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Initial Boundary Value Problems

Linear or Nonlinear Partial Differential Equation (PDE)

L(W, x, t) = 0

W = W(x, t) ∈ Rℓ: State variable
x ∈ Ω ⊂ Rd , d ≤ 3: Space variable
t ≥ 0: Time variable

Examples
Navier-Stokes equations or linearized counterparts
elastodynamic equations of motion
wave equation

Boundary Conditions (BCs)

B(W, xBC, t) = 0

Dirichlet BCs
Neumann BCs

Initial Condition (IC)

W(x, 0) = W0(x) = WIC(x)
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Initial Boundary Value Problems

Parameterized PDE

Parameter domain: D ⊂ Rp

parameter vector (also referred to as parameter “point”):
µ = [µ1 · · · µp]

T ∈ D ⊂ Rp

where the superscript T designates the transpose operation

Parameterized PDE
L(W, x, t;µ) = 0

Boundary conditions

B(W, xBC, t;µ) = 0

Initial condition
W0(x) = WIC(x;µ)
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Typical Parameters of Interest

Physical parameters
shape parameters
material (properties) parameters
operation parameters (for example, flight conditions, cruise
conditions, · · · )
boundary conditions
initial condition
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Untypical Parameters of Interest

Other types of parameters

modeling parameters
abstract parameters
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Semi-discretization Processes and Dynamical Systems

Semi-discretized problem

The PDE is discretized in space using, for example

a finite difference method
a finite volume method
a finite element method
a discontinuous Galerkin method
a spectral method ...

This leads to a system of N = ℓ× Nspace Ordinary Differential
Equations (ODEs) that can be written as

dw

dt
= f(w, t;µ)

where
w = w(t;µ) ∈ RN

with the initial condition w(0;µ) = w0(µ)

This is the High-Dimensional Model (HDM)
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The Case for Model Order Reduction

Multi-query context

routine analysis

uncertainty quantification

design optimization

inverse problems

optimal control

model predictive control
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The Case for Model Order Reduction

Multi-query Context

Routine analysis
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The Case for Model Order Reduction

Multi-query Context

Uncertainty quantification

Monte-Carlo simulations ...
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The Case for Model Order Reduction

Multi-query Context

Design optimization
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Multi-query Context

Model predictive control
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The Case for Model Order Reduction

Model Parameterized PDE

Advection-diffusion-reaction equation: W = W(x, t;µ) solution of

∂W
∂t

+ U · ∇W − κ∆W = fR(W, t,µR) for x ∈ Ω

with appropriate boundary and initial conditions

W(x, t;µ) = WD(x, t;µD) for x ∈ ΓD

∇W(x, t;µ) · n(x) = 0 for x ∈ ΓN

W(x, 0;µ) = W0(x;µIC) for x ∈ Ω

Parameters of interest

µ = [U1 · · · Ud κ µR µD µIC]
T
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The Case for Model Order Reduction

Parameterized Solutions

Two-dimensional advection-diffusion equation

∂W
∂t

+ U · ∇W − κ∆W = 0 for x ∈ Ω

with boundary and initial conditions

W(x, t;µ) = WD(x, t;µD) for x ∈ ΓD

∇W(x, t;µ) · n(x) = 0 for x ∈ ΓN

W(x, 0;µ) = W0(x) for x ∈ Ω
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The Case for Model Order Reduction

Parameterized Solutions

Two-dimensional advection-diffusion equation

∂W
∂t

+ U · ∇W − κ∆W = 0 for x ∈ Ω

with boundary and initial conditions

W(x, t;µ) = WD(x, t;µD) for x ∈ ΓD

∇W(x, t;µ) · n(x) = 0 for x ∈ ΓN

W(x, 0;µ) = W0(x) for x ∈ Ω

4 parameters of interest ⇒ p = 4

µ = [U1 U2 κ µD]
T ∈ R4

where µD is a specified constant value of WD(x, t;µD)

w ∈ RN with N = 5402
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The Case for Model Order Reduction

Parameterized Solutions

Solution snapshots at some time ti , for six sampled parameter points
µ(j), j = 1, · · · , 6 (recall that µ = [U1 U2 κ µD]

T ∈ R4)

16 / 20



AA216/CME345: PMOR - Parameterized PDEs

Subspace Approximation

Question: Can we reuse the pre-computed snapshots to reconstruct
a solution for a queried but unsampled parameter point µ⋆?

Idea: Use a linear combination of these snapshots such as, for
example

w(t;µ⋆) ≈
N(1)

s∑
i=1

q
(1)
i (t;µ⋆)w(ti ;µ

(1))+· · ·+
N(k)

s∑
i=1

q
(k)
i (t;µ⋆)w(ti ;µ

(k))

where

N
(j)
s , j = 1, · · · , k denotes the number of pre-computed solution

snapshots using the sampled parameter point µ(j) and k denotes the
total number of parameter points sampled in the parameter space D
w(ti ;µ

(j)) ∈ RN denotes the pre-computed solution snapshots at
time ti using the sampled parameter point µ(j)

q
(j)
i (t;µ) ∈ R denotes the expansion coefficient associated with

w(ti ;µ
(j))
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Subspace Approximation

The linear expansion

w(t;µ) ≈
N(1)

s∑
i=1

q
(1)
i (t;µ)w(ti ;µ

(1)) + · · ·+
N(k)

s∑
i=1

q
(k)
i (t;µ)w(ti ;µ

(k))

can be written as
w(t;µ) ≈ Wq(t;µ)

where

W =
[
w(t1;µ

(1)) · · · w(t
N

(1)
s
;µ(1)) · · · w(t1;µ

(k)) · · · w(t
N

(k)
s
;µ(k))

]
and

q(t;µ) =
[
q
(1)
1 (t;µ) · · · q

(1)

N
(1)
s

(t;µ) · · · q
(k)
1 (t;µ) · · · q

(k)

N
(k)
s

(t;µ)
]T
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Subspace Approximation

The parameterized approximation

w(t;µ) ≈ Wq(t;µ)

is a subspace approximation of w(t;µ), where the subspace is

S = span
{
w(t1;µ

(1)), · · · , · · · ,w(t
N

(k)
s
;µ(k))

}
and its dimension is

dim (S) = rank
[
w(t1;µ

(1)) · · · · · · w(t
N

(k)
s
;µ(k))

]
≤

k∑
j=1

N(j)
s

This approximation constitutes one of the pillars of projection-based
model order reduction (PMOR): It raises the following questions

how to sample the parameter space D?
how to reduce the dimensionality of W and therefore that of the

approximation subspace S below
k∑

j=1

N
(j)
s ?

how to compute the vector of generalized coordinates q(t;µ)?

These are some of the questions that this course addresses
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Subspace Approximation

Curse of dimensionality

high-dimensional parameter spaces (application-dependent)
assume that at minimum, the dependence of W(x, t;µ) is linear in
each component µi of µ ⇒ at minimum, 2 parameter points must
be sampled in each direction of the parameter space D
⇒ at minimum, 2p parameter points must be sampled in D
⇒ for p = 20, at least Np = 1048 576 parameter points must be
sampled in D ⇒ at least 1 048 576 high-dimensional solution
snapshots must be computed!

Exponential growth of Np with p and linear growth of the training
cost with Np ⇒ adaptive sampling and additional strategies for
mitigating the curse of dimensionality
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