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Time-continuous Formulation

Nonlinear High-Dimensional Model

dw

dt
(t) = f(w(t), t)

y(t) = g(w(t), t)

w(0) = w0

w ∈ RN : Vector of state variables

y ∈ Rq: Vector of output variables (typically q ≪ N)

f(·, ·) ∈ RN : completes the specification of the high-dimensional
system of equations
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Time-continuous Formulation

POD Minimization Problem

Consider a fixed initial condition w0 ∈ RN

Denote the associated state trajectory in the time-interval [0, T ] by

Tw = {w(t)}0≤t≤T

The Proper Orthogonal Decomposition (POD) method seeks an
orthogonal projector ΠV,V of fixed rank k that minimizes the
integrated projection error∫ T

0

∥w(t)−ΠV,Vw(t)∥22 dt =
∫ T

0

∥EV⊥(t)∥22dt = ∥EV⊥∥2 = J(ΠV,V)
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Time-continuous Formulation

Solution of the POD Minimization Problem

Theorem

Let K̂ ∈ RN×N be the real, symmetric, positive, semi-definite matrix
defined as follows

K̂ =

∫ T

0

w(t)w(t)Tdt

Let λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂N ≥ 0 denote the ordered eigenvalues of K̂ and
ϕ̂i ∈ RN , i = 1, · · · ,N, denote their associated eigenvectors which are
also referred to as the POD modes

K̂ ϕ̂i = λ̂i ϕ̂i , i = 1, · · · ,N

The subspace V̂ = range (V̂) of dimension k that minimizes J(ΠV,V) is

the invariant subspace of K̂ associated with the eigenvalues
λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂k
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Method of Snapshots for a Single-Parameter Configuration

Discretization of POD by the Method of Snapshots

Solving the eigenvalue problem K̂ ϕ̂i = λ̂i ϕ̂i can be challenging

because: (1) the matrix K̂ is infinite-dimensional; and (2) this
matrix is usually dense

However, the state data is typically available in the form of discrete
“snapshot” vectors

{w(ti )}Nsnap

i=1

In this case, K̂ =

∫ T

0

w(t)w(t)Tdt can be approximated using a

quadrature rule as follows

K̂ ≈ K =

Nsnap∑
i=1

αi w(ti )w(ti )
T

where αi , i = 1, · · · ,Nsnap are the quadrature weights
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Method of Snapshots for a Single-Parameter Configuration

Discretization of POD by the Method of Snapshots

Let S ∈ RN×Nsnap denote the snapshot matrix defined as follows

S =
[√

α1w(t1) . . .
√
αNsnapw(tNsnap)

]
It follows that

K = SST

where K is still a large-scale (N × N) matrix for which computing
eigenvalues and eigenvectors can be computationally intractable
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Method of Snapshots for a Single-Parameter Configuration

Discretization of POD by the Method of Snapshots

Note that the non-zero eigenvalues of the matrix K = SST ∈ RN×N

are the same as those of the matrix R = STS ∈ RNsnap×Nsnap

Since usually Nsnap ≪ N, it is more economical to solve instead the
symmetric eigenvalue problem

Rψi = λiψi , i = 1, · · · ,Nsnap (1)

where, due to the symmetry of R

ψT
i ψj = δij and ψT

i Rψj = λiδij , i = 1, · · · ,Nsnap (2)

However, if S is ill-conditioned, R is worse conditioned

κ2(S) =
√
κ2(STS) ⇒ κ2(R) = κ2(S)

2
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Method of Snapshots for a Single-Parameter Configuration

Discretization of POD by the Method of Snapshots

From (1), the definition of K and its symmetry, and from (2), it
follows that if rank(R) = r , the first r POD modes ϕi are given by

ϕi =
1√
λi

Sψi , i = 1, · · · , r (3)

Let Φ =
[
ϕ1 . . . ϕr

]
and Ψ =

[
ψ1 . . . ψr

]
with ΨTΨ = Ir :

From (3), it follows that Φ = SΨΛ− 1
2 , where Λ = diag(λ1, . . . λr )

Rψi = λiψi , i = 1, · · · ,Nsnap ⇒ ΨTRΨ = ΨTSTSΨ = Λ

Hence, ΦTKΦ = Λ− 1
2ΨT STS︸︷︷︸

RT

STS︸︷︷︸
R

ΨΛ− 1
2 = Λ− 1

2ΛΨTΨΛΛ− 1
2 = Λ

Since the columns of Φ are the eigenvectors of K ordered by
decreasing eigenvalues, the optimal orthogonal basis of size k ≤ r is

V =
[
Φk Φr−k

] [Ik
0

]
= Φk
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The POD Method in the Frequency Domain

Fourier Analysis

Parseval’s theorem1 (the Fourier transform is a unitary operator –
that is, a surjective bounded operator on a Hilbert space preserving
the inner product)

lim
T →∞

1

T

∫ T
2

−T
2

∥VTw(t)∥22 dt = lim
T ,Ω→∞

1

2πT

∫ Ω

−Ω

∥F
[
VTw(t)

]
∥22 dω

where F [w(t)] = W(ω) is the Fourier transform of w(t)

Consequence

VT

(
lim

T →∞
1

T

∫ T
2

−T
2

w(t)w(t)Tdt

)
V

= VT

(
lim

T ,Ω→∞
1

2πT

∫ Ω

−Ω

W(ω)W(ω)∗dω

)
V

(Proof: see Homework assignment #3)
1Rayleigh’s energy theorem, Plancherel’s theorem
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The POD Method in the Frequency Domain

Snapshots in the Frequency Domain

Let K̃ denote the analog to K in the frequency domain

K̃ =

∫ Ω

−Ω

W(ω)W(ω)∗dω ≈
NC

snap∑
i=−NC

snap

αi W(ωi )W(ωi )
∗

where ω−i = −ωi is

The corresponding snapshot matrix is

S̃ =
[√

α0W(ω0)
√
2α1Re (W(ω1)) . . .

√
2αNC

snap
Re
(
W(ωNC

snap
)
)

√
2α1Im (W(ω1)) . . .

√
2αNC

snap
Im
(
W(ωNC

snap
)
) ]

It follows that

K̃ = S̃S̃T R̃ = S̃T S̃ = Ψ̃Λ̃Ψ̃T

Φ̃ = S̃Ψ̃Λ̃− 1
2 Ṽ =

[
Φ̃k Φ̃N−r

] [Ik
0

]
= Φ̃k
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The POD Method in the Frequency Domain

Case of Linear-Time Invariant Systems

f(w(t), t) = Aw(t) + Bu(t)

g(w(t), t) = Cw(t) +Du(t)

Single input case: in = 1 ⇒ B ∈ RN

Time trajectory

w(t) = eAtw0 +

∫ t

0

eA(t−τ)Bu(τ)dτ

Snapshots in the time-domain for an impulse input u(t) = δ(t) and
zero initial condition

w(ti ) = eAtiB, ti ≥ 0

In the frequency domain, the LTI system can be written as

jωlW = AW + B, ωl ≥ 0

and the associated snapshots are W(ωl) = (jωl I− A)−1B
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The POD Method in the Frequency Domain

Case of Linear-Time Invariant Systems

How to sample the frequency domain?

approximate time trajectory for a zero initial condition

ΠṼ,Ṽw(t) = ṼṼT

∫ t

0

eA(t−τ)Bu(τ)dτ

low-dimensional solution is accurate if the corresponding error is
small — that is

∥w(t)−ΠṼ,Ṽw(t)∥ = ∥(I− ṼṼT )

∫ t

0

eA(t−τ)Bu(τ)dτ∥

is small, which depends on the frequency content of u(τ)
=⇒ the sampled frequency band should contain the dominant
frequencies of u(τ)

Application: flutter analysis of an aircraft
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Connection with SVD

Definition

Given A ∈ RN×M , there exist two orthogonal matrices U ∈ RN×N

(UTU = IN) and Z ∈ RM×M (ZTZ = IM) such that

A = UΣZT

where Σ ∈ RN×M has diagonal entries

Σii = σi

satisfying
σ1 ≥ σ2 ≥ · · · ≥ σmin(N,M) ≥ 0

and zero entries everywhere else

{σi}min(N,M)
i=1 are the singular values of A, and the columns of U

and Z are the left and right singular vectors of A, respectively

U = [u1 · · ·uN ], Z = [z1 · · · zM ]
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Connection with SVD

Properties

The SVD of a matrix provides many useful information about it
(rank, range, null space, norm,...)

{σ2
i }

min(N,M)
i=1 are the eigenvalues of the symmetric positive,

semi-definite matrices AAT and ATA
Azi = σiui , i = 1, · · · ,min(N,M)
rank(A) = r , where r is the index of the smallest non-zero singular
value
if Ur = [u1 · · · ur ] and Zr = [z1 · · · zr ] denote the singular vectors
associated with the non-zero singular values and
UN−r = [ur+1 · · · uN ] and ZM−r = [zr+1 · · · zM ], then

A = σ1u1zT1 + · · ·+ σrur zTr =
r∑

i=1
σiuiz

T
i

range (A) = range (Ur ) range (AT ) = range (Zr )
null (A) = range (ZM−r ) null (AT ) = range (UN−r )
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Connection with SVD

Application of SVD to Optimality Problems

Given A ∈ RN×M with N ≥ M and rank(A) = r ≤ M, which matrix
X ∈ RN×M with rank(X) = k < r ≤ M minimizes ∥A− X∥2?

Theorem (Schmidt-Eckart-Young-Mirsky)

min
X, rank(X)=k

∥A− X∥2 = σk+1(A), if σk(A) > σk+1(A)

and X =
k∑

i=1

σiuizTi , where A = UΣZT , minimizes ∥A− X∥2 (proof in

class)

The minimizer of the above problem is also solution of the related
problem (Eckart-Young theorem)

min
X, rank(X)=k

∥A− X∥F

These results explains the concept of “low-rank” approximation and
its connection with SVD
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Connection with SVD

Application to Image Compression

Consider a color image in RGB representation made of M × N
pixels, where M < N (i.e., a landscape image)

this image can be represented by an M × N × 3 real matrix A1

A1 can be converted to a 3N ×M matrix A3 as follows

A1 2 RM⇥N⇥3 A2 2 RM⇥(N⇥3)

A3 = AT
2 2 R(3N)⇥M

finally, A3 can be approximated using SVD as follows

A3 = σ1u1z
T
1 + · · ·+ σrurz

T
r =

r∑
i=1

σiuiz
T
i

17 / 45



AA216/CME345: PMOR - POD

Connection with SVD

Application to Image Compression

Example: A3 ∈ R1497×285

(a) rank 1 (b) rank 2 (c) rank 3

(d) rank 4 (e) rank 5 (f) rank 6
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Connection with SVD

Application to Image Compression

(g) rank 10 (h) rank 20 (i) rank 50

(j) rank 75 (k) rank 100 (l) rank 285

=⇒ SVD can be used for data compression
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Connection with SVD

Discretization of POD by the Method of Snapshots and SVD

The discretization of the POD by the method of snapshots requires
computing the eigenspectrum of K = SST

ΦTKΦ = ΦTSSTΦ = Λ

corresponding to its non-zero eigenvalues

Link with the SVD of S

S = UΣZT = [Ur UN−r ]

[
Σr 0
0 0

]
ZT

=⇒ K = UΣ2UT and UTKU = Σ2

=⇒ Φ = Ur and Λ
1
2 = Σr ⇔ Λ = Σ2

r

=⇒ Uk ∈ RN×r is to be identified withX ∈ RN×M ,N ≥ M ≥ r

Computing the SVD of S is usually preferred to computing the
eigendecomposition of R = STS because, as noted earlier

κ2(R) = κ2(S)
2
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Error Analysis

Reduction Criterion

How to choose the size k of the Reduced-Order Basis (ROB) V
obtained using the POD method

start from the property of the Frobenius norm of S

∥S∥F =

√√√√ r∑
i=1

σ2
i (S)

(
recall ∥S∥F =

√
trace(STS) =

√
trace(SST )

)

consider the error measured with the Frobenius norm induced by the
truncation of the POD basis

∥(IN − VVT )S∥F =

√√√√ r∑
i=k+1

σ2
i (S)

the square of the relative error gives an indication of the magnitude
of the “missing” information

EPOD(k) =

k∑
i=1

σ2
i (S)

r∑
i=1

σ2
i (S)

⇒ 1− EPOD(k) =

r∑
i=k+1

σ2
i (S)

r∑
i=1

σ2
i (S)
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Error Analysis

Reduction Criterion

How to choose the size k of the ROB V obtained using the POD
method (continue)

EPOD(k) =

k∑
i=1

σ2
i (S)

r∑
i=1

σ2
i (S)

EPOD(k) represents the relative energy of the snapshots captured by
the k first POD basis vectors

k is usually chosen as the minimum integer for which

1− EPOD(k) ≤ ϵ

for a given tolerance 0 < ϵ < 1 (for instance ϵ = 0.1%)

this criterion originates from turbulence applications
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Error Analysis

Reduction Criterion

Recall the model reduction error components

EPROM(t) = EV⊥(t) + EV(t)
= (IN −ΠV,V)w(t) + V

(
VTw(t)− q(t)

)
denote E snap

PROM = [EPROM(t1) · · · EPROM(tNsnap)]

∥[EV⊥(t1) · · · EV⊥(tNsnap)]∥F =

√
r∑

i=k+1

σ2
i (S)

hence

1− EPOD(k) =
∥[EV⊥(t1) · · · EV⊥(tNsnap)]∥2F

r∑
i=1

σ2
i (S)

and

1− EPOD(k) ≤
∥E snap

PROM∥
2
F

r∑
i=1

σ2
i (S)

note that the energy criterion is valid only for the sampled snapshots
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Extension to Multi-Parameter Configurations

The Steady-State Case

Consider the parametrized steady-state high-dimensional system
of equations

f(w;µ) = 0, µ ∈ D ⊂ Rp, µ = [µ1, · · · ,µp]
T

Consider the goal of constructing a ROB and the associated
projection-based PROM for computing the approximate solution

w(µ) ≈ Vq(µ), µ ∈ D

Question: How do we build a global ROB V that can capture the
solution in the entire parameter domain D?
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Extension to Multi-Parameter Configurations

Choice of Snapshots

Lagrange basis

V ⊂ span
{
w
(
µ(1)

)
, · · · ,w

(
µ(s)

)}
⇒ Nsnap = s

Hermite basis

V ⊂ span

{
w
(
µ(1)

)
,
∂w

∂µ1

(
µ(1)

)
, · · · ,w

(
µ(s)

)
,
∂w

∂µp

(
µ(s)

)}
⇒ Nsnap = s × (p + 1)

Taylor basis

V ⊂ span

w

(
µ
(1)

)
,

∂w

∂µ1

(
µ
(1)

)
,
∂2w

∂µ2
1

(
µ
(1)

)
, · · · ,

∂qw

∂µ
q
1

(
µ
(1)

)
, · · · ,

∂w

∂µp

(
µ
(1)

)
, · · · ,

∂qw

∂µ
q
p

(
µ
(1)

)

⇒ Nsnap = 1+d+
p(p + 1)

2
+· · ·+(p + q − 1)!

(p − 1)!q!
= 1+

q∑
i=1

(p + i − 1)!

(p − 1)!i !
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Extension to Multi-Parameter Configurations

Design of Numerical Experiments

How one chooses the s parameter samples µ(1), · · · , µ(s) where to
compute the snapshots

{
w
(
µ(1)

)
, · · · ,w

(
µ(s)

)}
?

the location of the samples in the parameter space will determine the
accuracy of the resulting global PROM in the entire parameter
domain D ⊂ Rp

Possible approaches

uniform sampling for parameter spaces of moderate dimensions
(p ≤ 5) and moderately computationally intensive High-Dimensional
Models (HDMs)
Latin Hypercube Sampling (LHS) for higher-dimensional parameter
spaces and moderately computationally intensive HDMs
adaptive, goal-oriented, greedy sampling that exploits an error
indicator to focus on the PROM accuracy, for higher-dimensional
parameter spaces and computationally intensive HDMs
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Extension to Multi-Parameter Configurations

Non-adaptive Sampling: Latin Hypercube, Orthogonal, and Random Samplings

Sampling methods grounded in statistics (generate a near random
sample of parameter values from a multidimensional distribution)

Latin Hypercube Sampling (LHS). In statistical sampling, a Latin
square contains only one sample in each row and each column; a
Latin hypercube is the generalisation of this concept to an arbitrary
number of dimensions, whereby each axis-aligned hyperplane
contains only one sample

let p denote the dimension of the parameter space D ⊂ Rp : divide
the range of each variable into m equally probable intervals
sample m points in D as to satisfy the Latin hypercube requirements
(⇒ same m for each variable and m points sampled in D ⇒ one
needs to know beforehand how many sample points are needed)
main advantage: LHS does not require more samples (m) for more
dimensions (p) – in other words, m and p are independent

Orthogonal Sampling (OS). Divide the sample space into equally
probable subspaces, then choose simultaneously all sample points as
to ensure that the total set of sample points is a Latin Hypercube
sample and each subspace is sampled with the same density
Random Sampling (RS). Generate new sample points without taking
into account previously generated ones ⇒ one does not necessarily
need to know beforehand how many sample points are needed
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Extension to Multi-Parameter Configurations

Non-adaptive Sampling: Latin Hypercube, Orthogonal, and Random Samplings

Sampling methods grounded in statistics (continue)

Properties

LHS ensures that the set of random samples is representative of the
real variability of the variables of the model being analyzed
OS ensures that the set of random samples is a very good
representative of the real variability of the variables of the model
being analyzed
RS is just a set of random samples without any guarantees

None of these methods knows anything about the HDM or PROM
to be constructed
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Extension to Multi-Parameter Configurations

Adaptive Sampling: Greedy Approach

Ideally, one can build a PROM progressively and update it (increase
its dimension) by considering additional samples µ(i) and
corresponding solution snapshots at the locations of the parameter
space where the current PROM is the most inaccurate – that is,

µ(i) = argmax
µ∈D

∥EPROM(µ)∥ = argmax
µ∈D

∥w(µ)− Vq(µ)∥

q(µ) can be efficiently computed
but the cost of obtaining w(µ) can be high ⇒ eventually an
intractable approach

Idea: rely on an economical a posteriori error estimator/indicator
option 1: error bound

∥EPROM(µ)∥ ≤ ∆(µ)

option 2: error indicator based on the norm of the (affordable)
residual

∥r(µ)∥ = ∥f (Vq(µ);µ) ∥
For this purpose, D is typically replaced by a large discrete set of

candidate parameters
{
µ⋆(1)

, · · · ,µ⋆(c)
}
⊂ D
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Extension to Multi-Parameter Configurations

Adaptive Sampling: Greedy Approach

Greedy procedure based on the norm of the residual as an error
indicator

Algorithm (given a termination criterion)
1 randomly select a first sample µ(1)

2 solve the HDM-based problem

f
(
w(µ(1));µ(1)

)
= 0

3 build a corresponding ROB V
4 for i = 2, · · ·
5 solve

µ(i) = argmax
µ∈

{
µ⋆(1) ,··· ,µ⋆(c)

} ∥r(µ)∥
6 solve the HDM-based problem

f
(
w(µ(i));µ(i)

)
= 0

7 build a ROB V based on the snapshots (or in this case, samples){
w(µ(1)), · · · ,w(µ(i))

}
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Extension to Multi-Parameter Configurations

The Unsteady Case

Parameterized HDM

dw

dt
(t;µ) = f (w(t;µ), t;µ)

Lagrange basis

V ⊂ span

{
w

(
t1;µ

(1)
)

, · · · , w

(
tNt

;µ(1)
)

, · · · , w

(
t1;µ

(s)
)

, · · · , w

(
tNt

;µ(s)
)}

⇒ Nsnap = s × Nt

A posteriori error estimator/indicator

option 1: error bound

∥EPROM(µ)∥ =

(∫ T

0

∥EPROM(t;µ)∥2 dt
)1/2

≤ ∆(µ)

option 2: error indicator based on the norm of the (affordable)
residual

∥r(µ)∥ =

(∫ T

0

∥r(t;µ)∥2 dt

)1/2

=

√∫ T

0

∥∥∥∥ d(Vq)

dt
(t;µ) − f(Vq(t;µ), t;µ)

∥∥∥∥2

dt
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Extension to Multi-Parameter Configurations
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0

∥EPROM(t;µ)∥2 dt
)1/2

≤ ∆(µ)

option 2: error indicator based on the norm of the (affordable)
residual

∥r(µ)∥ =

(∫ T

0

∥r(t;µ)∥2 dt

)1/2

=

√∫ T

0

∥∥∥∥ d(Vq)

dt
(t;µ) − f(Vq(t;µ), t;µ)

∥∥∥∥2

dt
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Extension to Multi-Parameter Configurations

The Unsteady Case

Greedy procedure based on the residual norm as an error indicator

Algorithm (given a termination criterion)
1 randomly select a first sample µ(1)

2 solve the HDM-based problem

dw

dt
(t;µ(1)) = f

(
w(t;µ(1)), t;µ(1)

)
3 build a ROB V based on the snapshots{

w(t1;µ
(1)), · · · ,w(tNt ;µ

(1))
}

4 for i = 2, · · ·
5 solve

µ(i) = argmax
µ∈

{
µ⋆(1) ,··· ,µ⋆(c)

} ∥r(µ)∥
6 solve the HDM-based problem

dw

dt
(t;µ(i)) = f

(
w(t;µ(i)), t;µ(i)

)
7 build a ROB V based on the snapshots{

w(t1;µ
(1)), · · · ,w(tNt ;µ

(i))
}
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Applications

Image Compression

Recall 1− EPOD ≤ ϵ; 0 < ϵ < 1

(m) ϵ < 10−1 ⇒ rank 2 (n) ϵ < 10−2 ⇒ rank 47 (o) ϵ < 10−3 ⇒ rank 138

(p) ϵ < 10−4 ⇒ rank 210 (q) ϵ < 10−5 ⇒ rank 249 (r) ϵ < 10−6 ⇒ rank 269
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Applications

Image Compression
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Applications

Second-Order Dynamical System

LTI form
Nu = 48 masses ⇒ N = 96 degrees of freedom in state space form
Transfer function of the HDM (frequency domain, q = 1 ⇒ scalar)

H(s;µ) = C(µ)
(
sIN − A(µ)

)−1

B(µ) +D(µ), s ∈ C
Projection-based Model Order Reduction (PMOR) using POD in the
frequency domain
Transfer function of the PROM (frequency domain, q = 1 ⇒ scalar)

Hr (s;µ) = Cr (µ)
(
sIk − Ar (µ)

)−1

Br (µ) +Dr (µ), s ∈ C

35 / 45



AA216/CME345: PMOR - POD

Applications

Second-Order Dynamical System

LTI form

Nu = 48 masses ⇒ N = 96 degrees of freedom in state space form
Transfer function of the HDM (frequency domain, q = 1 ⇒ scalar)

H(s;µ) = C(µ)
(
sIN − A(µ)

)−1

B(µ) +D(µ), s ∈ C
Projection-based Model Order Reduction (PMOR) using POD in the
frequency domain
Transfer function of the PROM (frequency domain, q = 1 ⇒ scalar)

Hr (s;µ) = Cr (µ)
(
sIk − Ar (µ)

)−1

Br (µ) +Dr (µ), s ∈ C

35 / 45



AA216/CME345: PMOR - POD

Applications

Second-Order Dynamical System

LTI form
Nu = 48 masses ⇒ N = 96 degrees of freedom in state space form
Transfer function of the HDM (frequency domain, q = 1 ⇒ scalar)

H(s;µ) = C(µ)
(
sIN − A(µ)

)−1

B(µ) +D(µ), s ∈ C

Projection-based Model Order Reduction (PMOR) using POD in the
frequency domain
Transfer function of the PROM (frequency domain, q = 1 ⇒ scalar)

Hr (s;µ) = Cr (µ)
(
sIk − Ar (µ)

)−1

Br (µ) +Dr (µ), s ∈ C

35 / 45



AA216/CME345: PMOR - POD

Applications

Second-Order Dynamical System

LTI form
Nu = 48 masses ⇒ N = 96 degrees of freedom in state space form
Transfer function of the HDM (frequency domain, q = 1 ⇒ scalar)

H(s;µ) = C(µ)
(
sIN − A(µ)

)−1

B(µ) +D(µ), s ∈ C
Projection-based Model Order Reduction (PMOR) using POD in the
frequency domain
Transfer function of the PROM (frequency domain, q = 1 ⇒ scalar)

Hr (s;µ) = Cr (µ)
(
sIk − Ar (µ)

)−1

Br (µ) +Dr (µ), s ∈ C

35 / 45



AA216/CME345: PMOR - POD

Applications

Second-Order Dynamical System

Nyquist plots

⇒ this leads to the choice of a PROM of size k = 18
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Applications

Second-Order Dynamical System

Bode diagram for a PROM of size k = 18
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Applications

Fluid System - Advection-Diffusion

HDM (N = 5402)
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Applications

Fluid System - Advection-Diffusion

POD modes
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Applications

Fluid System - Advection-Diffusion

Projection error (singular values decay)
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Applications

Fluid System - Advection-Diffusion

POD-based PROM (k = 1 and k = 2)
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Applications

Fluid System - Advection-Diffusion

POD-based PROM (k = 3 and k = 4)
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Applications

Fluid System - Advection-Diffusion

POD-based PROM (k = 5 and k = 6)
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Applications

Fluid System - Advection-Diffusion

Model reduction error EPROM(t)
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Applications

Fluid System - Advection-Diffusion

Model reduction error EPROM(t) and projection error EV⊥(t)
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Pro jection error
Total error

⇒ for this problem, EV⊥(t) dominates EV(t)
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