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AA216/CME345: PMOR - Linear Dynamical Systems

External Description

Input-Output Map

Input function of interest

u : R → U ⊂ Rin

t 7−→ u(t)

Output function of interest

y : R → Y ⊂ Rq

t 7−→ y(t)

Assumption: There exists a linear operator S that maps the input
space U to the output space Y

S : U → Y
u 7−→ y(u)
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External Description

The Convolution Operator

A system considered here can be characterized by

S : u 7−→ y, y(t) =

∫ ∞

−∞
h(t, τ)u(τ)dτ

where h(t, τ) ∈ Rq×in, called the kernel of the system, represents
the system’s impulse response and describes how the system reacts
over time to an impulse applied at τ

Additional assumption

time-invariance: applying an input to a system considered here now
or t0 seconds later will lead to identical outputs except for a time
delay of t0 seconds ⇒ the output is independent of the specific time
at which the input is applied

theorem: for a time-invariant lineary dynamical system, the following
property holds

∀(t, τ), h(t, τ) = h(t − τ)
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External Description

The Convolution Operator

Proof

the output for an input shifted by t0 is

yshf(t) =

∫ +∞

−∞
h(t, τ)u(τ + t0)dτ =

∫ +∞

−∞
h
(
t, τ ′ − t0

)
u(τ ′)dτ ′

=

∫ +∞

−∞
h(t, τ − t0)u(τ)dτ

the delayed output for the original input is

ydly(t + t0) =

∫ +∞

−∞
h(t + t0, τ)u(τ)dτ

time-invariance implies that

yshf(t) = ydly(t+t0) ⇒
∫ +∞

−∞
(h(t, τ − t0)− h(t + t0, τ)) u(τ)dτ = 0

for the above result to hold ∀t, t0, and u, the kernel h must satisfy

∀t, τ, t0 h(t, τ − t0) = h(t + t0, τ) ⇒ ∀(t, τ), h(t, τ) = h(t − τ) □
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External Description

The Convolution Operator

Consequences

S : u 7−→ y, y(t) =

∫ +∞

−∞
h(t − τ)u(τ)dτ

=⇒ S is called a convolution operator

y = S(u) = h ∗ u

“commutativity”

h ∗ u =

∫ +∞

−∞
h(t − τ)u(τ)dτ = −

∫ −∞

+∞
h(τ ′)u(t − τ ′)dτ ′

=

∫ +∞

−∞
h(τ)u(t − τ)dτ

(
=

∫ +∞

−∞
u(t − τ)h(τ)dτ = u ∗ h, if q = in

)
time delay on input u(t + t0) equates to time delay of output
y(t + t0)∫ +∞

−∞
h(t − τ)u(τ + t0)dτ = −

∫ −∞

+∞
h(τ ′)u(t + t0 − τ ′)dτ ′

=

∫ +∞

−∞
h(τ)u(t + t0 − τ)dτ = y(t + t0)
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External Description

The Convolution Operator

Further assumption

causality: the output of a system considered here depends only on
present and past inputs

∀τ > t, h(t, τ) = 0 ⇒ y(t) =

∫ t

−∞
h(t, τ)u(τ)dτ

Consequence

S : u 7−→ y, y(t) =

∫ t

−∞
h(t − τ)u(τ)dτ
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External Description

The Convolution Operator

S : u 7−→ y, y(t) =

∫ t

−∞
h(t − τ)u(τ)dτ

Theorem: There are two components in the output

instantaneous component, which depends directly on the current
input value (in the impulse response framework, this is captured by
the value of the impulse response at τ = t – that is, h(0))

h0u(t) where h0 = h(0) ∈ Rin×q

dynamic component resulting from past or future input influences
and capturing the system’s dynamics such as memory or feedback (in
the integral formulation, these influences occur when τ ̸= t)∫ t

−∞
hd(t − τ)u(τ)dτ where hd is a smooth function

kernel function: h(t) = h0δ(t) + hd(t), ∀t ≥ 0
where δ is the Dirac delta function and thus h(t) is the response of
the system to an impulse δ (impulse response)
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External Description

The Convolution Operator

Proof

decompose h(t) as h(t) = h0δ(t) + hd(t)
substitute in the expression of the output to obtain

y(t) =

∫ t

−∞
h(t − τ)u(τ)dτ

=

∫ t

−∞
h0δ(t − τ)u(τ)dτ +

∫ t

−∞
hd(t − τ)u(τ)dτ

= h0u(t) +

∫ t

−∞
hd(t − τ)u(τ)dτ︸ ︷︷ ︸

accounts for the
accumulated effect of
the input over time due
to the system’s dynamics
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External Description

Laplace and Inverse Laplace Transforms

Laplace transform (time-domain → Laplace s-domain)

F (s) = L (f (t)) =

∫ ∞

0

e−st f (t)dt, s ∈ C

Inverse Laplace transform (Laplace s-domain → time-domain)

f (t) = L−1 (F (s)) =
1

2πi
lim

T→∞

∫ γ+iT

γ−iT

estF (s)ds, γ ∈ R

where γ is such that the contour path of integration is in the region
of convergence of F (s)

The inverse Laplace transform is also known as the Bromwich
integral, the Fourier-Mellin integral, or Mellin’s inverse formula
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External Description

Transfer Function

Laplace transform of the impulse response

H(s) = (L(h)) (s), s ∈ C

Input-output mapping

L(y) = L(h ∗ u) ⇒ Y(s) = H(s)U(s)

H(s) is known as a transfer function
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Internal Description

Time-Continuous Linear Dynamical System

A time-continuous linear dynamical system has the form

dw

dt
(t) = Aw(t) + Bu(t)

y(t) = Cw(t) +Du(t)

w(t0) = w0

t ∈ [t0,∞)
w ∈ W ⊂ RN : Vector of state variables belonging to state domain W
u ∈ U ⊂ Rin: Vector of input variables — typically in ≪ N
y ∈ Y ⊂ Rq: Vector of output variables — typically q ≪ N
A ∈ RN×N : Dynamical operator
B ∈ RN×in : Input operator
C ∈ Rq×N and D ∈ Rq×in: Output operators

Hence, a time-continuous linear dynamical system can be
represented by the dynamical quadruplet

(A,B,C,D)

In the following, W = RN , U = Rin and Y = Rq
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Internal Description

Exact Solution of the Time-Continuous Linear Dynamical System Problem

The solution w(t) of the above linear ODE is the function
ϕ(t,u; t0,w0) given by

ϕ(t,u; t0,w0) = eA(t−t0)w(t0)︸ ︷︷ ︸
homogeneous

+

∫ t

t0

eA(t−τ)Bu(τ)dτ︸ ︷︷ ︸
particular

, ∀t ≥ t0

The corresponding output is (by linearity)

y(t) = Cϕ(t,u; t0,w0) +Du(t)

= CeA(t−t0)w(0) +

∫ t

0

CeA(t−τ)Bu(τ)dτ +Du(t)

= Cϕ(t, 0; t0,w0) + Cϕ(t,u; t0, 0) +Du(t)
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Internal Description

Impulse Response

Consider the case t0 = −∞ and w(t0) = 0

The output response is

y(t) = Cϕ(t, 0; t0,w0) + Cϕ(t,u; t0, 0) +Du(t)

= Cϕ(t, 0;−∞, 0) + Cϕ(t,u;−∞, 0) +Du(t)

= 0+ Cϕ(t,u;−∞, 0) +Du(t)

=

∫ t

−∞
CeA(t−τ)Bu(τ)dτ +Du(t)

=

∫ t

−∞
hd(t − τ)u(τ)dτ + h0u(t)

where

hd(t) = CeAtB if t ≥ 0

h0 = D
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Internal Description

Impulse Response

Kernel function (revisited)

h(t) = hd(t)+δ(t)h0 =

{
CeAtB+ δ(t)D t ≥ 0
0 t < 0

Transfer function

H(s) = C(sIN − A)−1B+D, s ∈ C
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Congruence Transformation

Transformation of the State Variables

Consider the change of variables of the form

w̃ = Tw ∈ RN

where T ∈ RN×N is nonsingular
(
i.e. T ∈ GL(N)

)

And consider the transformed governing linear ODE

dw̃

dt
= T

dw

dt
= TAw + TBu = TAT−1w̃ + TBu

The corresponding transformed output equation is

y(t) = Cw +Du = CT−1w̃ +Du

And thus the transformed dynamical quadruplet is

(Ã, B̃, C̃, D̃) = (TAT−1,TB,CT−1,D)
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Congruence Transformation

Transformation of the State Variables

Particular case: Orthogonal change of variables

w̃ = Qw ∈ RN

where Q ∈ RN×N is orthogonal

QTQ = QQT = IN ⇒ Q−1 = QT

Norm preservation property

∥w̃∥2 = ∥Qw∥2 =
√
wTQTQw =

√
wTw = ∥w∥2

In this case, the transformed dynamical quadruplet is

(Ã, B̃, C̃, D̃) = (QAQT ,QB,CQT ,D)
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Stability

Definition

The time-continuous linear system defined by the quadruplet (A,B,C,D)
is stable if all of the eigenvalues of A have negative real partsrecallϕ(t,u; t0,w0) = eA(t−t0)w(t0)︸ ︷︷ ︸

homogeneous

+

∫ t

t0

eA(t−τ)Bu(τ)dτ, ∀t ≥ t0︸ ︷︷ ︸
particular


Example

A =

[
−3 2
1 −4

]
, B =

[
0.5
1

]
, C =

[
1 0.5

]
, D = [1]

λ(A) = {−2,−5}
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Stability

Response to unit step input u(t) = 1t∈[0,1]

0 1 2 3 4 5
−1

−0.5

0

0.5

1
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t

 

 
u
w1
w2
y
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