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A theory is presented describing the proposed phonon perturbed photon echo experiment. This
experiment is a combination of picosecond time scale stimulated Raman pumping and photon
echo experiments. The theory demonstrates that the phonon perturbed photon echo can
directly measure electronic excitation—phonon coupling matrix elements by observing the
influence of a well defined coherent phonon wave on the photon echo signal. The theory
predicts that the echo pulse area (integrated intensity) is reduced. The size of this change is
related to the strength of the excitation phonon coupling. In addition, a realistic estimate is
made of the size of the effect, and it is shown that the experiment is feasible with available laser

equipment.

I. INTRODUCTION

The interaction of the electronic degrees of freedom of
an isolated impurity with the mechanical degrees of freedom
(i.e., vibrations) of the host environment has been the sub-
ject of many experimental and theoretical studies. The cou-
pling of impurity electronic states and bulk phonon states
(the excitation—phonon coupling, EPC) besides its intrinsic
interest has drawn considerable attention because it is direct-
ly involved in effects such as energy transfer between impuri-
ties in concentrated crystals,' exciton scattering in pure crys-
tals,2®»2®™  photochemistry in proteins,®> and electron
transfer.*

For isolated impurities (no impurity—impurity interac-
tions) the EPC manifests itself in several ways. By produc-
ing a nonzero transition moment for simultaneous electron
and acoustic phonon transitions, EPC leads to the appear-
ance of phonon sidebands in optical absorption and emission
spectra.’® Phonon sideband spectra have been analyzed in
detail for favorable systems to yield the integrated coupling
strength of an optical excitation to the acoustic phonon
branches. In addition to the phonon sidebands, generally a
narrow purely electronic transition [the zero-phonon line
(ZPL)] is observed in absorption and emission spectra. The
ZPL is shifted and broadened by EPC. In principle, the
broadening and shift of this ZPL can be measured directly
from absorption and emission spectra.’® At low tempera-
tures, however, the homogeneous linewidth is very narrow
and inhomogeneous broadening prevents extraction of the
homogeneous linewidth from optical spectra. In this case,
one can use photon echo,%™ hole burning,® and fluorescence
line narrowing'® techniques, which are capable, in some in-
stances, of measuring the homogeneous linewidth in spite of
dominant inhomogeneous broadening.

A number of authors have extensively investigated the
temperature dependence of the broadening and shift of the
ZPL."''* Theoretically, quadratic coupling of a guest mole-
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cule to acoustic phonons in the Debye approximation results
in a low temperature linewidth which is proportional to 77"
Quadratic EPC to optical phonons or guest librations yield
exponential and biexponential activation laws, respective-
ly.'® Linear EPC does not lead to line broadening at any
temperature for harmonic phonons.”

Experimental observation of one particular coupling
mechanism is only possible in rare cases.'* In general, at a
given temperature many phonon modes are thermally popu-
lated and contribute to the broadening of the ZPL. This
hampers an unambiguous interpretation of the experimental
data. The problem is that the guest electronic states are cou-
pled to many phonon branches each having a complex three-
dimensional density of states. In the best circumstances, a
particular bulk mechanical degree of freedom can dominate
the temperature dependent dephasing at low temperature. If
this is the case it may be possible to extract EPC matrix
elements which are averaged over all directions and magni-
tudes of the phonon wave vector. Therefore, information on
the directional anisotropy of the coupling is lost, and it is not
possible to examine the influence of other mechanical de-
grees of freedom on the impurity electronic states.

In this paper we propose a new method for studying the
EPC of isolated impurities in condensed matter systems. The
approach circumvents the nonselective thermal excitation of
phonons and excites a particular phonon by a stimulated
Raman process'® at low temperature where the thermal pop-
ulation of phonons is negligible. The effect of the selective
phonon excitation is then monitored with a photon echo
pulse sequence. The phonon excitation is produced by two
short time coincident laser pulses of different frequencies
crossed in the sample. The phonon of interest is excited by
tuning the difference of the laser frequencies to the phonon
frequency (w, — w, =, ) and obeying symmetry selec-
tion rules and wave vector matching conditions. The phonon
excited in this way is a coherent wave with well-defined
phase and in this sense contrasts with thermally excited
phonons. Shortly after this phonon excitation step the sys-
tem is probed by a regular photon echo sequence. It will be
shown that the effect of EPC on the photon echo can be
observed by detecting the integrated echo intensity.
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The proposed phonon-perturbed photon echo (P°E)
experiment closely parallels a magnetic resonance'®*>19®
experiment in which the external field is modulated. In the
optical experiment (in the limit of high phonon occupation),
the phonon wave modulates the optical transition frequency
of the impurity by EPC, producing frequency sidebands on
the homogeneous absorption line analogous with the NMR
result. However, unlike the NMR case, the size of the sample
in the optical experiment is large compared to the phonon
wavelength, and therefore it is necessary to average over all
phases of the modulation.

The influence of the phonon on the photon echo is dis-
tinctly different from the normal homogeneous dephasing
measured in a conventional photon echo experiment.® In a
conventional echo experiment, random fluctuations in mo-
lecular site energies produced by thermally excited phonons,
which span a wide range of frequencies and are generated
with random phases, destroy the phase relationships among
the electronic coherent superposition states. The decay of
the echo signal as the time between the two echo excitation
pulses is increased, measures the time dependent decay of
the electronic excited state phase. For a two level system, the
echo measures the decay of the off diagonal matrix elements
of the reduced density matrix which describes the electronic
states. The echo decay is the Fourier transform of the homo-
geneous electronic absorption line.

In the P°E experiment, a single phonon wave with well
defined wave vector, frequency and phase is generated. This
does not cause homogeneous dephasing, i.e., it does not re-
sult in an irreversible loss of the phase relationships among
the electronic superposition states. Rather, EPC causes the
transition frequency of each isochromat to oscillate instead
of randomly fluctuate. In the absence of phonon coupling,
the precession frequency of a single molecule’s electronic
superposition state is a constant. Coupling to the single
phonon wave causes this precession frequency to oscillate.
The oscillation of the precession frequencies of all the super-
position states results in a reduction of the area of the photon
echo. In the absence of phonon damping, this reduction is
independent of the pulse separation in the echo pulse se-
quence. This effect is not conventional phonon induced de-
phasing.

The change in the echo signal pulse area is directly relat-
ed to the amplitude of the phonon wave and the excitation—
phonon coupling matrix element. Since the phonon ampli-
tude can be determined by coherent anti-Stokes Raman scat-
tering (CARS)?° or other methods, the EPC matrix element
can be determined. By generating the phonon with various
propagation directions, directional anisotropy in the EPC
can be mapped out. Tuning the frequency difference of the
pulses used for the stimulated Raman process in resonance
with different phonon modes, permits EPC to a variety of
phonons to be independently investigated.

The PE experiment described below should be practi-
cal experimentally. Both coherent Raman and photon echo
techniques have evolved to standard methods in the research
of dynamical processes in the solid state. The P°E experi-
ment is essentially a combination of photon echo and stimu-
lated Raman experiments. Detailed estimates of the size of
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the P°E effect show that readily available laser equipment
can be used to produce sizable signals.

This paper is organized as follows: In Sec. IT we give the
general theoretical model for an optical two-level system
that is coupled to a single phonon mode. The general expres-
sion for the evolution of the density matrix for an echo pulse
sequence is given. In Sec. III we employ a semiclassical de-
scription that treats the phonon as a classical wave. The P°E
observable is calculated in Sec. IV. Relaxation of both the
electronic and phonon system is added phenomenologically.
Itis demonstrated how EPC constants can be extracted from
the P3E observable. Before we conclude (Sec. IV), we give
an order of magnitude estimate of the size of the P°E effect
for an impurity coupled to a typical phonon in a molecular
crystal using optical parameters for common picosecond la-
ser equipment.

Il. THEORETICAL MODEL

Consider an ensemble of atoms or molecules in which
the electronic states of interest can be described as a two-
level system. The molecules are embedded in a host lattice in
very low concentration and at very low temperature. The
molecules are near resonance with a laser field of frequency
Q. The density of impurities is such that impurity—impurity
interactions are negligible. The two-level system (ground
state=|0), excited state=|1) ) interacts with a single coher-
ent phonon mode of a particular wave vector which can be
created via a picosecond stimulated Raman process. At the
temperature of the experiment, thermal populations of this
and other phonon modes are negligible and we will initially
ignore the lifetime and dephasing of the phonon wave. This
system can be described by the following Hamiltonian:

H=H,+H,+Hy_p+H,, (2.1a)
H, = #wa'a, (2.1b)
H, =i, (b'b+1/2), (2.1c)

Hy_p=[#ig;(b"+b) +#ig,(bT + b)*]ala, (2.1d)

H, =pa + a)E—(ztl{exp[i(Qt —kr)] +ccl}.
(2.1e)

#iw is the energy of electronically excited state |1). The zero
of energy is the energy of the ground state, |0). fiw, is the
phonon energy. a'(a) and b t(b) are the creation (annihila-
tion) operators for the electronic excited state and the
phonon, respectively. u is the transition dipole for the elec-
tronic transition and E(¢) is the time dependent magnitude
of the electric field of the laser beam. It is a function that
describes the entire pulse envelope and varies slowly with
respect to the optical frequency Q. The EPC is included up
to the quadratic term with the linear and quadratic coupling
constants g, and g,, respectively. The dynamics of this sys-
tem can be obtained utilizing the Liouville~von Neumann
equation of motion for the density operator p*':

dp i
L = - _[Hp]. 2.2)
X 7 [Hp]

Relaxation is omitted and will be added later phenomeno-

logically. We remove the time dependence of the applied
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21,22

optical field by transforming to the rotating frame*"** using
the unitary transformation

p=WtpW, 2.3)
where

W = exp( — ia‘aQlt) . (2.4)

After invoking the rotating wave approximation® the equa-
tion of motion becomes

%:"': —i[ﬁo+ﬁint +ﬁE—P +I~1p,ﬁ] s (2.5)
where

Hy= (0 — Q)ata=Ag'a,

H, = —ﬂ%&[exmtk-r)a* + exp( — iker)a] ,

ﬁE—P = [gz(b* +b) +gq(bT + b)z]a"a s

H,=0,(bb+1/2). (2:6)

A, is the detuning of the transition frequency @ from the
laser frequency 2. The vector k; is the propagation direction
of the jth pulse.

To simplify the solution of Eq. (2.5) two approxima-
tions are employed. The laser pulses are taken to be rectan-
gular and so short in duration that during a pulse the only
system dynamics arise from coupling to the radiation field,
i.e., EPC, free precession, and relaxation can be ignored dur-
ing the optical pulses. These assumptions imply the follow-
ing conditions: (i) the jth excitation pulse has a constant
amplitude E for a duration ¢,;; (ii) ¢, is much shorter than
1/w,y, and any relaxation time; (iii) Ao : €1; (iv) the Rabi
frequency y = y-E/#iis much larger than the range of possi-
ble detunings spanned by the inhomogeneous electronic ab-
sorption line (y> A,); and (v) ¥ > g, g,. While these condi-
tions are very useful, it should be possible to relax them and
still obtain a solution to Eq. (2.5).%

The solution of Eq. (2.5) after the application of a laser
pulse of duration ¢, is given by

p(t,) = V(1,)p0)V(L,)", (2.7a)

where V(t,) is the system propagator in the presence of the
E field:

V(t,) =exp( — mtt,,)

In the free evolution period (no laser field) the solution 05'

(2.70)

i - H + 5 t
(") cipp(sin A, cos®> A,/2 ¥ e~ ot oMo o= £-p)

I(H +Hg_pr th

Xe e

Xeiilpt' e i(H,+ Hg_ pyt’

In Eq. (2.13) 4,, = (u'E/#)t,,, are the Rabi flip angles
and k, , are the wave vectors of the two laser pulses. Equa-
tion (2.13) has the same appearance as the result for a nor-
mal echo calculation in the limit of zero EPC. The echo
propagates in the 2k, — k, direction. Furthermore, an echo
will occur for any two flip angles and the echo intensity is
maximum for 4, , = 7/2,7 at t' = 7. From these consider-
ations it can be seen that only the second term in Eq. (2.13)

iAgt’ iHyt

— sin?(4,/2)sin(4,/2)e*" e~
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Eq. (2.5) can be written as
py=U@)pOUT (), (2.8a)

where U(¢) is the propagator during the free induction de-
cay:

Ut) =exp| —i(Hy+ Hg_p + H,)t] . (2.8b)

In a photon echo experiment, the system is prepared by a
first laser pulse of duration #,,, it evolves freely for a time 7
before a second pulse of duration ¢,, is applied. The second
pulse is followed by another free precession period. For this
excitation sequence the evolution of the density matrix fol-
lowing the second pulse is given by

plz o+ T+ +1t')

= U(t" YVt ) UMD V(2,)p(OV " (1,)

XU (VT () UT ("), 2.9)
where? 'isthe time after the second pulseand ¢ ' = Qistheend
of the second pulse. The phonon is assumed to have been
excited on a time scale comparable to or less than #,,

The experimental observable is related to the macro-
scopic polarization of the system, which can be calculated
directly from Eq. (2.9):

P(t) = (Tr[a@@* +a) - p(O]), (2.10)
where (- - ) denotes an average over the inhomogeneous ex-
citation energy distribution of the optical system and the
evaluation of the expectation values of phonon operators.

This polarization acts as a source term in Maxwell’s
wave equations. P(#) can be written as

P(t) =p(t)exp] —i(Qt)] +c.c., (2.11)

where p(t) is the polarization in the rotating frame. 5(¢) can
be related directly to the density matrix?! in the rotating
frame 5:

P =pp2(0)) . (2.12)

To calculate the polarization after the second excitation
pulse at time ¢’ it is necessary to evaluate Eq. (2.9) using the
appropriate propagators whose forms are determined by
Egs. (2.5) and (2.6). The matrix elements of V(z,)
(j=1,2) can be determined by taking the Laplace trans-
form of Eq. (2.7b), inverting the resulting matrix, and re-
turning to the time domain by taking the inverse Laplace
transform element by element. The matrix elements of U(¢)
are obtained utilizing Eq. (2.8b). Substituting these results
into Egs. (2.9) and (2.12) yields the polarization at time ¢ ":

. . (ks — K )T . — A2 — — iR,
— sin? 4,/2 sin 4, "%~ k0T g~ iBalt’ = 1) o = T

—i(H,+ H, I _ —i(H,+ H,
e i(H,+ Hg_ p) +COS (A /2)s1nA PLE 9 1Ao(r+t)e:er i(H,+ Hg _p)7

— i(H,+ Hg _ p)t')

e’ e (2.13)

i
describes the echo.

Rewriting Eq. (2.13) keeping only the term which gives
rise to the echo,

i(2k; — ky)or

p(t>7)«ip{ —sin? 4,/2sin 4, e

X @ — ot —27) e—iflpr ei(I?!,,+I?E_P)r

:Hp(t—r) e—I(H +HE ,)(1—r)>

Xe (2.14)
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In Eq. (2.14), ¢ = 0 coincides with the first pulse in the echo
sequence and the simultaneous generation of the phonon. To
simplify the notation, the very short pulse durations z,, and
t,, have been included in 27. The signal for an optically thin
sample can then be calculated:

I(t) < |p(0)]?. (2.15)

lll. SEMICLASSICAL ANALYSIS

To analyze the polarization which applies to the P°E
experiment it is sufficient and mathematically less complex
to treat the phonon, generated by stimulated Raman pump-
ing, as a coherent ‘‘quasiclassical” wave.2* This is valid since
there is a high degree of coherent excitation of a single
phonon mode. The definition of the phonon operators 4 *
and b in Eqgs. (2.14) and (2.15) are**

b 1 172
=(——) mo,,0+im,
(2mNﬁwph) (Mm@ + i)

172
) (mow, Q — i), (3.1)

t— ( 1
2mN#w
where Q and 7 are the displacement and momentum opera-
tors of the phonon mode, respectively, and m is the effective
mass. Stimulated Raman pumping excites a phonon with
wave vector k=0. For the kK = 0 mode of a phonon with

frequency w,,, the displacement operator Q can be written
6(d)

as
Q= (—h——)m(b+b*). (3.2a)
2mNa,,
In the classical limit the phonon amplitude Q is
Q = g, cos(wt + @)
or
Q =qosin(wt +¢), (3.2b)

depending on the choice of phase factor ¢. g, is the maximum
of the phonon displacement. (The phase factor ¢ is discussed
further below. ) In this approximation a semiclassical opera-
tor H &= js constructed:

Ha™ = asin(ot + @) + 28sin* (0t + ¢)

=A(1) (3.3)
with
2mo,, N\
a=g4q)\——— (3.4)
fi
and
mw_, N
ﬁ=gqq02( ;“ ) (3.5)

H_ _ , is now time dependent, therefore,
U = Tlexp[ — if de"(Hy+ H3=)t") +FIP)” ,
0
(3.6)

where T(exp[---]) denotes the time ordered exponential.
Since the Hamiltonian in question commutes with itself at

different times, in our approximation
Ut) = e B {gisbam BEmaD} o= ifyr (3.7)

The factors of H » can be eliminated from Eq. (2.14) and the
polarization in this approximation becomes

P(t>1) z,[t( —sin® A,/2 sin A, ek~ kDT g = Hholt —20)

Xexp[ —if dt” A(t") +ifrdt" A(t”)]) .
T 0
(3.8)

This result is consistent with the results from NMR studies
in modulated fields.!® Physically, the phonon acts as a mean
field modulation of the environment of the impurity, i.e., the
time dependent modulation of the spatial positions of the
host atoms or molecules act similarly to the modulated H,
field in the NMR case. This oscillation of the impurity local
environment will in turn modulate the impurity resonance
frequency detuning A,. In the limit that the number of
phonon excitations approaches unity, i.e., (Q ) is small, the
expectation value of Q has significant “quantum correc-
tions” (since the uncertainty in (Q ) becomes large), which
are negligible at high excitation densities. These quantum
corrections at low excitation density would require an alter-
nate approach to evaluate the exponential in Eq. (2.14).
Consider the time dependent exponential in Eq. (3.8):

exp[---] — e—-i(t—Zr)(A(,+ﬁ) e—i(la/w,,h)cos(w,,.,f+¢)

ei(a/mph) [cos(wpnt + @) + cos ¢]

X

— (B /wpy)sin 2{wpp7 + @)

Xe

ei(B/2wph) [sin 2(wyut + ¢) + sin 2¢]

X (3.9)

Physically, Eq. (3.9) demonstrates that EPC modulates the
polarization. This will give rise to frequency sidebands sepa-
rated by the modulation frequency w,, as in the magnetic
resonance case.'® The phase ¢ is determined by the spatial
position of the molecule in the sample in relation to the loca-
tions of the maximum and minimum displacements associat-
ed with the phonon wave at ¢ = 0, the time the phonon wave
is generated by the stimulated Raman pumping.

To calculate observables (Sec. IV), the averages over
the inhomogeneous line and the phase, indicated by the
brackets in Eq. (2.8), must be performed. The time depen-
dent exponential term [Eq. (3.9)] can be put into a more
convenient form using the following expansions in terms of
Bessel functions:

zsin @

e

=L +2 3 (= DMy, (@)sin[ 2k + 18]
k=0

+2 3 (= DMy (2)cos(2k0) (3.10a)
k=1

and

0= I(2) +2 3 I, (2)cos(k6) , (3.106)

k=1
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where the I, are modified Bessel functions. The modified
Bessel functions can be replaced with spherical Bessel func-
tions J, (z) using the relation

]

3411

I,(z) = e (z™?) . (3.10c)

Using Eq. (3.10) the echo polarization becomes

a)ph

x[Jo(w‘;)+--

><J2k+1( ﬁ
,

ph

X Jox (——ﬁ— e""’/”k)cos[Zk(a)phT+ ¢)]] [JO(

@pp
After simplification:

p>7) o:ifz( — sin® 4,/2 sin 4, '@~k

TG,

e“”’z’k)sin[(2k+ D(@pt+¢)] +2 i (—1*
k=1

wph k=1

)+2 5 (- *
k=0

xe“’—m“‘"*ﬁ’[.fg( a )J%( B )Jo(
O @y

Note that the static detuning frequency A, is shifted by S,
the magnitude of the quadratic coupling term. The linear
coupling & does not produce a shift in the time independent
detuning. This difference in the role of # and « is analogous
to the difference between the effects of quadratic and linear
EPC on the temperature dependent homogeneous dephas-
ing of the zero phonon line.!'"* Quadratic EPC results in
homogeneous dephasing while linear coupling does not.
However, as will be shown below, in a P>E experiment, both
linear and quadratic EPC will affect the signal. Another fea-
ture of Eq. (3.11) is that only the first term in the Bessel
function series is independent of the phase ¢. All other terms
contain products of infinite sums of Bessel functions which
are multiplied by products of sin and/or cos functions of ¢.
The importance of this feature will be seen in Sec. IV.

IV. CALCULATION OF OBSERVABLES

To calculate the P°E observables, it is necessary to per-
form the ensemble average indicated by the outer brackets in
Eq. (3.11). In a conventional photon echo experiment, this
requires averaging over the inhomogeneous distribution of
transition frequencies. In a photon echo experiment examin-
ing the effect of intermolecular interactions among the guest
molecules, e.g., it is necessary to average over the range of
intermolecular interactions as well as the inhomogeneous
distribution of transition energies.”' In the P°E experiment,
it is necessary to average over phase ¢ and the inhomogen-
eous spectral line.

Because a macroscopic region of the sample is illuminat-
ed which is much larger than the phonon wavelength, any
subensemble of molecules possessing the same transition fre-
quency (same A,) will contain molecules experiencing all
possible initial phases ¢. This is assured since the molecules
in question will be randomly distributed throughout the illu-
minated sample volume. Examining Eq. (3.11), it is seen
that there is one term independent of ¢ [which is shown in

o)+ )+ ) G110
Z)Jo(zi’fh)+---]>. (3.11b)

Eq. (3.11b)] and all other terms are products of higher or-
der Bessel functions multiplied by products of infinite sums
of trigonometric functions. Expansion of these sums yield
terms of the form

Han) (603 G0 (5)

Xcosli(wr + ¢) Jcos[ j(oT + ¢) ]

and
J

451 ()2 () ()
Oijzkl (wph j o 2% o 241

@ )
ph

Xsin[ (2] + 1) (@7 + ¢) Jcos[2k{wT + 4)], (4.1a)

for example, where J, - - J, represent products of zeroth
order Bessel functions. There are more than 200 such terms
containing up to six orders of sin, cos, and/or Bessel func-
tions. In general, upon integration from O to 27, all trigono-
metric products with dissimilar arguments vanish (the vast
majority of the terms in the expansion), only terms with
even powers of pure sin or pure cos will leave residual contri-
butions to the polarization. The largest such term after inte-
gration is of the form

“(am)
@y, @y

We shall ignore this term as well as others of this type since at
weak to moderate couplings J2_, is very small (107>-10°
or smaller). (Note: J,is always <1.) In the strong coupling
regime J,, approaches zero while the J2_, terms are still
£ 1. Therefore, in all experimental conditions ¢ dependent
contributions to the polarization are negligible. With these
considerations, the expression for the polarization reduces
to

(4.1b)

) 3 (L

k=1
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pt>7) i,u(sin2 A,/2sin 4, "~k

Xei(z—zr>(Au+ﬂ)Jg( «a )Jo( 2a )

Wpn WDppy

<7 ()2 (G0))

where the outer brackets now indicate an average over the
inhomogeneous line.

To explicitly perform the average over the inhomogen-
eous line, we assume a Gaussian distribution of optical tran-
sition frequencies:

(4.2)

*
2

G(A,) = ‘1; exp( — AT, 4.3)

T

where T¥ ~ ! characterizes the width of inhomogeneous dis-
tribution. The average over the inhomogeneous line has the
form

bt ()25 () 2]
Dy, @py Za)ph Dpy

Xf G(Ao) ei(t—2f)(Ao+ﬁ) dAo .

(4.4)

Upon integration and adding a phenomenological relaxation
term for the optical two-level systems, exp( — ¢ /7,) where
(7T,) ! is the homogeneous optical linewidth, we arrive at
an expression for the polarization:

pt>1) x@t— 2B o= /Ty g~ (t—27)%/4T¥?

<3 (50) % ()
wph a)ph

(2)4(2)

Using Eq. (2.15) the P?E signal intensity is obtained,

2
I(t>71) =4 exp(—-;_t) exp(— (tz—Ti:) )JS (ma )
2 3 oh

it () ()
Dy 20,, Opn,

where the constant 4 contains experimental parameters
such as the excitation pulse areas, the size of the illuminated
volume, and the sample concentration.

In the limit where EPC is negligible (a = =0) the
echo pulse shape is Gaussian as anticipated for a Gaussian
absorption line shape [Eq. (4.3)]. Its peak is at ¢ = 27 and
the temporal width is determined by 7%, the inverse inho-
mogeneous linewidth. This behavior is identical to the stan-
dard echo result. When the excitation—phonon coupling is
not negligible, the echo amplitude can change considerably.
Equation (4.6) is plotted in Fig. 1. The general feature is the
decreasing magnitude of the echo pulse. In Fig. 1 the results
are for linear coupling only. Curve 1 has @ = £ =0. This is
the unperturbed echo envelope. In curves 2, 3, and 4, « in-
creases with = 0. « and B are defined in Egs. (3.4) and
(3.5), respectively. The results for quadratic coupling and
various combinations of linear and quadratic coupling are
similar. Since the effects of linear and quadratic coupling on

(4.5)

(4.6)

o1 l
1
Ip3e N ,
-
a"
-4 -2 o] 2 4

(1‘-2‘1‘)/_'_.
2

FIG. 1. Phonon perturbed photon echo pulse shapes calculated using Eq.
(4.6) for various linear coupling parameters a/w,,. (1) a/w,, =0; (2)
a/o,, =0.30; (3) a/w,, =047; (4) a/o,, =0.65.

the echo depend differently on the maximum amplitude of
the phonon wave [g, in Eqs. (3.4) and (3.5) ], the coupling
mechanism can be distinguished.

The coherent phonon wave does not lead to homogen-
eous dephasing of the optical two-level systems in the con-
ventional sense, in striking contrast to the thermally excited
phonon case. The reduction results from lack of correlation
of the individual two-level oscillators. In our model for inho-
mogeneous broadening there is no correlation between the
spatial position of the oscillators and its resonance frequen-
cy. Therefore, oscillators at frequency w experience all
phases of the phonon field. This “averaging” causes the am-
plitude reduction not homogeneous dephasing processes. In
the absence of conventional 7, processes, increasing the sep-
aration between the pulses in the echo sequence does not
result in a further decrease in the echo signal. This is not
surprising since the randomness of a thermal phonon bath is
absent.

In most photon echo experiments, the echo pulse shape
is not detected. The common detection techniques integrate
the echo intensity over time. Therefore, we calculate the to-
tal echo intensity for a pulse separation 7 from Eq. (4.6):

Ly (1) = r dtI(z) . (4.7)

Figure 2 shows the echo intensity as a function of the
parameter a@/w,, given by Eq. (4.7) for a fixed pulse separa-
tion 7. As a/w,, is increased the echo pulse intensity de-
creases. The coupling constant can be determined experi-
mentally by measuring the reduction of the echo intensity
upon excitation of the coherent phonon wave.

Thus far the perturbing phonon mode has been treated
as an ideal nondecaying, nondephasing wave. In reality the
phonon has a finite linewidth caused by lifetime and pure
dephasing processes. At very low temperatures, the
linewidths of many phonons in molecular crystals have been
shown to arise because of population relaxation.?® This can
be modeled phenomenologically by letting the maximum
phonon amplitude decay as
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FIG. 2. Phonon-perturbed photon echo energy (integrated intensity) nor-
malized to the unperturbed echo energy as a function of the linear excita-
tion—phonon coupling parameter @/@,y, . Ipg and Jpg are the unperturbed
and perturbed echo intensities, respectively.

— /Ty,
’

q(t) =¢qpe (4.8)

where T, is the phonon lifetime and g, is the maximum
phonon displacement. Substituting Eq. (4.8) into Eq. (3.4),
Eq. (4.7) can be plotted as a function of the laser pulse sepa-
ration 7. It should be noted that this substitution is valid in
the limit 1/7,, €@, i.e., the exponential in Eq. (4.8) is
slowly varying relative to the phonon frequency. (This is the
regime of experimental interest.) A general expression can
be derived by substituting Eq. (4.8) into our original time
dependent Hamiltonian and performing the necessary inte-
gration. For our purpose the first procedure is sufficient. The
results are depicted in Fig. 3 for various coupling constants.
The unperturbed photon echo decays at a rate determined by
T,. The phonon lifetime is taken as T, = T,/5. a/w,, takes
on values from 0 to 1. As the phonon decays its influence on
the echo decreases. This results in an increasing echo signal

a
8 1 b
¢
6
Lp3(27) N
e
2

0 2 4 £ 8
2T

T2

FIG. 3. Phonon perturbed photon echo pulse energy as a function of the
pulse separation 7 in units of the dephasing time T,. Phonon lifetime
T =Ty/5. (a) a/o, =0, regular decay; (b) a/w,, =0.20; (c)
a/wy, =0.35; (d) a/w,, = 0.5; (¢) @/w,, = 0.6. Asthe phonon decaysits
influence on the echo decreases. This results in an interesting echo signal at
short time if the phonon perturbation is initially large. Insert: phonon decay
obtained from analysis of the difference between curve (a) and any of the
perturbed decays using the phonon relaxation model considered in the text.

at short time if the phonon perturbation is initially large.
From detailed analysis of the difference between the unper-
turbed echo decay and the decay with the phonon present,
the lifetime of the phonon can be extracted (see inset Fig. 3).
This model is appropriate if the phonon population relaxa-
tion is either into the thermal bath with no significant tem-
perature increase or if the phonon decays into a small num-
ber of modes which have negligible coupling to the optical
excitations. One could imagine that there are favorable re-
laxation paths to phonons with different decay times and
nonnegligible EPC constants. This would be manifested in
the time dependence of the P°E experiment, giving the possi-
bility of tracking photon decay paths with this method.

V. AN ESTIMATE OF THE SIZE OF THE P3E EFFECT

In the remainder of this article a concrete experiment is
considered. An estimate is made of the size of the P°E effect
for a typical phonon in a mixed molecular crystal. It is dem-
onstrated that the effect is observable with available laser
technology. The method for extracting EPC parameters
from the experimental data is also outlined. In order to ob-
serve the P°E, we propose the experiment schematically de-
picted in Fig. 4. One dye laser is tuned to the transition fre-
quency @, of an ensemble of impurity molecules in a molecu-
lar crystal. Two pulses from this laser, separated by a time 7,
produce the photon echo at 27. The phonon of interest is
excited in a stimulated Raman process by bringing in a third
laser pulse at frequency @, (generated by a second dye la-

a)
ECHO
1 L -
& — T — ‘,’l \\_‘
t—
[ 1CcARs
L
b)
E

FIG. 4. (a) Pulse sequence for the phonon-perturbed photon echo experi-
ment. (b) Possible phase-matching geometry for the P°E experiment.
1=k,,2=k, I'=K, ,AS =k, and E = k.
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ser). The w, pulse is time coincident with ,. The difference
frequency (@, — @,) equals the phonon frequency of inter-
est (@, ). The degree of phonon excitation can be deter-
mined by detecting the anti-Stokes radiation scattered by the
second w, pulse. Both the echo and CARS signal can be
detected separately and simultaneously by utilizing the wave
vector matching conditions for each, i.e., k., = 2k] — k;
k,s = (k, + k) — k,. In addition, the CARS signal can be
frequency filtered since @, 5 = (20, — @,).

The reduction of the echo pulse energy or the change of
the echo pulse shape due to EPC can now be detected by
either blocking the pulse at @,, moving it before ¢ = 0 where
there is no overlap between pulses 1 and 2 in time (see Fig.
4), or by tuning @, off the phonon resonance. In all cases the
phonon would not be excited and the echo signal should
return to its normal level.

In order to determine the magnitude of the P°E effect for
a given system, we first need to calculate the phonon ampli-
tude excited by the two pulses @, and w,. To this end we start
with the equation of motion for the driven harmonic oscilla-
tor?:

2
.a_Q._*_I".‘?g_’_m;hQ:%F(t), (5.1)

at? ot
where Q is the normal coordinate, M is the reduced mass of
the oscillator, and T is the damping constant, which for neg-
ligible pure dephasing is related to the phonon lifetime [Eq.
(4.11)]. The driving force F(t) is given by the laser fields
acting on the vibrating molecules:

F(t) =—1—(—?£-) E%(1) . (5.2)
2.\3Q/y

(da/3Q) ; is the polarizability tensor and E Z(¢) is the time

averaged applied electric field, i.e., the two time-coincident

laser pulses of different frequencies. The quantity (da/dQ)

can be determined from the Raman polarizability using the

relation

4 = ( # )1/2( aa)
j =\ -
2a)ph aQ i

where the indices i, j represent the polarization indices of
X5 a can be measured by a spectral analysis of the Ra-
man profile. (This procedure is presented in detail in Ref.
20.)

The fields responsible for the generation of the phonon
wave can be written as

E(t) = E | (t)cos(w,f + k1)
+ E,(t)cos(w,t + ky°r) . (5.4)

Equation (5.1) with Egs. (5.2) and (5.4) are solved in Ap-
pendix A by assuming identical Gaussian pulse shapes,
E;(t) (i=1,2), perfectly overlapped in time. There, the
Green’s function method is used to obtain an analytical
expression for g,, the phonon amplitude in the slowly vary-
ing envelope approximation and for times 7, £¢<T ™ !
where ¢, is the duration of the Gaussian laser pulses:

w=(5) (aomm) &) G,

where J is the total pulse energy of each laser (w, and w,)

(5.3)

(5.5)
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and @ is the 1/e radius of the E field. To give an order of
magnitude estimate, we chose the 1385 cm ™! ( a,, ) mode of
naphthalene for which the polarizability along the b crystal-
line axes has been determined [(da/3Q),, = 2.28 X105
cm?].?° Assuming pulse energies of 750 J and a beam radi-
us of 50 pm, we get a phonon displacement of
go = 2.59X 107 '° cm, using the naphthalene reduced mo-
lecular mass. For a coherently excited phonon, the number
(Ng) of excited quanta is related to the expectation value of
the displacement by*’
2mw,, N

(Ng) =—T—¢I§ , (5.6)

where N and g, are as defined previously.
Redefining Eqs. (3.4) and (3.5) by substituting Eq.
(5.6), we have

172
a'_—gl((NE))‘/z:a)ph (E’%) ,

N,

ﬂ=%(N5> =, <4;> w,
where we have introduced coupling parameters Syz and w
so that numerical estimates of standard coupling constants
could be utilized. These relationships are described in Ap-
pendix B.

One common way of expressing the linear EPC strength
of color centers in alkali-halide crystals is the Huang—Rhys
constant Sy ,® which is a measure of the displacement of
the potential energy surface minimum for a vibration upon
electronic excitation. Sy gives the average number of phon-
ons created in the optical emission or absorption process.
For example, for S,y >5 the zero-phonon line is not ob-
served and the absorption profile is quasicontinuous (strong
coupling). For Sy < 1 there is a dominant zero-phonon line
and a pronounced phonon sideband characteristic of the
moderate coupling range. Generally for mixed crystals at
low concentrations Syr ranges from 0 to 0.1. Sy €1 for
molecules in which most of the intensity is in the vibration-
less (0,0) band. Taking Sig = 0.01 as our estimate for the
calculation and using the conversion from g, into Sz [Eq.
(BS) in Appendix B], we obtain

( a )=o.3o,
wph

where a typical inhomogeneous linewidth of 1 cm™' has
been used. According to Fig. 2, this leads to an echo energy
reduction of ~ 30%, which would be readily detectable with
current picosecond photon echo techniques.

A similar estimate can be made for quadratic EPC. Us-
ing the coupling parameter w introduced by Skinner ef al."?
(see Appendix B), which for organic crystals is on the order
of Jw| =0.5, we arrive at

( B ) —1x107*,
@y
which corresponds to a reduction of the echo pulse energy of

less than 1%.
In the example just described, the linear coupling would
be readily observable, but the quadratic coupling would be
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very difficult to observe. However, the laser pulse energies
(750 uJ) are very reasonable. Picosecond dye lasers can
readily produce pulses in the mJ range. In the quadratic cou-
pling case, an increase in laser pulse energy, and therefore an
increase in the phonon amplitude will greatly increase the
size of the P3E effect. It should be noted that we chose rather
modest values for the linear and quadratic coupling param-
eters. An increase in these parameters would greatly en-
hance the observed change in the photon echo.

V1. CONCLUDING REMARKS

We have shown that the excitation—phonon interaction
of a coherent phonon with an optical two-level system leads
to interesting new features in photon echo calculations that
are strikingly different from the effects of thermally excited
(incoherent) phonons. This P°E effect, in principle, can re-
veal the EPC constants (linear and quadratic) for a particu-
lar phonon chosen by the phonon excitation process. In this
way coupling constants of different phonon modes with the
same electronic system can be investigated individually, ren-
dering information not accessible by recent temperature de-
pendent optical dephasing experiments. By examining the
P3E as a function of the direction of propagation of the
phonon wave, the anisotropy in excitation-phonon coupling
can be mapped out.

This theoretical study represents a departure from the
traditional approach to the examination of the interaction of
bulk mechanical degrees of freedom with electronic states of
a molecule or atom. By avoiding thermal population of the
system’s phonons, a more selective probing of interactions
can be realized.
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APPENDIX A

It has been shown in Ref. 27 that the equation of motion
for a two-level system with the polarizability (da/dgq); is
equivalent to the classical driven harmonic oscillator

a’g aQ

at? +r ot
Q is the displacement of the normal coordinate, I' is the
phenomenological damping constant, M is the reduced mass
of the oscillator, and F(¢) the driving force. The force on the
polarizable material is given by

1 [ da
F(t) = — & o,
® 2 (o"Q),y E'®

1
+ @k, Q=RZF(’)' (A1)

(A2)

where (da/3Q) ; is the polarizability along axes / and j and
E?2(t) is the time averaged E field. The bar indicates averag-
ing over a few optical periods. Consider the exciting field

E(t) = E,(t)cos(w,t + k,r)

+ E,(t)cos{w,t + k1), (A3a)
EZ(t) = (1/4)E, (1) E,(t)
xXexpl — (o, —w,)t], (A3b)

where we have eliminated the rapidly oscillating high fre-
quency components of the field. A standard method for con-
structing the solution to an inhomogeneous linear differen-
tial equation is to represent the solution as an integral over a
Green’s function.?® The Green’s function g(z,t,) associated
with Eq. (A1) satisfies the differential equation

3%g(1,ty) dg(t,ty)
r
a? + ot

+ ok, 8(1t) =6(t—1,) .

(A4)

Equation (A4) can be solved using standard methods*®
yielding an expression for g(2,2,):

w%, —T%/4)12 2 °

23172
X sin[(a)f,h ——{;—) (t— to)] .

Using Eq. (AS) Q(#) is readily obtained using the relation

o(r) =j Ft,)g(t,ty) dty .

g(t,t()) kS

(A3)

(A6)

For identical time coincident Gaussian laser pulses,
[E3(E} ()] =E} exp( — 2t%/t2),
where
ElI =E,()E ().
Upon evaluation of Eq. (A6) using Eq. (A8),

Y (R (ée_) E21
00 = 5m (z(w;h -1"2/4)) 3/ ° 7"

2\2 s 2 2
o - £ el

2 _T1?%/4 2\172
b T Gl - Y
4 4

j r/2 2\12
()=

with wp = @, — w,. For the situation of interest 7, <7 we
obtain for the resonant case (wg = @, ):

(7 172 1 é{’_ 5
Q0 = ( 2) (Swphm)(aQ)g Eaot,

Xexp[ - 225-} sin(@,, 1) ,

(AT7a)

(A7b)

(A8)

(A9)

where we assume slow damping of the phonon (i.e., negligi-
ble damping). Using the relation

1/4 J’ 172
()
€ 27t

(A10)
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for two pulses of equal intensity and duration:

172 J
sir-() %),
o7 T \ey/ \ 273>

where Jis the pulse energy, @ is the 1 /e radius of the E fields,
and u, and €, are the vacuum permeability and permitivity,
respectively. The amplitude of Q(¢) is

(i) (o) )35,

Mechanical quantities are commonly measured in cgs units,
therefore,

w=(3) &G,

APPENDIX B: NOTATIONS FOR EXCITATION-PHONON
COUPLING CONSTANTS

In Ref. 13, the Hamiltonian for EPC is written as

(All)

(A12)

(A13)

Hy_p=[A4¢+1/2w4*1d'a, (B1)
where for a single phonon mode,
ﬁa)ph )1/2
= bt +b). B2
¢ ( IN (b"+b) (B2)

A is the linear coupling constant in units of (energy)'/?, wis
the dimensionless quadratic coupling constant and NV is the
number of oscillators. Comparing Egs. (B1) and (2.1) we
have

(“”"‘ )VZA (B3a)
= , a
8= vz

Dph
8= ( aN ) v (B30)

A common way of expressing linear EPC is the Huang—Rhys
constant®® Sy , which gives the average number of phonons
emitted after absorption or emission of a photon and thusis a
measure of the displacement of the energy surface minimum
of the particular vibration in the electronic excited state.
The Hamiltonian for linear EPC in this case is expressed

as
SHR 172

HE—P= [(T) ﬁa’ph(bT"'b)]aTa’ (B4)
and we can complete Eq. (B3a):

g =(“’P“)I/ZA=N—‘% SHR - (B5)

! IN% ph® HR
With Eqs. (B5) and (B3) we can calculate our parameters
and 3 by
<N ) 172

a =0y (SHR ; ) (B6)

and
(Ng)
B=opm—w, (B7)

where (N ) is the number of excited phonons.
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