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HEILMEIER CHATECHISM

  Critical questions for research proposal 
1. What is the problem? why is it hard? 
2. How is it solved today, what are the limits of current practice? 

4. Who cares?
5. What is the impact if successful?

3. What is the new technical idea? why can we succeed now? 
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BUFFETING: M∞ = 0.243, AoA = 30.3o 
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F-18 BUILDER SAYS TEST MISSED DESIGN FLAWS
By Wayne Biddle, Special To the New York Times
July 28, 1984

“Had we properly assessed it, we would have designed for it and not had the 
problems we have,” Don Snyder, Director of F-18 engineering at the McDonnell
Douglas Corporation (1984)

MCDONNELL DOUGLAS SAYS IT WILL PAY COST OF FIXING F-18 FLAW
By Wayne Biddle, Special To the New York Times
Aug. 3, 1984

The McDonnell Douglas Corporation announced today that it would ''bear the
 costs,'' about $25 million, of correcting a design flaw in the Navy's F-18 warplane
that has caused cracks in the fighter's tail.

F/A-18 VERTICAL TAIL BUFFETING
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1,500 cores for solving a $450 M

BUFFETING: M∞ = 0.243, AoA = 30.3o 

7



M∞ = 0.243, AoA = 30.3o
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M∞ = 0.243, AoA = 30.3o

F/A-18 VERTICAL TAIL BUFFETING
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4 days on a 1,500-core massively parallel system
for a single configuration

M∞ = 0.243, AoA = 30.3o

WHAT IS THE PROBLEM?
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WHAT IS THE PROBLEM?

- free-stream  velocity
           - angle of attack
           - altitude
           - positions of the control surfaces
           - shape variations
           - structural design variations
           - …

  Parametric simulations

1,000s of simulations
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  Impressive performance
- 11 billion equations

           - 22,000 cores
           - 3 minutes wall-clock time

- time-loop 
               o 50,000 time-steps
               o 1 solve/time-step
                      ~ 4 months wall-clock time …

  Time is one among many parameters
      of interest for engineering applications

  High performance (exascale) computing

  Unimpressive performance

HOW IS IT SOLVED TODAY? – LIMITS
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interpolation

- a model of the output but not of the system
           - limits: few, pre-determined, scalar quantities of interest (QoIs)
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Input

surrogate
analysis

  Response surfaces based on Kriging

SURROGATE 
MODEL OF A 

SYSTEM

input output

 = [1,…,p] y = [y1,…,yp ]

  Surrogate models

HOW IS IT SOLVED TODAY? – LIMITS

- method of interpolation for which the interpolated values are
             modeled by a Gaussian process governed by prior covariances

interpolation
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  Regression artificial neural networks

SURROGATE 
MODEL OF A 

SYSTEM

input output

 = [1,…,p] y = [y1,…,yp ]

  Surrogate models

- universal approximation theorem                      
- very large amount of training data

           - limits: few, pre-determined, scalar QoIs
                         few, medium-size, vector QoIs

WHAT IS THE NEW TECHNICAL IDEA?
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  Machine Learning (ML)

- classical ML algorithms use computational methods to “learn” 
             information directly from data without relying on a
             predetermined equation as a model
           - classical ML algorithms have been mostly driven by problems
             for which no predetermined equation is available             data-
             driven modeling

WHAT IS THE NEW TECHNICAL IDEA?
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- little amounts of data are available
             and are difficult/expensive to obtain
           - the concepts of error and accuracy 
             are universal
           - the concept of prediction is mostly
             quantitative

  Reading comprehension, speech recognition, face recognition, …
- large amounts of data are available 

             and are free of charge to the analyst
           - the concepts of error and accuracy 
             are application-dependent
           - the concept of prediction is more
             qualitative than quantitative

  Physical systems

WHAT IS THE NEW TECHNICAL IDEA?
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- build the lowest-dimensional model that can capture the
             dominant behavior of the system of interest by projecting

a given High-Dimensional computational Model (HDM) on a
             subspace constructed after learning something about the 
             system of interest

  Projection-Based Model Order Reduction (PMOR)

WHAT IS THE NEW TECHNICAL IDEA?

Projection-Based Reduced-Order Model (PROM)

compact representation and drastic CPU time reduction at
minimum loss of fidelity

HDM PROM
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WHY IS THIS PROBLEM HARD?

  Can the solution of every problem of interest be approximated in
      a low-dimensional space?

  The curse of parameterization

- at what cost?

- how to achieve robustness with respect to parameter changes?
           - how to mitigate the effect of the dimensionality of the 
             parameter space on that of the solution space?

  Similar difficulties as in the case of HDMs
- numerical stability, accuracy, boundary conditions, arbitrary

             constraints, error estimators, …

  Compact representation?
- separation of reduced bases and generalized coordinates

           - intrusiveness

  What logistics are needed to recover the investment? 19



- circuits
           - acoustics (frequency domain)
           - structural dynamics
           - stability
           - control
           - sensitivity

  Linearized (or linear) problems

- textbooks: [Antoulas, 2010], [Benner, 2011]
           - commercial software (ANSYS)

  Mature for zero- and one-parameter problems (i.e., frequency)

COURSE SCOPE: LINEAR PMOR

  PMOR
- physics-based model           Partial Differential Equation (PDE)

           - linear(ized)                             semi-discrete level
           - nonlinear                                discrete level 
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  Nonlinear, parametric, dynamical system (implicit discrete level)

physics-based machine learning approach for constructing
a lower-dimensional, structure-preserving model

  Representation:  reduced-order basis (ROB) 
                                                                                               
  Data-driven learning process:     is learned from data generated by exercising a
      high-dimensional model (HDM) at points sampled in a parameter space using a
      greedy procedure, computing solution snapshots & compressing them using SVD  
                                                                             

PMOR = PHYSICS-BASED ML

  Hypothesis: affine approximation in some region of the state-space

  Loss function and optimization problem
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OFFLINE-ONLINE COMPUTING
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STATE OF THE ART

PROMHDM
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LEARNING WITH MODELS AND DATA

vs. LEARNING WITH DATA ONLY

  Real-time prediction of fuel sloshing and its effect on flutter
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LEARNING WITH MODELS AND DATA

vs. LEARNING WITH DATA ONLY

“Some fear flutter because they don’t understand it, and some fear it because
  they do.” 
     -von Karman-
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Ground truth data Database

Data regression (cubic) Model regression (linear)

LEARNING WITH MODELS AND DATA

vs. LEARNING WITH DATA ONLY

  Learning the flutter speed index (FSI)

27



  High-dimensional computational models are constructed a priori,
      using local polynomial basis functions which do not know much
      about the dynamical system of interest

1

2

*

  Parametric PROMs are constructed using global basis functions 
      which embody a posteriori information gathered from exercising 
      the HDM offline to compute solution snapshots 

WHAT IS THE NEW TECHNICAL IDEA?
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  “We do not learn new things, we merely
       remember things we have forgotten”

Plato

  PMOR is a Ritz method where the global basis 
      functions are constructed a posteriori after 
      some knowledge about the parameterized
      system has been developed, instead of being 
      selected a priori

- satisfaction of the parameteric boundary conditions by the
             global ROB V
           - satisfaction of other parametric constraints
           - stability conditions where applicable (many types)
           

  Challenges

WHAT IS THE NEW TECHNICAL IDEA?
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WHO CARES?

‘’ [If I am not getting the NASTRAN 
answer after 4 hours on a Cray, 
then God is sending me the 
message I have the wrong design] ’’
                          Burt Rutan, 1993

  Compute-intensive science and applications
- parametric studies, stochastic analysis, uncertainty analysis

           - multidisciplinary modeling, multiscale modeling
           - multidisciplinary design optimization, optimal control, …

  Time-critical applications (technology & industrial representatives)
- embedded systems, virtual reality, robotic surgery 

           - Boeing, Intel, Toyota, VW, ANSYS, ESI, ..

  Funding agencies (omnipresent in most recent initiatives)
- combustion, hypersonics (DOD)

           - digital twins (DOE)
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WHAT IF THE IMPACT IS SUCCESSFUL?
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WHAT IF THE IMPACT IS SUCCESSFUL?
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  Autonomous systems – Model Predictive Control (MPC)

WHAT IF THE IMPACT IS SUCCESSFUL?
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WHAT IF THE IMPACT IS SUCCESSFUL?

  Autonomous systems – Model Predictive Control (MPC)
- principled method in optimal control theory

           - utilizes a computational model to optimize a system and
             predict its future behavior (OCP)
           - leverages state measurements to incorporate feedback into 
              the system
           - accounts for state and control constraints and therefore may
             enable autonomous abort, and operation at performance limits

34



WHAT IF THE IMPACT IS SUCCESSFUL?

  PROM-based two-level digital twin
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WHAT IF THE IMPACT IS SUCCESSFUL?

  Line-up error corrections and disturbance eliminations

RT-DTI Wall clock time (msecs) # of calls

state-estimator 6.7×10-2 2,490

OCP 8.4 250
36



WHAT IF THE IMPACT IS SUCCESSFUL?

  Embedded RT-DTI (with Prof. M. Pavone)
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WHY CAN WE SUCCEED NOW?

 Emerging fields
- machine learning (autoencoders)
- data analytics
- data analytics

 Advances in approximation theory

 Advances in signal processing algorithms

- error bounds for PROMs
- Gaussian Processes (GPs)
- …
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FEASIBILITY

  Whenever the cost of the offline phase can be amortized
- parametric studies

           - stochastic analysis
           - uncertainty analysis
           - multiscale modeling
           - optimal control
           - design optimization
           .
           .
           .

- optimization of offline step cannot be ignored
- particular attention to the sampling of a high-dimensional   
  parameter space
- data organization and manipulation 40
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UNDER BODY BLAST

- too many parametric configurations to test or simulate
                    o charge intensity
                    o charge depth
                    o charge location
                    o standoff distance as a functions of armor parameters
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- CONWEP module (10 kg charge)

- J2 plasticity constitutive model
           - shells & beams (finite rotations) 
           - 233,276 nodes
           - 236,995 elements
           - 1,399,056 dofs

GENERIC V-HULL - HDM

  Nonlinear finite element model  

  Air blast wave  

  Explicit transient dynamic analysis  

  POD-based PROM of dimension n = 100
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  Nonlinear structural dynamic response to air blast loading
- simulation time-interval: [0, 10-3] s

           - midpoint rule: tHDM= 1 x 10-8 s  (tPROM= 2.5 x 10-6 s) 

GENERIC V-HULL - HDM
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Node 263000 – ux    

Time (s)

HDM (1,399,056)     
          PROM (100)

PROM PERFORMANCE: ACCURACY
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Node 263000 – uy

Time (s)

HDM (1,399,056)     
          PROM (100)

PROM PERFORMANCE: ACCURACY
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CPU time speed-up = 231,481          

  HDM: 128 cores of a Linux cluster — PROM: 16 cores

Model Wall clock time Speedup

HDM (1,399,056) 1.25 x 105 s
(34.72 hrs) 

PROM (100) 4.32 s 28,935

PROM PERFORMANCE: SPEED-UP
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  Next-generation computing-testing using PROMs

VISION FOR THE FUTURE
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  Four-dimensional parameter space
wing span                                            vertical wing tip rake

             stream-wise wing tip rake                outboard twist (washout)

  High-Dimensional CFD Model (HDM) with N = 68,728,212

  “What-if” scenarios to pave the way for automated optimization

  Cruise conditions

WHAT-IF ANALYSIS
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WING SPAN RANGE

baseline: 141.01 kN
drag 
              what-if  : 151.27 kN 50



VERTICAL TIP RAKE RANGE

baseline: 141.01 kN
drag 
              what-if  : 141.76 kN 51



STREAM-WISE TIP RAKE RANGE

baseline: 141.01 kN
drag 
              what-if  : 139.21 kN 52



OUTBOARD TWIST RANGE

baseline: 141.01 kN
drag 
              what-if  : 135.07 kN 53



SAMPLING/TRAINING

AND GLOBAL PROM CONSTRUCTION

  Sampling at the corners & face centers of the 4D parameter space
- 24 sampled configurations (1 snapshot / configuration)

           - global ROB of dimension n = 23  (instead of N = 68,728,212)
           - hyper reduction*: 5,000 vertices (instead of 11,454,702)

hyper reduction: reduced mesh computed using a ML approach 54



COMPUTATIONAL OVERHEAD (OFFLINE)

  Excalibur (Cray XC40, ARL)
- 1,024 cores assigned to each sampled configuration

           - 2 hrs wall-clock time per sampled configuration
           - 11.6 mns wall-clock time for constructing global ROB 
           - 3 mns wall-clock time for constructing and hyper reducing 
             the global PROM on 1,024 cores

wall-clock time investment: 2.25 hrs on 24,576 cores

55



  Example
- parameter point at the center of the database
- “real-time” prediction (laptop):  29 s (deform reduced mesh)
                                                             30 s  (PROM soln)
                                                             78 s  (HDM mesh morphing)
                                                             32 s  (HDM soln reconstruction)

170 s (< 3 mins) wall-clock time 

baseline: 141.01 kN
drag 
              what-if  : 142.31 kN

WHAT-IF ANALYSIS (CASE STUDY#1)
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  Accuracy of global PROM at the unsampled center of the database
- Cp contour locations from symmetry plane

15 m

20 m

25 m
27 m

WHAT-IF ANALYSIS (CASE STUDY#1)
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 Accuracy of global PROM at the unsampled center of the database

WHAT-IF ANALYSIS 

15 m

25 m 27 m

20 m
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