AA216/CME345: PROJECTION-BASED MODEL ORDER REDUCTION

Parameterized Partial Differential Equations (PDEs)

Charbel Farhat Stanford University cfarhat@stanford.edu

> メロトメ 御 トメ 君 トメ 君 トッ 君 つくへ 1 / 20

Outline

- [Initial Boundary Value Problems](#page-2-0)
- [Typical Parameters of Interest](#page-6-0)
- [Untypical Parameters of Interest](#page-7-0)
- [Semi-discretization Processes and Dynamical Systems](#page-8-0)
- [The Case for Model Order Reduction](#page-11-0)
- [Subspace Approximation](#page-27-0)

 $\overline{}$ [Initial Boundary Value Problems](#page-2-0)

■ Linear or Nonlinear Partial Differential Equation (PDE)

 $\mathcal{L}(\mathcal{W}, \mathbf{x}, t) = 0$

- $\mathcal{W} = \mathcal{W}(\mathsf{x},t) \in \mathbb{R}^{\ell}$: State variable
- $\mathsf{x} \in \Omega \subset \mathbb{R}^d$, $d \leq 3$: Space variable
- $t > 0$: Time variable
- **Examples**
	- Navier-Stokes equations or linearized counterparts
	- \blacksquare elastodynamic equations of motion
	- wave equation

 $\overline{}$ [Initial Boundary Value Problems](#page-2-0)

■ Linear or Nonlinear Partial Differential Equation (PDE)

 $\mathcal{L}(\mathcal{W}, \mathbf{x}, t) = 0$

- $\mathcal{W} = \mathcal{W}(\mathsf{x},t) \in \mathbb{R}^{\ell}$: State variable
- $\mathsf{x} \in \Omega \subset \mathbb{R}^d$, $d \leq 3$: Space variable
- $t > 0$: Time variable
- Examples
	- Navier-Stokes equations or linearized counterparts
	- \blacksquare elastodynamic equations of motion
	- wave equation
- **Boundary Conditions (BCs)**

$$
\mathcal{B}(\mathcal{W},\mathbf{x}_{\mathsf{BC}},t)=0
$$

- Dirichlet BCs
- **Neumann BCs**

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

 $\overline{}$ [Initial Boundary Value Problems](#page-2-0)

■ Linear or Nonlinear Partial Differential Equation (PDE)

 $\mathcal{L}(\mathcal{W}, \mathbf{x}, t) = 0$

- $\mathcal{W} = \mathcal{W}(\mathsf{x},t) \in \mathbb{R}^{\ell}$: State variable
- $\mathsf{x} \in \Omega \subset \mathbb{R}^d$, $d \leq 3$: Space variable
- $t > 0$: Time variable

■ Examples

- Navier-Stokes equations or linearized counterparts
- \blacksquare elastodynamic equations of motion
- wave equation
- **Boundary Conditions (BCs)**

$$
\mathcal{B}(\mathcal{W},\mathbf{x}_{\mathsf{BC}},t)=0
$$

Dirichlet BCs

Neumann BCs

n Initial Condition (IC)

$$
\mathcal{W}(\mathbf{x},0)=\mathcal{W}_0(\mathbf{x})=\mathcal{W}_\mathsf{IC}(\mathbf{x})
$$

3 / 20

 $\overline{}$ [Initial Boundary Value Problems](#page-2-0)

[Parameterized PDE](#page-5-0)

Parameter domain: $\mathcal{D} \subset \mathbb{R}^p$

parameter vector (also referred to as parameter "point"): $\boldsymbol{\mu} = [\mu_1 \ \cdots \ \mu_p]^{\mathcal{T}} \in \mathcal{D} \subset \mathbb{R}^p$

where the superscript T designates the transpose operation

Parameterized PDE

 $\mathcal{L}(\mathcal{W}, \mathbf{x}, t; \boldsymbol{\mu}) = 0$

Boundary conditions

$$
\mathcal{B}(\mathcal{W},\mathbf{x}_{\mathsf{BC}},t;\boldsymbol{\mu})=0
$$

Initial condition

$$
\mathcal{W}_0(\mathbf{x}) = \mathcal{W}_{\mathsf{IC}}(\mathbf{x}; \boldsymbol{\mu})
$$

 $\mathbf{E} = \mathbf{A} \mathbf{E} \mathbf{b} + \mathbf{A} \mathbf{E} \mathbf{b} + \mathbf{A} \mathbf{B} \mathbf{b} + \mathbf{A} \mathbf{b}$

[Typical Parameters of Interest](#page-6-0)

Physical parameters

- shape parameters
- **n** material (properties) parameters
- operation parameters (for example, flight conditions, cruise conditions, \cdots)
- **boundary conditions**
- \blacksquare initial condition

 $\overline{}$ [Untypical Parameters of Interest](#page-7-0)

■ Other types of parameters

- **n** modeling parameters
- abstract parameters

Input to the UCP: 9 components of the deformation gradient F_k Output of the UCP: 3 components of the symmetric plane stress tensor

 $\mathsf{\mathsf{L}}$ [Semi-discretization Processes and Dynamical Systems](#page-8-0)

 $\mathsf{\mathsf{L}}$ [Semi-discretized problem](#page-8-0)

- The PDE is discretized in space using, for example
	- a finite difference method
	- a finite volume method
	- a finite element method
	- a discontinuous Galerkin method
	- a spectral method ...

 $\mathsf{\mathsf{L}}$ [Semi-discretization Processes and Dynamical Systems](#page-8-0)

 $\mathsf{\mathsf{L}}$ [Semi-discretized problem](#page-8-0)

- \blacksquare The PDE is discretized in space using, for example
	- a finite difference method
	- a finite volume method
	- a finite element method
	- a discontinuous Galerkin method
	- a spectral method ...
- **This leads to a system of** $N = \ell \times N_{\text{space}}$ **Ordinary Differential** Equations (ODEs) that can be written as

$$
\left|\frac{d\mathbf{w}}{dt}=\mathbf{f}(\mathbf{w},t;\boldsymbol{\mu})\right|
$$

where

$$
\mathbf{w} = \mathbf{w}(t; \boldsymbol{\mu}) \in \mathbb{R}^N
$$

with the initial condition $w(0; \mu) = w_0(\mu)$

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A}$

 $\mathsf{\mathsf{L}}$ [Semi-discretization Processes and Dynamical Systems](#page-8-0)

 $\mathsf{\mathsf{L}}$ [Semi-discretized problem](#page-8-0)

- The PDE is discretized in space using, for example
	- a finite difference method
	- a finite volume method
	- a finite element method
	- a discontinuous Galerkin method
	- a spectral method ...
- **This leads to a system of** $N = \ell \times N_{\text{space}}$ **Ordinary Differential** Equations (ODEs) that can be written as

$$
\left|\frac{d\mathbf{w}}{dt}=\mathbf{f}(\mathbf{w},t;\boldsymbol{\mu})\right|
$$

where

$$
\mathbf{w} = \mathbf{w}(t; \boldsymbol{\mu}) \in \mathbb{R}^N
$$

with the initial condition $w(0; \mu) = w_0(\mu)$

■ This is the High-Dimensional Model (HDM)

 $\overline{}$ [The Case for Model Order Reduction](#page-11-0)

 $\overline{}$ [The Case for Model Order Reduction](#page-11-0)

Multi-query context

n routine analysis

[The Case for Model Order Reduction](#page-11-0)

Multi-query context

n routine analysis

uncertainty quantification

L [The Case for Model Order Reduction](#page-11-0)

- **n** routine analysis
- uncertainty quantification
- design optimization

L [The Case for Model Order Reduction](#page-11-0)

- **routine analysis**
- uncertainty quantification
- design optimization
- \blacksquare inverse problems

[The Case for Model Order Reduction](#page-11-0)

- **routine analysis**
- uncertainty quantification
- design optimization
- nverse problems
- optimal control

[The Case for Model Order Reduction](#page-11-0)

Multi-query context

- **routine analysis**
- uncertainty quantification
- design optimization
- \blacksquare inverse problems
- optimal control
- model predictive control

 QQ

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A}$

L [The Case for Model Order Reduction](#page-11-0)

[Multi-query Context](#page-18-0)

Routine analysis

 QQ 9 / 20

L [The Case for Model Order Reduction](#page-11-0)

[Multi-query Context](#page-18-0)

Uncertainty quantification

- $\overline{}$ [The Case for Model Order Reduction](#page-11-0)
	- [Multi-query Context](#page-18-0)
		- **Design optimization**

- [The Case for Model Order Reduction](#page-11-0)
	- [Multi-query Context](#page-18-0)
		- **Model predictive control**

E

メロメ メタメ メミメ メミメ

L [The Case for Model Order Reduction](#page-11-0)

[Model Parameterized PDE](#page-22-0)

Advection-diffusion-reaction equation: $W = \mathcal{W}(\mathbf{x}, t; \boldsymbol{\mu})$ solution of

$$
\frac{\partial \mathcal{W}}{\partial t} + \mathcal{U} \cdot \nabla \mathcal{W} - \kappa \Delta \mathcal{W} = f_{\mathsf{R}}(\mathcal{W}, t, \mu_{\mathsf{R}}) \text{ for } \mathbf{x} \in \Omega
$$

with appropriate boundary and initial conditions

$$
\mathcal{W}(\mathbf{x}, t; \boldsymbol{\mu}) = \mathcal{W}_D(\mathbf{x}, t; \boldsymbol{\mu}_D) \text{ for } \mathbf{x} \in \Gamma_D
$$

$$
\nabla \mathcal{W}(\mathbf{x}, t; \boldsymbol{\mu}) \cdot \mathbf{n}(\mathbf{x}) = 0 \text{ for } \mathbf{x} \in \Gamma_N
$$

$$
\mathcal{W}(\mathbf{x}, 0; \boldsymbol{\mu}) = \mathcal{W}_0(\mathbf{x}; \boldsymbol{\mu}_{\text{IC}}) \text{ for } \mathbf{x} \in \Omega
$$

イロメ 不倒 メイモメ イモメー 走っ

L [The Case for Model Order Reduction](#page-11-0)

[Model Parameterized PDE](#page-22-0)

Advection-diffusion-reaction equation: $W = \mathcal{W}(\mathbf{x}, t; \boldsymbol{\mu})$ solution of

$$
\frac{\partial \mathcal{W}}{\partial t} + \mathcal{U} \cdot \nabla \mathcal{W} - \kappa \Delta \mathcal{W} = f_{\mathsf{R}}(\mathcal{W}, t, \mu_{\mathsf{R}}) \text{ for } \mathbf{x} \in \Omega
$$

with appropriate boundary and initial conditions

$$
\mathcal{W}(\mathbf{x}, t; \boldsymbol{\mu}) = \mathcal{W}_D(\mathbf{x}, t; \boldsymbol{\mu}_D) \text{ for } \mathbf{x} \in \Gamma_D
$$

$$
\nabla \mathcal{W}(\mathbf{x}, t; \boldsymbol{\mu}) \cdot \mathbf{n}(\mathbf{x}) = 0 \text{ for } \mathbf{x} \in \Gamma_N
$$

$$
\mathcal{W}(\mathbf{x}, 0; \boldsymbol{\mu}) = \mathcal{W}_0(\mathbf{x}; \boldsymbol{\mu}_{\text{IC}}) \text{ for } \mathbf{x} \in \Omega
$$

Parameters of interest

$$
\boldsymbol{\mu} = [\mathcal{U}_1 \ \cdots \ \mathcal{U}_d \ \kappa \ \boldsymbol{\mu}_R \ \boldsymbol{\mu}_D \ \boldsymbol{\mu}_C]^T
$$

イロメ 不個 メイミメイミメー 君

[The Case for Model Order Reduction](#page-11-0)

[Parameterized Solutions](#page-24-0)

T Two-dimensional advection-diffusion equation

$$
\frac{\partial W}{\partial t} + U \cdot \nabla W - \kappa \Delta W = 0 \text{ for } \mathbf{x} \in \Omega
$$

with boundary and initial conditions

$$
\mathcal{W}(\mathbf{x}, t; \boldsymbol{\mu}) = \mathcal{W}_D(\mathbf{x}, t; \boldsymbol{\mu}_D) \text{ for } \mathbf{x} \in \Gamma_D
$$

$$
\nabla \mathcal{W}(\mathbf{x}, t; \boldsymbol{\mu}) \cdot \mathbf{n}(\mathbf{x}) = 0 \text{ for } \mathbf{x} \in \Gamma_N
$$

$$
\mathcal{W}(\mathbf{x}, 0; \boldsymbol{\mu}) = \mathcal{W}_0(\mathbf{x}) \text{ for } \mathbf{x} \in \Omega
$$

 $(1 - \epsilon)$ (d) $(1 - \epsilon)$ (d) $(1 - \epsilon)$

[The Case for Model Order Reduction](#page-11-0)

 L [Parameterized Solutions](#page-24-0)

Two-dimensional advection-diffusion equation

$$
\frac{\partial \mathcal{W}}{\partial t} + \mathcal{U} \cdot \nabla \mathcal{W} - \kappa \Delta \mathcal{W} = 0 \text{ for } \mathbf{x} \in \Omega
$$

with boundary and initial conditions

$$
\mathcal{W}(\mathbf{x}, t; \boldsymbol{\mu}) = \mathcal{W}_D(\mathbf{x}, t; \boldsymbol{\mu}_D) \text{ for } \mathbf{x} \in \Gamma_D
$$

$$
\nabla \mathcal{W}(\mathbf{x}, t; \boldsymbol{\mu}) \cdot \mathbf{n}(\mathbf{x}) = 0 \text{ for } \mathbf{x} \in \Gamma_N
$$

$$
\mathcal{W}(\mathbf{x}, 0; \boldsymbol{\mu}) = \mathcal{W}_0(\mathbf{x}) \text{ for } \mathbf{x} \in \Omega
$$

■ 4 parameters of interest \Rightarrow $p = 4$

$$
\boldsymbol{\mu} = [\mathcal{U}_1 \; \mathcal{U}_2 \; \kappa \; \boldsymbol{\mu}_D]^{\mathsf{T}} \in \mathbb{R}^4
$$

where μ_D is a specified constant value of $W_D(\mathbf{x}, t; \mu_D)$ $\textbf{w} \in \mathbb{R}^N$ with $N=5\,402$

KO K K (D) K E K K E K (D) K K K K K K K K K K

[The Case for Model Order Reduction](#page-11-0)

 L [Parameterized Solutions](#page-24-0)

Solution snapshots at some time t_i , for six sampled parameter points $\boldsymbol{\mu}^{(j)},\,j=1,\;\cdots,\;6$ (recall that $\boldsymbol{\mu}=[\mathcal{U}_1\;\mathcal{U}_2\;\kappa\;\boldsymbol{\mu}_\mathrm{D}]^{\textstyle\mathcal{T}}\in\mathbb{R}^4)$

 QQ 16 / 20

 $\mathsf{\mathsf{L}}$ [Subspace Approximation](#page-27-0)

Question: Can we reuse the pre-computed snapshots to reconstruct a solution for a queried but unsampled parameter point μ^{\star} ?

$\mathsf{\mathsf{L}}$ [Subspace Approximation](#page-27-0)

- **Question:** Can we reuse the pre-computed snapshots to *reconstruct* a solution for a queried but unsampled parameter point μ^{\star} ?
- \blacksquare Idea: Use a linear combination of these snapshots such as, for example

$$
\mathbf{w}(t; \boldsymbol{\mu}^{\star}) \approx \sum_{i=1}^{N_{\rm s}^{(1)}} q_i^{(1)}(t; \boldsymbol{\mu}^{\star}) \mathbf{w}(t_i; \boldsymbol{\mu}^{(1)}) + \cdots + \sum_{i=1}^{N_{\rm s}^{(k)}} q_i^{(k)}(t; \boldsymbol{\mu}^{\star}) \mathbf{w}(t_i; \boldsymbol{\mu}^{(k)})
$$

where

 $N_s^{(j)}$, $j=1, \ \cdots, \ k$ denotes the number of pre-computed solution snapshots using the sampled parameter point $\boldsymbol{\mu}^{(j)}$ and k denotes the total number of parameter points sampled in the parameter space D $\mathsf{w}(t_i ; \mu^{(j)}) \in \mathbb{R}^N$ denotes the pre-computed solution snapshots at time t_i using the sampled parameter point $\mu^{(j)}$ $\mathcal{q}_i^{(j)}(t;\bm{\mu}) \in \mathbb{R}$ denotes the expansion coefficient associated with $\mathsf{w}(t_i ; \boldsymbol{\mu}^{(j)})$

[Subspace Approximation](#page-27-0)

The linear expansion

$$
\mathbf{w}(t;\mu) \approx \sum_{i=1}^{N_s^{(1)}} q_i^{(1)}(t;\mu) \mathbf{w}(t_i;\mu^{(1)}) + \cdots + \sum_{i=1}^{N_s^{(k)}} q_i^{(k)}(t;\mu) \mathbf{w}(t_i;\mu^{(k)})
$$

can be written as

$$
\mathsf{w}(t;\mu) \approx \mathsf{Wq}(t;\mu)
$$

where

$$
\mathbf{W} = \left[\mathbf{w}(t_1; \mu^{(1)}) \; \cdots \; \mathbf{w}(t_{N_s^{(1)}}; \mu^{(1)}) \; \cdots \; \mathbf{w}(t_1; \mu^{(k)}) \; \cdots \; \mathbf{w}(t_{N_s^{(k)}}; \mu^{(k)}) \right]
$$

and

$$
\mathbf{q}(t; \boldsymbol{\mu}) = \left[q_{1}^{(1)}(t; \boldsymbol{\mu})\ \cdots\ q_{N_{\mathrm{S}}^{(1)}}^{(1)}(t; \boldsymbol{\mu})\ \ \cdots\ q_{1}^{(k)}(t; \boldsymbol{\mu})\ \cdots\ q_{N_{\mathrm{S}}^{(k)}}^{(k)}(t; \boldsymbol{\mu})\right]^{T}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q → 18 / 20

 $\mathsf{\mathsf{L}}$ [Subspace Approximation](#page-27-0)

■ The parameterized approximation

 $\mathbf{w}(t; \mu) \approx \mathbf{Wq}(t; \mu)$

is a subspace approximation of $w(t; \mu)$, where the subspace is

$$
\mathcal{S} = \text{span}\left\{\mathbf{w}(t_1; \boldsymbol{\mu}^{(1)}), \cdots, \cdots, \mathbf{w}(t_{N_s^{(k)}}; \boldsymbol{\mu}^{(k)})\right\}
$$

and its dimension is

$$
\dim(\mathcal{S}) = \text{rank}\left[\mathbf{w}(t_1; \boldsymbol{\mu}^{(1)}) \ \cdots \ \cdots \ \mathbf{w}(t_{N_s^{(k)}}; \boldsymbol{\mu}^{(k)})\right] \leq \sum_{j=1}^k N_s^{(j)}
$$

メロトメ 御 トメ 重 トメ 重 トー 重

 $\mathsf{\mathsf{L}}$ [Subspace Approximation](#page-27-0)

■ The parameterized approximation

 $w(t; \mu) \approx Wq(t; \mu)$

is a *subspace approximation* of $w(t; \mu)$, where the subspace is

$$
\mathcal{S} = \text{span}\left\{\mathbf{w}(t_1; \boldsymbol{\mu}^{(1)}), \cdots, \cdots, \mathbf{w}(t_{N_s^{(k)}}; \boldsymbol{\mu}^{(k)})\right\}
$$

and its dimension is

$$
\dim(\mathcal{S}) = \text{rank}\left[\mathbf{w}(t_1; \boldsymbol{\mu}^{(1)}) \ \cdots \ \cdots \ \mathbf{w}(t_{N_s^{(k)}}; \boldsymbol{\mu}^{(k)})\right] \leq \sum_{j=1}^k N_s^{(j)}
$$

- This approximation constitutes one of the pillars of projection-based model order reduction (PMOR): It raises the following questions
	- \blacksquare how to sample the parameter space \mathcal{D} ?
	- \blacksquare how to reduce the dimensionality of W and therefore that of the approximation subspace $\mathcal S$ below $\sum\limits_{j=1}^k N_s^{(j)}?$

• how to compute the vector of generalized coordinates $q(t; \mu)$?

 $\mathbf{E} = \mathbf{A} \mathbf{E} \mathbf{b} + \mathbf{A} \mathbf{E} \mathbf{b} + \mathbf{A} \mathbf{B} \mathbf{b} + \mathbf{A} \mathbf{b}$

 $\mathsf{\mathsf{L}}$ [Subspace Approximation](#page-27-0)

■ The parameterized approximation

 $w(t; \mu) \approx Wq(t; \mu)$

is a *subspace approximation* of $w(t; \mu)$, where the subspace is

$$
S = \text{span}\left\{\mathbf{w}(t_1;\boldsymbol{\mu}^{(1)}), \cdots, \cdots, \mathbf{w}(t_{N_s^{(k)}};\boldsymbol{\mu}^{(k)})\right\}
$$

and its dimension is

$$
\dim(\mathcal{S}) = \text{rank}\left[\mathbf{w}(t_1; \boldsymbol{\mu}^{(1)}) \ \cdots \ \cdots \ \mathbf{w}(t_{N_s^{(k)}}; \boldsymbol{\mu}^{(k)})\right] \leq \sum_{j=1}^k N_s^{(j)}
$$

- This approximation constitutes one of the pillars of projection-based model order reduction (PMOR): It raises the following questions \blacksquare how to sample the parameter space \mathcal{D} ?
	- \blacksquare how to reduce the dimensionality of W and therefore that of the approximation subspace $\mathcal S$ below $\sum\limits_{j=1}^k N_s^{(j)}?$

• how to compute the vector of generalized coordinates $q(t; \mu)$? These are some of the questions that this c[our](#page-31-0)[se](#page-33-0) [a](#page-29-0)[d](#page-32-0)d[re](#page-33-0)[s](#page-27-0)s[es](#page-38-0) $x \equiv x$

[Subspace Approximation](#page-27-0)

Curse of dimensionality

 $\mathsf{\mathsf{L}}$ [Subspace Approximation](#page-27-0)

Curse of dimensionality

high-dimensional parameter spaces (application-dependent)

 $\mathsf{\mathsf{L}}$ [Subspace Approximation](#page-27-0)

■ Curse of dimensionality

- high-dimensional parameter spaces (application-dependent)
- **a** assume that at minimum, the dependence of $W(\mathbf{x}, t; \mu)$ is linear in each component μ_i of $\mu \Rightarrow$ at minimum, 2 parameter points must be sampled in each direction of the parameter space D

 $\mathsf{\mathsf{L}}$ [Subspace Approximation](#page-27-0)

■ Curse of dimensionality

- high-dimensional parameter spaces (application-dependent)
- **a** assume that at minimum, the dependence of $W(\mathbf{x}, t; \mu)$ is linear in each component μ_i of $\mu \Rightarrow$ at minimum, 2 parameter points must be sampled in each direction of the parameter space D
- \Rightarrow at minimum, 2^p parameter points must be sampled in $\mathcal D$

 $\mathsf{\mathsf{L}}$ [Subspace Approximation](#page-27-0)

■ Curse of dimensionality

- high-dimensional parameter spaces (application-dependent)
- **a** assume that at minimum, the dependence of $W(\mathbf{x}, t; \mu)$ is linear in each component μ_i of $\mu \Rightarrow$ at minimum, 2 parameter points must be sampled in each direction of the parameter space D
- \Rightarrow at minimum, 2^p parameter points must be sampled in $\mathcal D$
- $\blacksquare \Rightarrow$ for $p = 20$, at least $N_p = 1048576$ parameter points must be sampled in $D \Rightarrow$ at least 1048 576 high-dimensional solution snapshots must be computed!

[Subspace Approximation](#page-27-0)

■ Curse of dimensionality

- high-dimensional parameter spaces (application-dependent)
- **a** assume that at minimum, the dependence of $W(\mathbf{x}, t; \mu)$ is linear in each component μ_i of $\mu \Rightarrow$ at minimum, 2 parameter points must be sampled in each direction of the parameter space D
- \Rightarrow at minimum, 2^p parameter points must be sampled in $\mathcal D$
- $\blacksquare \Rightarrow$ for $p = 20$, at least $N_p = 1048576$ parameter points must be sampled in $D \Rightarrow$ at least 1048 576 high-dimensional solution snapshots must be computed!

Exponential growth of N_p with p and linear growth of the training cost with $N_p \Rightarrow$ adaptive sampling and additional strategies for mitigating the curse of dimensionality

 $\mathbf{E} = \mathbf{A} \mathbf{E} \mathbf{b} + \mathbf{A} \mathbf{E} \mathbf{b} + \mathbf{A} \mathbf{B} \mathbf{b} + \mathbf{A} \mathbf{b}$