ak−1b}

Remark: Constructing Kk(A,b) requires only the ability to compute the
action of the matrix A on a vector. In many applications, such a
computation can be performed without forming explicitly the matrix A.
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Moment Matching Method

Partial Realization - Moment Matching at Infinity

The following lemma is introduced to prove the previous theorem

Lemma

The moments of the transfer function of a PROM do not depend on the
underlying left and right ROBs, but only on the subspaces associated
with these ROBs

Proof of the Theorem.

From the above lemma, it follows that V can be chosen as follows

V = [v1 v2 · · · vi · · · vk ] = [b Ab · · · Ai−1b · · · , Ak−1b]

WTV = Ik ⇒ AVWTvi = AVei = Avi = vi+1 = Aib

⇒ ηr ,0(∞) = D = η0(∞)
ηr ,1(∞) = crbr = cVWTb = cVWTv1 = cVe1 = cb = η1(∞)
ηr , j+1(∞) = crAj

rbr = cVWT (AVWT )jb = cVWT (AVWT )jv1
= cVWTvj+1 = cVej+1 = cvj+1 = cAjb = ηj+1(∞)

12 / 35



AA216/CME345: PMOR - M3

Moment Matching Method

Rational Interpolation - Multiple Moment Matching at a Single Point

Theorem

Let s0 ∈ C, V be a right ROB satisfying

range (V) = Kk

(
(s0IN − A)−1, (s0IN − A)−1b

)
= span

{
(s0IN − A)−1b, · · · , (s0IN − A)−kb

}
and W be a left ROB satisfying

WTV = I

Then, the PROM of dimension k obtained by Petrov-Galerkin projection
of the HDM (A,B,C,D) using W and V satisfies

ηr , j(s0) = ηj(s0) ⇔ H(j)
r (s0) = H(j)(s0), ∀j = 0, · · · , k − 1

and therefore is an interpolatory PROM

This is a more computationally expensive procedure as the computation of each Krylov basis
vector requires the solution of a large-scale system of equations
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Moment Matching Method

Rational Interpolation - Moment Matching at Multiple Points

Theorem

Let si ∈ C, i = 1, · · · , k, V be a right ROB satisfying

range (V) = span
{
(s1IN − A)−1b, · · · , (sk IN − A)−1b

}
and W be a left ROB satisfying

WTV = I

Then, the PROM of dimension k obtained by Petrov-Galerkin projection
of the HDM (A,B,C,D) using W and V satisfies

ηr ,0(si ) = η0(si ) ⇔ Hr (si ) = H(si ), ∀i = 1, · · · , k

and therefore is an interpolatory PROM
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Moment Matching Method

Multiple Moment Matching at Multiple Points

Theorem

Let si ∈ C, i = 1, · · · , l , V be a right ROB satisfying

range (V) =
l⋃

i=1

Kk

(
(si IN − A)−1, (si IN − A)−1b

)
and W be a left ROB satisfying

WTV = I

Then, the PROM of dimension lk obtained by Petrov-Galerkin projection
of the HDM (A,B,C,D) using W and V satisfies

ηr ,j(si ) = ηj(si ) ⇔ H(j)
r (si ) = H(j)(si ), ∀i = 1, · · · , l , ∀j = 0, · · · , k − 1

and therefore is an interpolatory PROM
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Moment Matching Method

Multiple Moment Matching at Multiple Points using Two-Sided Projections

Theorem

Let si ∈ C, i = 1, · · · , 2l , V be a right ROB satisfying

range(V) =
l⋃

i=1

Kk

(
(si IN − A)−1, (si IN − A)−1b

)
and W be a left ROB satisfying

range(W) =
2l⋃

i=l+1

Kk

(
(si IN − AT )−1, (si IN − AT )−1cT

)
and WTV is nonsingular

Then, the PROM of dimension 2lk obtained by Petrov-Galerkin
projection of the HDM (A,B,C,D) using W and V satisfies

ηr ,j(si ) = ηj(si ) ⇔ H(j)
r (si ) = H(j)(si ), ∀i = 1, · · · , 2l , ∀j = 0, · · · , k − 1

and therefore is an interpolatory PROM
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Krylov-based Moment Matching Methods

Moment Matching by Krylov Methods

Partial realization requires the construction of Kk(A,b) – that is,
the knowledge of the action of A on vectors

Rational interpolation requires the following Krylov space

Kk((s0IN − A)−1, (s0IN − A)−1b)

and therefore the knowledge of the action of (s0IN − A)−1 ∈ RN×N

on vectors; two computationally efficient approaches are possible:

if N is sufficiently small, an LU factorization of s0IN − A can be
performed and for any vector v ∈ RN , (s0IN − A)−1v can be
computed using forward and backward substitutions
if N is too large for an LU factorization to be affordable, Krylov
subspace recycling techniques allowing the reuse of Krylov subspaces
for multiple right-hand sides can be used
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Krylov-based Moment Matching Methods

The Arnoldi Method for Partial Realization

Kk(A,b) can be efficiently constructed using the Arnoldi
factorization method

Input: A ∈ RN×N , b ∈ RN

Output: Orthogonal basis Vk ∈ RN×k for Kk(A,b)

In this case, Vk satisfies the following recursion

AVk = VkHk + fke
T
k

where Hk = VT
k AVk is an upper Hessenberg matrix, VT

k Vk = Ik ,
and VT

k fk = 0

18 / 35
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Krylov-based Moment Matching Methods

The Arnoldi Method for Partial Realization

Algorithm

Input: A ∈ RN×N , b ∈ RN

Output: Orthogonal basis Vk ∈ RN×k for Kk(A,b)

1: v1 = b/∥b∥;
2: w = Av1; α1 = vT1 w;
3: f1 = w − α1v1;
4: V1 = [v1]; H = [α1];
5: for j = 1, · · · , k − 1 do
6: βj = ∥fj∥; vj+1 = fj/βj ;
7: Vj+1 = [Vj , vj+1];

8: Ĥj =

[
Hj

βjeTj

]
;

9: w = Avj+1;
10: h = VT

j+1w; fj+1 = w − Vj+1h;

11: Hj+1 = [Ĥj , h];
12: end for
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Krylov-based Moment Matching Methods

The Two-Sided Lanczos Method for Partial Realization

Kk(A,b) and Kk(AT , cT ) can be efficiently simultaneously
constructed using the two-sided Lanczos process

Input: A ∈ RN×N , b ∈ RN , cT ∈ RN

Output: Bi-orthogonal bases Vk ∈ RN×k and Wk ∈ RN×k

(WT
k Vk = Ik) for Kk(A,b) and Kk(AT , cT ), respectively

In this case, Vk and Wk satisfy the following recursions

AVk = VkTk + fke
T
k

ATWk = WkT
T
k + gke

T
k

where Tk = WT
k AVk is a tridiagonal matrix, WT

k Vk = Ik ,
WT

k fk = 0, and VTgk = 0

20 / 35



AA216/CME345: PMOR - M3

Krylov-based Moment Matching Methods

The Two-Sided Lanczos Method for Partial Realization

Algorithm

Input: A ∈ RN×N , b ∈ RN , cT ∈ RN

Output: Bi-orthogonal bases Vk ∈ RN×k and Wk ∈ RN×k

(WT
k Vk = Ik) for Kk(A,b) and Kk(AT , cT ), respectively

1: β1 =
√

|bTcT |, γ1 = sign(bTcT )β1;
2: v1 = b/β1, w1 = cT/γ1;
3: for j = 1, · · · , k − 1 do
4: αj = wT

j Avj ;
5: rj = Avj − αjvj − γjvj−1;
6: qj = ATwj − αjwj − βjwj−1;

7: βj+1 =
√
|rTj qj |, γj+1 = sign(rTj qj)βj+1;

8: vj+1 = rj/βj+1;
9: wj+1 = qj/γj+1;

10: end for
11: Vk = [v1, · · · , vk ], Wk = [w1, · · · ,wk ];
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Error Bounds

H2 Norm

Definition

The H2 norm of a continuous dynamical system S = (A,B,C,D) is the
L2 norm of its associated impulse response h(·).
When A is stable and D = 0, the norm is bounded and

∥S∥H2 =

(∫ ∞

0

trace
(
hT (t)h(t)

)
dt

)1/2

Using Parseval’s theorem and the transfer function H(·), one can
obtain the corresponding expression in the frequency domain

∥S∥H2 =

(
1

2π

∫ ∞

−∞
trace (H∗(−iω)H(iω)) dω

)1/2

One can also derive the expression of ∥S∥H2 in terms of the
reachability and observability Gramians P and Q

∥S∥H2 =
√
trace (BTQB) =

√
trace (CPCT )
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Error Bounds

H2 Norm-Based Error Bounds

In the SISO case, the transfer function is a rational function:
Assuming (for simplicity) that it has distinct poles λi associated
with the residues hi , i = 1, · · · ,N 1, it can be written as

H(s) =
N∑
i=1

hi
s − λi

Then, the following theorem can be established

Theorem
Let Hr (·) denote the transfer function associated with the reduced
system Sr obtained using moment matching, the Lanczos procedure, and
the high-dimensional system S. Denoting by hr ,i and λr ,i , i = 1, · · · , k,
the residues and poles of Hr (·), respectively, the following result holds

∥S − Sr∥2H2
=

N∑
i=1

hi (H(−λ∗
i )−Hr (−λ∗

i )) +
k∑

i=1

hr,i
(
Hr (−λr,i )−H(−λr,i )

)

1When a transfer function is expressed as a sum of simpler fractions, the residues
are the coefficients corresponding to each pole
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Error Bounds

H2-Optimal Model Order Reduction

One would like to build ROBs (V,W) of a given dimension k such
that the corresponding reduced system Sr is H2-optimal, i.e. solves
the following optimization problem

min
Sr , rank(V)=rank(W)=k

∥S − Sr∥H2

In this case, one can show that a necessary condition is that the
reduced-order model matches the first two moments of the HDM at
the points −λr ,i , mirror images of the poles λr ,i of the reduced
transfer function Hr (·)

Hr (−λr ,i ) = H(−λr ,i ), H(1)
r (−λr ,i ) = H(1)(−λr ,i ), s = 1, · · · , k

Unfortunately, moment matching ensures that the moments of the
transfer function are matched at λr ,i , not −λr ,i

The IRKA (Iterative Rational Krylov Approximation) procedure is an
iterative procedure to conciliate these two contradicting goals
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Comparisons with POD and BPOD in the Frequency Domain

POD in the Frequency Domain and Moment Matching

POD in the frequency domain for LTI systems

range(V) = = span{X (ω1), · · · ,X (ωk)}
= span

{
(jω1IN − A)−1b, · · · , (jωk IN − A)−1b

}
where ω1, · · · , ωk ∈ R+

Rational interpolation with first moment matching at multiple points

range(V) = span
{
(s1IN − A)−1b, · · · , (sk IN − A)−1b

}
where s1, · · · , sk ∈ C
Question: is it possible to extend the two-sided moment matching
approach to POD?

Answer: yes, this is the Balanced POD

25 / 35



AA216/CME345: PMOR - M3

Comparisons with POD and BPOD in the Frequency Domain

The Balanced POD Method

The Balanced POD method generates snapshots for the dual system
in addition to the POD snapshots

S =
[
(jω1IN − A)−1b · · · (jωk IN − A)−1b

]
Sdual =

[
(−jω1IN − AT )−1cT · · · (−jωk IN − AT )−1cT

]
The associated right and left ROBs are then computed as follows

ST
dualS = UΣZT (SVD)

V = SZkΣ
−1/2
k

W = SdualUkΣ
−1/2
k

where the subscript k refers to the first k components of the
singular value decomposition

If no truncation is performed, Balanced POD is equivalent to
two-sided moment matching at si ∈ {ω1, · · · , ωk}
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Applications

Frequency Sweeps

Structural vibrations and interior noise/acoustics

Structural dynamics (Navier) Interior Helmholtz

Scattering (acoustics and electromagnetics)

Exterior Helmholtz
Electromagnetics (Maxwell)

Aeroacoustics (Helmholtz)
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Applications

Frequency Response Problems

Structural dynamics

ws(ω) =

 Ks︸︷︷︸
K

+iω Ds︸︷︷︸
D

−ω2 Ms︸︷︷︸
M

−1

fs(ω)

Rayleigh damping: Ds = αKs + βMs

Acoustics

wf (ω) =

 Kf︸︷︷︸
K

− ω2

c2f︸︷︷︸
ω2

Mf︸︷︷︸
M

+Sa(ω)︸ ︷︷ ︸
iωD


−1

ff (ω)

Structural (or vibro)-acoustics

wv (ω) =
(
Kv − ω2Mv + Sv (ω)

)−1
fv (ω)

=


 Ks CT

0
1

ρf
Kf


︸ ︷︷ ︸

K

−ω2

 Ms 0

−C
1

ρf c
2
f

Mf


︸ ︷︷ ︸

M

+

[
iωDs 0
0 0

]
︸ ︷︷ ︸

iωD


−1 [

fs(ω)
1
ρf

ff (ω)

]
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Applications

Frequency Sweeps

Frequency response function w = w(ω) =⇒ problem with multiple
left hand sides - very CPU intensive (1,000s of frequencies)

29 / 35



AA216/CME345: PMOR - M3

Applications

Interpolatory Reduced-Order Model by Krylov-based Moment Matching

Approximate w(ω) by a Galerkin projection: w ≈ w̃ = Vq

w̃(ω) = V
(
V⋆KV + iωV⋆DV − ω2V⋆MV

)−1︸ ︷︷ ︸
PROM

V⋆f

If the columns of V span the solution and its derivatives at some
frequency, the projection is interpolatory
Two ways to compute the vectors in V

recursive differentiation with respect to ω at the interpolating
frequency
construction of a Krylov space that spans the derivatives (special
cases)

span
{
(K− ω2M+ iωD)−1f,

(K− ω2M+ iωD)−1M(K− ω2M+ iωD)−1f,

· · ·

[(K− ω2M+ iωD)−1M]n−1(K− ω2M+ iωD)−1f
}
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Applications

Structural-Acoustic Vibrations

Frequency sweep analysis of a thick spherical steel shell submerged
in water and excited by a point load on its inner surface

Finite element model using isoparametric cubic elements with
roughly N = 1, 200, 000 dofs
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Applications

Structural-Acoustic Vibrations

Frequency sweep analysis of a submerged shell
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Applications

Parameter Selection

How to choose

number of interpolating frequencies

location of interpolating frequencies

number of derivatives (Krylov vectors)

Error indicator: relative residual

∥(K− ω2M+ iωD)w̃(ω)− f∥
∥f∥

where

w̃(ω) = V
(
V⋆KV + iωV⋆DV − ω2V⋆MV

)−1
V⋆f
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Applications

Automatic Residual-Based Adaptivity by a Greedy Approach

1 Specify the number of derivatives per frequency and an accuracy
threshold

2 Use two interpolations frequencies at the extremities of the
frequency band of interest and construct the ROB

3 Evaluate the residual at some small set of in between frequencies

4 Add a frequency where the residual is largest and update the
projection

5 Repeat until the residual is below a threshold at all sampling points

6 Check at the end the residual at all sampled (or user-specified)
frequencies
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Applications

Automatic Residual-Based Adaptivity by a Greedy Approach

Frequency sweep analysis of a submerged shell
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