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HOLE BURNING LINE SHAPES IN A TWO-DIMENSIONAL GLASS 
A MODEL FOR HOLE BURNING LINE SHAPES OF MOLECULES ON SURFACES 

Dee William PACK ’ and Michael D. FAYER 
Department of Chemistty, Stunftird University, Stanford, CA 94305, USA 

Received I2 September 1989; in final form 22 February 1990 

A method for calculating the low temperature, hole burning line shapes of molecules in a two-dimensional glass in presented. 

An extension of the standard dynamic model for three-dimensional glasses is employed. A calculation of the 2-D spatial average 
with the proper correlation function description predicts non-Lorentzian hole profiles (narrower near the peak, broader in the 
wings) due to the reduction in dimensionality. A steeper power law, Au=&, is predicted for two-dimensional linewidths, com- 
pared to standard three-dimensional results. These results afe in qualitative agreement with recent experiments of molecules on 
surfaces. 

1. Introduction 

Persistent spectral hole burning has become a 
widely used method for uncovering dynamic infor- 
mation from inhomogeneously broadened bands of 
chromophores in complex systems such as glasses, 
polymers, and biological hosts [ l-61. Optical probe 
molecules doped into these hosts characteristically 
exhibit wide, inhomogeneously broadened spectra 
due to the distribution of environments they inhabit. 
Recently, molecules on surfaces have begun to be 
studied with the technique [7-l 11. Like bulk sys- 
tems, the spectra of surface species are also inho- 
mogeneously broadened. One recent result of these 
efforts has been the observation of glass-like thermal 
broadening of the hole width at low temperatures: 
Au=aTb, where 1.6<bc2.1 [ll]. This type of 
power law has been linked to low energy degrees of 
freedom unique to amorphous systems that are de- 
scribable as tunneling states or two-level systems 
(TLSs) [ 11. The new surface data indicate the ex- 
istence of glass-like degrees of freedom [ 111. 

Since all but the most carefully prepared surfaces 
are inherently disordered, it is natural to consider 
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modeling their low temperature properties through 
analogies to glasses. Some measurements of low tem- 
perature properties, known to be anomalous in 
amorphous materials, such as heat capacity, thermal 
conductivity and the attenuation of acoustic waves, 
are difficult to measure for surfaces. Optical mea- 
surements such as spectral hole burning, however, 
have been proven capable of measuring the anom- 
alous low temperature degrees of freedom in glasses 
[ 1,12,13 1, and can readily be applied to various sur- 
face systems. 

In a recent series of papers Berg et al. [ 141, and 
Bai and Fayer [ 15,16 ] have demonstrated that the 
correct description of a hole burning experiment in 
complex systems is achieved through the use of a 
four-point correlation function formalism. This is 
because materials such as glasses, or paramagnetic 
impurities in crystals with unpaired spins, possess 
wide distributions of rate processes which perturb 
the probe chromophores [ 16-l 8 1. This leads to time 
evolution of the hole width, termed spectral diffu- 
sion in accord with the analogous spin resonance 
phenomenon. Comparison of two-pulse photon echo 
and optical hole burning measurements on organic 
dye/glass systems show that the techniques measure 
linewidths differing by factors of 6 to 9 [ 14,19,20]. 
The hole burning measurements, which typically take 
seconds to minutes to perform, are dominated by 
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spectral diffusion. The processes termed spectral dif- 
fusion are merely the TLS jumps with rates slow 
enough to be rephased by the echo method, but fast 
relative to the time required to bum and read a hole. 
The time scale of the experiment, i.e. the pulse sep- 
aration for a stimulated echo, or the wait between 
burning and reading for hole burning, must be ex- 
plicitly accounted for in a correct correlation func- 
tion treatment. For many surfaces, just as in glasses, 
a wide distribution of relaxation rates is very likely 
to exist. In particular, surface systems exhibiting a 
A v= UT b linewidth signature are expected to possess 
a wide, glassy distribution of relaxation rates. Thus, 
the method of ref. [ 161 for calculating time depen- 
dent hole burning linewidths resulting from spectral 
diffusion, should also be applicable to glass-like 
surfaces. 

This Letter focuses on the influence of dimen- 
sionality on the correlation function, which comes 
into play through the average over the spatial dis- 
tribution of perturbing TLSs. The four-point corre- 
lation function formalism is applied to a model sur- 
face system and the appropriate two-dimensional (2- 
D) integral over surface TLS positions is treated. This 
leads to non-Lorentzian hole profiles with conse- 
quences for the TLS concentration, time, and tem- 
perature dependences of the linewidth. 

The tunneling two-level system model for glasses 
has been the most successful at explaining low tem- 
perature experimental measurements. To uncover the 
subtle effects of low temperature TLS behavior in 
bulk glasses, line narrowing techniques such as the 
two pulse photon echo [ 14,18,2 11, accumulated 
grating echo [ 2 1,22 1, fluorescence line narrowing 
[ 23 ] and spectral hole burning [ 1,14,18 ] have been 
employed. One of the results of these experiments 
has been the consistent observation of Lorentzian line 
shapes for the frequency domain experiments [ 1,14 1, 
and exponential decay functions for the time do- 
main measurements [ 12,141. Calculations show that 
the perturbation of the optical probes by the TLS 
modes must be of a dipole-dipole nature to obtain 
Lorentzian lines [ 14] or exponential echo decays 
[ 12,141. Then, when one averages over the spatial, 
tunneling rate and energy distributions of the ensem- 
ble of TLSs, a Lorentzian line shape which varies with 
time and temperature, is obtained [ 161. (The cal- 
culation of a Lorentzian line shape caused by a ran- 
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dom distribution of dipolar perturbers in 3-D is a 
well known result [ 241. A concise discussion of how 
this comes about and why the central limit theorem 
does not apply to long range perturbations is given 
on p. 1581 of ref. [ 141.) 

In this Letter, we extend the averaging technique 
to surfaces, changing the spatial average to that ap- 
propriate for a two-dimensional case. We find, that 
based on reduction ofdimensionality alone, the stan- 
dard TLS model predicts a non-Lorentzian line shape 
and a steeper temperature dependence in 2-D than 
in 3-D for a given distribution of TLS energies. 

2. The four-point correlation function formalism for 
hole burning 

The spectral profile of the hole is proportional to 
the Fourier transform of the four-point, or stimu- 
lated echo, correlation function, C( r, T,, z) [ 15,161, 

Z,(v)= 1 dTexp (iwz) C(z, T,, z) , 
-05 

(1) 

where C( r, T,, T) is 

The averages for each TLS, j, are over the stochastic 
history path, H, the spatial distribution, r, and the 
microscopic parameters of a TLS, the splitting 
energy E, and the tunneling parameter A= 
d(2AW/fz)“Z [ 15,161. Adopting the sudden jump 
model to describe the perturbation caused by TLSs, 
&(r, T,.,) is the function [ 15,16,25,26] 

7 

(J 

v 

Qi(r, Tw)=Aaj h(t) dt- 
TJt” ) 

Wdt , (3) 
0 TW+7 

where AOj is the perturbation of the chromphore’s 
optical frequency by the jth TLS. h(t) is a random 
telegraph function that takes on the values + 1 or - 1 
depending on the state of the TLS. The time depen- 
dence of the frequency, here, arises from the sudden 
jumps between the levels of the perturbers. The time 
limits in the integrals of eq. (3) are straightforward 
for stimulated echoes. z and T, are defined as the 
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delays between the first and second pulses, and the 
second and third pulses, respectively. The stimu- 
lated echo is generated at time T,+27 later. For a 
hole burning experiment, r is the lifetime of the co- 
herent polarization induced during the burning and 
reading pulses, essentially the ri that a two-pulse 
echo would measure [ 16 1. T, is basically the time 
required to perform the experiment, from burning 
through reading the hole [ 161. In hole burning, T,., 

is typically many orders of magnitude longer than t. 
The correlation function is set up in eq. (2) as an 

average over path histories, spatial positions and in- 
ternal parameters of the perturbation of N TLSs on 
the frequency of a single reference chromophore. This 
is valid for a low concentration sample [ 24-28 1. The 
sum, ~j, corresponds to a particular configuration of 
N TLSs around a chromophore. The exponential in 
eq. (2) can be factored into a product of terms cor- 
responding to a fixed reference chromophore and all 
N TLSs 

(4) 

The product of N similar terms may be further sim- 
plified to give 

C(r, T,, r)= <exp[iC(r, T,) 1 %,,,EA (5) 

and the subscript, j, dropped as the averages will be 
the same for all N TLSs. 

These, and the following manipulations used to re- 
duce the N-body problem to a two-body problem cal- 
culated N times, are quite well known [ 24-28 1. Here, 
we follow Bai and Fayer [ 15,161, who perform the 
path history average first, along with the usual rear- 
rangements made possible by assuming each of the 
N perturbers are non-interacting. The spatial average 
is postponed until after the average over path his- 
tories is taken [ 16 1. This has been shown to aid in 
the evaluation of systems with non-uniform distri- 
butions of perturbers and keeps the treatment more 
general [ 161. Also, the complex part of the calcu- 
lation cancels naturally in the history average [ 161, 
avoiding the need to introduce approximations elim- 
inating it [27,29]. Using 

(exp]i$(r, T,)l)N~l-_(---xp[i~(T, Tw)l)N 
(6) 

(7) 

and 

lim (1 +y/N)N=expy, 
N-00 

eq. ( 5) becomes 

C(r, T,, r) 

=expW0U-exp[i#b, ~w)l)~,r,~,.d~ (8) 

where the density of TLS, no= N/A for a 2-D system, 
has been explicitly included, after separating the 
1 /A area factor from the spatial average, 

( ,,=$K (9) 
0 

The history average may now be performed. In the 
long time limit, T, B T, the result is [ 16 ] 

‘3~ i-w, 7) 

=exp{ -Q ( sin2( Awr) sech2(E/2kT) 

x[~-wJ(-RT~)I)~,~,~. (10) 

In deriving eq. (lo), the dynamics of the two-level 
perturbers are modeled as one-phonon-induced sud- 
den jumps, each characterized by a relaxation rate, 
R. The distribution of energy splitting, E and tun- 
neling parameters, A, leads naturally to a distribution 
of rates P(R) , The average over E and a can be con- 
verted to one over E and R [ 15,161 

C(r, T,, r) 

=exp{ -no(sin2(Awr) sechZ(E/2kT) 

X [l-exp(-RL)l,E,R1. (11) 

When the optical center has no significant effect on 
the TLSs behavior the average over spatial position 
can be separated from the E and R averages to give 

[I61 
(sin2[Ao(r)r]), 

x(sech2(E/2kT) [I-exp(-RT,)]),,. (12) 

The correlation function has now been split into 
two parts, the spatial average ( >, and the tem- 
perature and time-dependent part that determines 
the number of TLS systems that have flipped, in an 
interval T,, ( )E,R [ 13,16,30]. This essentially 
gives a line shape function times a number. The shape 
function. i.e. the spatial average, is dependent on the 
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chromophore-TLS interaction and the spatial dis- 
tribution of TLS, for its functional form. For dipole- 
dipole interactions, with a random distribution of 
perturbers, this leads to a Lorentzian line in three- 
dimensional systems [ 241. For a two-dimensional 
distribution of perturbers, the line shape is more 
complex and must be numerically evaluated. 

3. The hvo-dimensional spatial average 

Our problem is now to solve the spatial average in 
eq. ( 12 ) for a molecule surrounded by a two-di- 
mensional distribution of perturbing TLSs. The 
functional form of the chromophore-perturber in- 
teraction, Aw( r), and the spatial distribution, P(r), 
must be specified. A uniform surface distribution of 
TLSs is chosen: P(r) dr=dA/A. The frequency per- 
turbation, Ao( r), is assumed to be of a dipole-di- 
pole nature. This is consistent with several different 
types of experimental results [ 12,141 for three-di- 
mensional systems. The dipoles involved could be 
either electric, or elastic, strain dipoles [ 301. Ao( r) 
is 

Acu(r, 8)= APM APTLSK(~~) MO) 

Y3 =7-’ 
(13) 

r is the distance between a TLS and the chromo- 
phore. ~(a) is the orientational factor for the di- 
polar coupling. D is the dipolar coupling constant, 
D= A,uMA.u-~~. It is the change in dipole moments, 
Ap, between the TLS states and the ground and ex- 
cited levels of the optical center that determines the 
coupling strength. 

A model surface is depicted in fig. I. The Ap di- 
pole vectors are centered on the surface plane, but 
are ahowed to point in any direction. Both the chro- 
mophores and the perturbers are confined to the 
plane. This type of model would still apply to a layer 
of finite thickness if the disorder modes were found 
mainly on the interface. The substrate is assumed not 
to possess tunneling states, or at least, to have only 
weakly coupled ones, or low concentrations of them. 

The spatial average from eq. ( 12) is 

Substrate (no TLS dynamics) 

Fig. 1. Picture of a model surface. A chromophore with a ground- 
excited state dipole moment change AH~ is surrounded by a ran- 
dom distribution of surface TLSs with dipolar changes Ati= as- 
sociated with jumps between the two states. TUs are present only 
on the surface. The bulk substrate is presumed not to possess TLS 
modes, or equivalently, that their concentrations and/or cou- 
pling strengths are small enough that they may be ignored. 

=3.343( \K(&?) 1 >g’(h)“‘, (14b) 

It follows that the correlation function, eq. ( 1 1 ), will 
be non-exponential for a two-dimensional system, 
proportional to exp( -cr213), where c is a constant. 
In evaluating eq. ( 14) the spatial angle 0, and the 
dipolar orientational angles, referred to collectively 
as Sz, have been kept separate. The 1 /A normaliza- 
tion factor is already contained in the surface con- 
centration factor. After the variable change, the nu- 
merically evaluated expression 

= 1.596 
0 

(15) 

has been used. The dipolar orientational average, 
{Irc(9)I),,isatermontheorderofone [31].It 
has been explicitly calculated for electric dipoles for 
a variety of orientational models and found to be be- 
tween 0.574 and 0.920 in two-dimensional systems 
[ 3 11. For elastic dipolar interactions ( I K (8) J > D is 
a more complex function involving the strain tensors 
of the medium [ 301. For a three-dimensional sys- 
tem, an approximate calculation gave the value 0.87 
[ 301. In what follows this term is combined with the 
dipolar coupling constant, D. It does not influence 
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the hole shape or temperature dependence. Note that 
the lower limit of the spatial integral in eq. ( 14) may 
be set equal to zero without significant error, despite 
the probe molecule’s finite size. The effect of this fi- 
nite dimension (termed r, in a spherical approxi- 
mation) is to introduce a cutoff in the far wings of 
the line shape at w,= D/r: [ 271. This is discussed 
further in ref. [ 20 ] for 3-D systems with intrinsically 
confined geometries. 

This treatment is similar to that for three-dimen- 
sional systems. In the three-dimensional expression, 
rdr is replaced with r2 dr, and the integral (with 
x= 1 /r3, and c a constant) then becomes [24-281 

m 

f dx s sin2(rcX) 
X2 =$c(rc] I 

0 

This result leads to the exponential decay of the cor- 
relation function, and the line shape, eq. ( 1 ), is Lor- 
entzian. Eq. ( 14) is the proper description for a two- 
dimensional distribution of dipolar perturbers. Dif- 
fering orientational models such as fixing the dipole 
vectors in the plane, versus allowing them to point 
freely in space, will only cause changes in the value 
of K(Q) [ 3 11, and will not affect the final line shape 
function. Distributing the perturbers in a surface 
layer, thin with respect to the coupling strength, will 
give a correlation function between the exp( - 
CT*/~) and exp( -cz’) limits. As a layer’s thickness 
increases, the spatial average rapidly approaches the 
exponential three-dimensional limit, leading to Lor- 
entzian line shapes. A completely analogous calcu- 
lation for a one-dimensional distribution of dipolar 
perturbers, leads to a correlation function propor- 
tional to exp(--~z’/~), although such a system is 
physically unlikely. These stretched exponential cor- 
relation functions, used here to calculate line shapes, 
resemble other types of‘decay laws involving exci- 
tation transport discussed by Blumen et al. for frac- 
tal lattices of varying dimension [ 321. 

4. Calculation of the 2-D line shape 

The average over E and R in eq. (12) selects out 
only the active TLSs, those which have changed state 
and perturbed the chromophore at a given temper- 
ature, T, by the experimental waiting time, T,. This 

effectively changes the density of TLSs, no, into a 
weighted density, dependent on temperature and 
time, R ( T, T,). The expression which must be eval- 
uated to generate a model hole burning line shape is 

OD 

I,( Y)= 1 dtexp(iwz) 
--m 

xexp[-3.343n(T, T,.,)(Dr)2/3] . (17) 

The non-exponential temporal function is trans- 
formed with a fast Fourier transform algorithm to 
generate the line profile. An array of several thou- 
sand time points is used ranging, typically, from pi- 
coseconds to nanoseconds. 

Values must be chosen for the active TLS density, 
n ( T, T,), and the dipolar coupling constant, D. We 
choose these parameters to give linewidths compa- 
rable to the data of On-it, Bernard and Miibius on 
resort& on a Langmuir-Blodgett monolayer [ 111. 
They observed non-Lorentzian holes with fwhm of 
about 2.7 GHz at 2.0 K. They also observed a line 
width versus temperature dependence of the form, 
Av=uTb, where the b values were in the range 1.6- 
2.1. This is a steeper power law than usually ob- 
served in bulk glasses for which the value b= 1.3 is 
surprisingly common [ 1,331. The function, eq. (17), 
is able to produce line shapes similar to those re- 
ported in ref. [ Ill. In addition, the 2-D linewidth 
from eq. ( 17) has a steeper temperature dependence 
than a 3-D width for identical distributions of TLS 
splitting energies. 

Fig. 2 plots the two-dimensional hole profile from 
eq. (17) with the product n(T, Tw)D2/3=2.1 x lo6 
Hz~‘~. Physically realistic concentrations and cou- 
pling strengths can give this value, i.e. n( T, T,) = 

5.0x 10e3 TLS/A*( x 1 TLS in a circle of r=8 A), 

AtiM= D, and A~~~0.06 D (1 D’~l.509~ 
1 014 Hz A3 = 1 x 1 036 erg cm3). Also shown in fig. 2 
are Lorentzian functions fit to the data. The model 
hole shape is sharper than the least-squares-fit Lor- 
entzian, fig. 2a, similar to the observations of Orrit 
et al. in their monolayer study [ 111. The compari- 
son to a fwhm and peak height matching Lorentzian, 
fig. 2b, shows that the 2-D hole profile is sharper 
around the maximum and broader in the wings. Or- 
rit et al. attributed their non-Lorentzian hole profiles 
to dispersive kinetics of the hole burning process 
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5, D.6 - 
.a 3 

0. 

Frequency (Ghz) 

Frequency (Ghz) 

Fig. 2. The 2-D line shape compared to Lorentzian fits. (a) The 2-D line shape from eq. (12) is plotted with the solid line. A Lorentzian 
least-squares fit to the + 10 GHz points is plotted with the dashed line. (b) The 2-D line shape from eq. ( 12) is plotted with the solid 
line. A Lore&an matching the fwhm and peak height is plotted with the dashed line. Holes for systems exhibiting 2-D glassy behavior 
are inherently non-Lorentzian. The lines are narrower near the peak. This is consistent with experiment (see text). 

[ 11,34 ] + This is certainly a possible explanation. The 
calculations presented here, however, show that 
strictly two-dimensional glass-like systems will inev- 
itably have non-Lorentzian line shapes, with no as- 
sumptions other than the standard TLS model. 

Using the standard TLS model distribution func- 
tions for E and A, and their relationship to the re- 
laxation rate, R, the function n(T, T,) can be ob- 
tained. Briefly, the standard model in its simplest 
form assumes that the distribution functions for the 
microscopic tunneling state parameters are constant, 
at least within some range. This leads to a constant 
low-energy density of states, P(E) = Pfi This con- 

stant energy distribution model dates back to the ef- 
fort to explain the anomalous linear term in the low 
temperature heat capacity [ 35,361. For a given ex- 
perimental waiting time T,, the ( )Ep average in 
eq. (12) becomes 

(sech2(E/21cT)[l-exp(-RTV)])E,~ 

ElMr 

CcPE 5 
dEsech2(E/2kT), 

Emin 

cc (T/2k) tanh(E/2kT) 12x, 

oc T 1 (Em./2k< Tp E-y_/2kB T) a 

(18) 

(18a) 

(18b) 
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n( T, T,) is then proportional to T and, in 3-D, the 
Lorentzian hole width widens as T’. In 2-D glassy 
systems, the non-Lorentzian line shape of eq. ( 17) 
leads to an altered temperature dependence. The 
fwhm of the hole increases as T 1.5, which is signif- 
icantly more rapid than the 3-D linear dependence. 
Choosing a slowly varying energy density of states 
(P(E) CIIEO.~), which has been used to model ob- 
served temperature dependences, leads to T ‘.3 in 3- 
D [ 11. For this case, the 2-D linewidth increases even 
more steeply, as T’.9. Similar temperature depen- 
dences were observed in the surface monolayer study 
of Orrit and coworkers [ 111. Plots for both cases are 
shown in fig. 3 (the same concentration and cou- 
pling strength values used to generate fig. 2 are em- 
ployed). The same consideration of line shape that 

100 

‘Fi 

J 
g lo 
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1 

100 

g 
$ lo 

Z 

1 

2 5 10 

T(K) 

2 5 IO 

T(K) 

Fig. 3. f&hm versus temperature for 2-D linewidths compared to 
3-D linewidths. Solid lines are 2-D linewidths, dashed lines are 
3-D linewidths. Reducing the dimensionality of the system in- 
creases the steepness of the temperature dependence. This iscon- 
&tent with experiment. (a) 3-D, T’; 2-D, T’,j. (b) 3-D, T’.‘; 
2-D T’.9 3 . 

leads to different temperature behavior of the fwhm 
will also alter the time dependence of the width. A 
simple 1 /R distribution of TLS relaxation rates yields 
a logarithmic time dependence for the 3-D n( T, T,) 
[ 16,371. A somewhat faster increase of linewidth 
from spectral diffusion is expected for the 2-D fwhm 
from eq. (17), all relevant parameters, such as the 
TLS tunneling rate distribution, being identical, ex- 
cept for the dimension. 

5. Conclusions 

Modeling a surface as a two-dimensional glass pre- 
dicts non-Lorentzian line shapes for optical hole 
burning of adsorbates. The hole profile is the Fourier 
transform of the stretched exponential correlation 
function, C( T, T,.,, 7) a exp( -cz2j3). The dimension- 
al arguments leading to this result will also apply to 
other experiments properly described by the four- 
point correlation function formalism [ l&l6 J, such 
as fluorescence line narrowing [ 8, lo], and the cal- 
culations are similar. While the model presented is 
for an ideal two-dimensional system, it is still ap- 
propriate when the perturbing TLS modes are con- 
fined primarily to a flat interface containing the op- 
tical probes. When the widths of 2-D line profiles are 
considered, rather than their detailed shapes, in- 
creases in their time and temperature growth rates 
are expected, relative to three-dimensional cases. 
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