Coherent one-dimensional exciton transport and impurity

scattering
D. D. Dlott, M. D. Fayer,® and R. D. Wieting

Department of Chemistry, Stanford University, Stanford, California 94305

A model is developed which describes the transport of coherent one-dimensional excitons in molecular
crystals containing a low concentration impurity having excited state energy above that of the host
crystal’s exciton band. An expression is obtained for the exciton mean-square displacement and the
exciton flux. The model is then employed to determine the effect of impurity scattering on an
experimental observable, the time dependence of trap emission after impulse optical excitation of a one-
dimensional exciton system. The resulting formula is used to calculate, without adjustable parameters, the time-
dependent intensity of phosphorescent trap emission from crystals of 1,2,4,5-tetrachlorobenzene (TCB)
containing the naturally occurring scattering impurity, hd-TCB, at 1.25°K. The results are compared to
experiment and found to be in good agreement. Although the question remains open, the results are
consistent with a coherent mode of triplet exciton transport in TCB and indicate the importance of
naturally occurring isotopic impurity scattering in this type of system.

I. INTRODUCTION

In order to understand the nature of energy transport
via Frenkel excitons® in real molecular solids it is not
sufficient to consider an idealized perfect lattice, since
unavoidable impurities in experimental samples can
have a dramatic effect on exciton transport, Although
impurity effects have been the subject of extensive re-
search, most attention has been focused on two areas:
(1) the low concentration limit of impurities which have
excited state energies below the exciton band of the
host—these give rise to “trap” states which can localize
an excitation and thereby inhibit transport?; (2} the high
concentration limit of impurities having excited state
energies above the host exciton band in connection with
the percolation problem.? A third area which has not
received as much attention is the case of high energy
impurites in low concentrations. These impurities can
act as exciton scattering sites hampering long range
exciton migration. The low concentration impurity scat-
tering problem is of particular importance since a real
molecular crystal always contains naturally occurring
isotopic impurities, no matter how chemically pure the
sample. For example, a “pure” naphthalene crystal
contains more than 0.1% monodeuteronaphthalene,

Hochstrasser pointed out in work on 1,4-dibromo-
naphthalene* (DBN) that inhibition of exciton migration
by impurity scattering will be particularly effective in
a crystal which has finite interactions responsible for
migration primarily along one crystallographic axis.*?
In two- or three-dimensional systems randomly dis-
tributed impurities must be present in very large frac-
tions to completely “cage” an exciton, ®

In this paper a model for the effects of low concentra-
tion scattering impurities on coherent exciton migration
in one-dimensional systems is presented. The mean-
square displacement of an ensemble of excitons is cal-
culated in terms of parameters which may be experi-
mentally determined. This is in turn used to calculate
the exciton flux and comparison is made to results ob-
tained by Greer’ for a related problem. The relation-

)Alfred P. Sloan Fellow.
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ship between impurity scattering and exciton localiza-
tion by low energy impurities (trapping) is then dis-
cussed. Rate equations are solved which permit the cal-
culation of the time-dependent intensity of trap emission
in a crystal with randomly distributed scattering sites
and traps.

In a crystal having impurities with excited state en-
ergies significantly above the host exciton band an ex-
citon—impurity scattering event in one dimension will
result principally in reflection. Thus, an exciton can
become “caged” between two impurity scatterers, inhibit-
ing long range migration. On first inspection of this
problem it would seem that the ability of such barriers
to impede exciton transport would depend solely on the
ratio of the barrier height S to the intermolecular inter-
action responsible for exciton transport 8. However,
it is also necessary to consider the distribution of ex-
citon population among the band states determined by
the ratio of 28 to the mean thermal energy KT, since
the mean-square displacement is peaked sharply around
the center of the band. For 23/KT > 1 the center of the
band is not thermally populated and therefore exciton
transport is severely reduced. On the other hand, for
28/KT=1 the band center will be populated and signifi-
cant transport may take place. This type of considera-
tion can produce a temperature dependence in the mean-
square displacement and in experimental observables
which depend on it, such as the time-dependent intensity
of trap emission following impulse optical excitation of
the host exciton band. As sample temperatures are in-
creased exciton—phonon scattering severely reduces the
exciton coherence length.® Thus, for the system to re-
main in the coherent limit and still have ZB/KT: 1, the
exciton bandwidth must be reasonably small. Tempera-
ture-dependent phenomena of this type will most likely
be encountered in triplet exciton systems which have
relatively small bandwidths, ®

In a crystal containing trap sites the intensity of trap
emission is in part determined by the ability of the ex-
citon to migrate to the vicinity of the trap, which in turn
is strongly influenced by the extent of impurity scatter-
ing and the dimensionality of the exciton transport. The
triplet exciton bands of 1, 2, 4, 5-tetrachlorobenzene
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(TCB), known to exhibit many of the properties charac-
teristic of one-dimensional systems,2(®® jllustrate this
situation. Experimental data presented below on the
time dependence of TCB x-trap emission will show that
impurity scattering from the naturally occurring iso-
topic impurity hd-TCB is a major factor determining
the rate of exciton trapping if this system is taken to be
in the one-dimensional coherent limit.

Il IMPURITY SCATTERING AND THE MEAN-SQUARE
DISPLACEMENT

Consider a molecular crystal having an appreciable
excited state intermolecular interaction g, only along
one crystallographic axis, This situation will give rise
to “one~dimensional” exciton bands with exciton trans-
port occurring along this axis. If the crystal contains
a low concentration impurity with a well-defined excited
state energy level above the exciton-band energy, then
exciton transport can be described as a combination of
perfect crystal transport and exciton impurity scattering
events. A well-defined impurity level will exist if S,
the difference in energy between the impurity level and
the band center, is large relative to the strength of the
intermolecular interaction,?® i.e., S/g>1. (If S/p<1,
the impurity energy level will be amalgamated into the
band . 19)

In the low temperature coherent limit exciton trans-
port is wavelike,!®»8® and with the condition that S/
>1 an exciton—impurity scattering event in one dimen-
sion will result primarily in reflection with a small
amplitude for transmission.

In a crystal having a mean impurity scattering fre-
quency large relative to the exciton—phonon scattering
frequency the migration of a coherent exciton wave pack-
et centered about a state | k) will describe a random walk
when viewed on a sufficiently long time scale in the fol-
lowing manner: Since the probability of reflection is
large, an exciton wave packet can become caged between
two impurities until it finally escapes from one end of
the cage. After escaping from between impurities 1 and
2 on the 1 side, for example, it will be caught between
impurities 0 and 1. Whenitescapes from between 0 and
1 the exciton wave packet again may leave from either
end. Since the penetration probability is small, many
reflections from the impurities will occur before the
exciton wave packet finally tunnels out from one end of
the cage. This assures equal probability of leaving
a particular cage in either direction. When viewed on
the appropriate time scale the exciton appears to step
in random directions from one cage to another. The
step size is determined by the cage size, and the step
frequency is determined by the time required to tunnel
out of a particular cage.

The result is that an ensemble of exciton wave pack-
ets |k) execute a random walk. The position distribu-
tion of wave packets is a Gaussian function character-
ized by a standard deviation equal to the time-dependent
mean-square displacement determined by the step size
I and the step frequency n,(k).

If the scattering impurities have a periodic distribu-
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tion with I — 1 host molecules between them, after a
time / the mean-squaredisplacement from the starting
position is

DE (R)=n k)12 a® , (1)

The distance d traveled in a single step is given by
d=al, where a is the lattice constant. For a distribu-
tion of cage sizes P(I) the average mean-square dis-
placement is

(D3R = D P ny(k) H2a? 2)
1=0

n,(k), the number of steps of I molecules per unit time,
is determined by the time required to escape from the

cage formed by impurities separated by I — 1 host mole-
cules. For a wave packet centered around the state |k)

ny(k)= V(k) o(k)/la . (3)

In this expression the wave packet’s single collision
tunneling probability ¢(%) is multiplied by the exciton—
impurity collision frequency V,(k)/al, where V(&) is the
absolute value of the group velocity of the wave packet.
For randomly distributed impurities, P(l), the normal-
ized probability of separation by ! lattice sites, is the
exponential distribution x(1 —x)?, where y is the mole
fraction of the impurity in the crystal. Therefore, for
an exciton wave packet centered around |k) the mean-
square displacement is given by

(DE(R)) = Z P() Kf(—’?lla‘”—@ H2a® =1V (k) (k) d
1=0

=tV (R o(R) x L =1)a , (4)

where d is the mean impurity separation, Note that this
displacement, unlike that in a typical diffusion problem,
is dependent on d to the first power.

The one-dimensional exciton band dispersion in the
nearest neighbor approximation is given byt

E(R)=E°+2pcoska , (5)

where E° is the band center. An impurity molecule has
excited state energy E;+S. The intermolecular inter-
action matrix element between an impurity and its near-
est neighbors is defined to be g’. Usingthese, the single
collision tunneling probability ¢(k) for an exciton wave
packet centered about the wave vector state [k) can be
calculated by considering the exciton to be a plane wave
scattering from a potential barrier in a one-dimensional
lattice. The secular equations describing an infinite
one-dimensional lattjce with a scattering molecule at
site 0 are

E(R)b_,=Egb_,~pb_y - Bbg
E(R)b_y=Eob_y— B by— b,
E(Rby=(Ey+S) by~ by~ p b, (6)
E(R)b1=Egb,—pby—p by
E(R)by=Eqyb,,— pBb,g— b,
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where b, is the amplitude of the spatial wavefunction at
site n. For the case of the scattering of a plane wave
k, the solution is assumed to have the form

_ pik -ikn,
bpy=e®™ rae™™ (n<0) ,

iRn, (7)
b,=ye™™ (n>0) .

This corresponds to a plane wave of unit amplitude im-
pinging from the left and scattering at site 0 with ampli-
tudes a and y for reflection and transmission, respec-
tively. By substituting Egs. (5) and (7) into (8), satis-
fying continuity at the barrier site, and solving for |y |3
the barrier tunneling probability is obtained as

B/Z 2
4('—ﬁ—> sin®ka
@(k)= 75 7 ; .
[S+ 2(62 _BB ) coska] + 4(%;—)2 sinka

(8)

If the nearest neighbor exciton interactions coupling host
molecule to host molecule and host molecule to impurity
molecule are equal, i.e., g'=p, the Eq. (8) simplifies
to

4 sin®ka

?+4B sintka (9

(k)=

Note that ¢(k) is zero at the band edges k=0 and k=+17/q,

and that for the case of g’'= 8, ¢(k) is at a maximum at
k=x7/2a, the band center.

The absolute value of the group velocity given by

V (k)= 11 PE(k) ‘ l 2608 Cinka (10)

nook

is also peaked at the center of the band. Thus, (D%(k))
can be substantially greater for excitons near the band
center than for those at the band edges. Substituting
Egs. (9) and (10) into (4), the mean-square displacement
of a state |k) at time ¢ is given by

8agsin’ka dt

= S e

For the problem of interest here the impurity is not
amalgamated into the band and therefore §%>> 4p%,
Eq. (11) reduces to

(11)

M_ﬁ{f_g‘ﬁ sin®ka

(D¥R) = (12)

The sin’ka dependence results in a very sharp peaking
of the mean-square displacement around the state |%)
=+7/2a, the band center.

In a real crystal there is a distribution of excitons
among the band wave vector states {k). To obtain the
average mean-square displacement of an ensemble of
excitons at a temperature T an ensemble average over
the band states must be performed. Here we will as-
sume that the band is in thermal equilibrium with the
lattice at temperature 7T.5®112:2(¢):2(d The ramifica-
tions of a nonequilibrium exciton population distribution
will be discussed below in connection with the exciton
trapping problem. Thus,

Coherent exciton transport

T/a

Z <D%(k)> g E®V/ KT

(DY(T)) = 22l . (13)
e-E(k)/ KT

k==t/a
The denominator is the partition function for a system
of one-dimensional excitons with a dispersion given by
Eq. (5).%® For the case of g'=g and S2 >4 substitut-
ing Eqgs. (5) and (12) into (13) yields the thermal average
mean-square displacement for the ensemble

%SB—;E sin®(ka)| e

v/a
Z p2Beoska/ KT

k==7/a
Since both summations are symmetrical about k=0, the
limits of summation can be changed. For a band with
a large number of states the sums can be taken to inte-

~2Bcoska /KT

<D§( T)) - kz-7/a

(14)

grals. Substituting y=28/KT and 6 = ka yields
o~ Bagddt I sin®0e”°?qp
<D%( T)> = ;gz £ f(‘;re-y 88 7p (1 5)
or
3033 dt )
DT 1
Y = R e o)

where I3,,(v) and Iy(v) are modified Bessel functions.
Equation (16) gives the thermal average mean-square
displacement for an ensemble of coherent excitons at
time ¢ and temperature T in a one-dimensional system
with mean impurity separation 3, band-impurity energy
difference S, and intermolecular interaction matrix ele-
ment 5. The more general result, in which gand p’ are
unequal, may be obtained by substituting Eqs. (8) and
(10) into (4) and taking the thermal ensemble average.
In this case the mean-square displacement is

r/a (BIZ/B)Z sina(ka) e-zﬂcoska/KT
[ — 72 12 ’
= 2(62 B >coska +4(B'2/ B)? sin’ka
e Bapdt | 8
(D(t)) = 5 7%
e-ZB coska/ KT
k=0

(17)
The exciton probability distribution at time f is given
by

. -(na)2/ 202(¢)

t(n)“ U(t)m (2 ¢ / ¢ ’
where o(t) = (D3(T))*/2 and n is the number of lattice sites
displacement from the initial position, equivalent to a
distance x=na. Strictly speaking the probability distri-
bution P,(n) should be calculated in increments of d,
since there is an equal time-averaged probability of
finding the exciton on any lattice site in a particular
cage.

(18)

The model developed above permits the calculation of
the mean-square displacement of an ensemble of coher-
ent one~dimensional excitons at thermal equilibrium at
temperature T in a crystal containing a low concentra-
tion scattering impurity. Since the inclusion of scatter-
ing impurities in an otherwise perfect crystal changes
the apparent mode of exciton migration from coherent
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TABLE I. Median distance (lattice sites)
for excitons in a one-dimensional band
with bandwidth 1,25 cm™ and 2 scatter-

ing impurity band center separation of
1

5em™,
Time Impurity concentration
(usec) 0% 1074° 10-3%

0 0 0 0
200 1,5x107  2,7x10* 8.5x10°
400 3.0%x107  3.8x10% 1,2x10
600  4.5%x107 4,7x10? 1,5x10%
800 6.0x107 5,4x10% 1,7x10t
1000 7.5x107  6.0x10¢ 1,9x10

3Calculated from the thermal average
group velocity in one direction,

PMedian random walk distance caleulated
from Eq. (16) and D, =0. 67((D} )Y/ 2,

to diffusive when viewed on a time scale long relative

to the impurity scattering time, a dramatic effect on the
distance of migration can be expected even if the impuri-
ties are extremely dilute and chemically very similar to
the host. As an example of this sort of effect the dis-
tances traveled by a coherently migrating exciton in a
“perfect” crystal and in crystals having several differ-
ent concentrations of scattering impurities are displayed
in Table I. In this example the exciton bandwidth is
taken to be 1.25 cm™, which is representative of a
narrow triplet exciton band arising from weak exchange
interactions. A value of 5 cm™ is used for S, the dif-
ference in energy between the triplet band center and
the corresponding impurity excited state. The temper-
ature is 1,6 °K, The perfect crystal coherent migra-
tion distances are calculated from the thermal average
group velocity in one direction, and the median dis-
tances traveled in a crystal with scattering impurities
are calculated using Eq. (16). Table I demonstrates
the dramatic reduction in mobility produced by low con-
centration impurities even for a small value of S.

The effect of varying the exciton bandwidth is dis-
played in Fig. 1, where the thermal average mean-
square displacement calculated from Eq. (16) is plotted
versus temperature. The impurity concentration is
1072, and although the bandwidth changes the same ratio
S/B=10 is used for all curves. Thus, ¢(k), the k-de-
pendent transmission probability, is the same for all
curves. Since the mean-square displacement is sharply
peaked at the center of the band [cf. Eq. (12)], narrow
bands for which 43<K7 over the entire range of temper-
atures considered display little temperature dependence,
However, in wider bands large changes in the k-state
population distribution occur with changing temperature.
This produces highly temperature-dependent mean-
square displacements. Note that at a given temperature
the system with the largest bandwidth does not necessar-
ily have the greatest mean-square displacement, even
though the ratio of S/ is kept constant. In all cases it
has been assumed that the host-guest interaction ma-
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trix element 8’ is equal to the host-host interaction g.
The effect of varying g’ can be calculated using Eq. (17).
Application of Eq. (17) yields the result that the mean-
square displacement is scaled approximately by a factor
of (8'/R¥. Increasing g couples the impurity more
strongly to the host molecules on either side, thus in-
creasing the tunneling probability and therefore the
mean-square displacement.

Recently, Greer’ examined the exciton transmission
characteristics of a perfect one-dimensional molecular
crystal containing a defective segment, i.e., a region
with substitutional scattering impurities. In the limiting
case that the defective segment contains one impurity
molecule Greer’s result [Ref. 7, Eq. (48)] is identical
to the single collision barrier penetration probability
employed in Eq. (9). In general, however, these two
models treat different, though related, problems. Greer
obtains recursion relations for the transmission proba-
bility of an exciton through a finite defective segment
containing an arbitrary concentration of impurities. For
the problem involving a random distribution of impuri-
ties in the segment he is able to obtain approximate so-
lutions for the transmission probability valid in several
limiting cases. This permits him to obtain an upper
bound to the dependence of the exciton flux in the region
of the crystal after the defect segment on the number of
impurity molecules in the defect segment. The result
that the flux falls off faster than N'/2 ¢ ¥¥  where N is
the number of impurity molecules in the defective re-
gion, is valid for large N in the infinite time limit,

a A= =250cm
Z §= =5¢m-l
S 40 - .
3 | LATTICE SPACING =44 =50cm-
wn
o MEAN IMPURITY SPACING = 4004
B o
s 330" ;
Yo =00 o |
S $=1000 e
<1 |

©50: !
% 520 B=2cm’ -
o s=20cm-!
oC i
& i
-
g o
=Z i
3 8=5cmr
= S=5cm-!

o = . N PN T S T _ L
2 22 42 62 82 0.2
TEMPERATURE (°K)

FIG. 1. The exciton mean-square displacement per second

for a one-dimensional system containing scattering impurities
is graphed as a function of temperature for various values of
the intermolecular interaction matrix element 3. The band is
assumed to be in thermal equilibrium at all temperatures.

The lattice spacing is 4 & and the mean impurity separation is
400 A. S is the energy difference between the center of the
band and the scattering impurity., The same ratio $/8=10 is
used for all curves; thus, the k-dependent transmission prob-
ability is the same for all curves. At low temperature, where
28/KT>1, the population is near the bottom of the band, result-
ing in small displacements. As the temperature is raised
more mobile states are populated, When 28/K7<1 the dis-
placement becomes effectively temperature independent. Note
that in the temperature range considered the widest bands do
not necessarily have the greatest mean-square displacement.
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Greer begins with an infinite ensemble of excitons on
one side of the defect region, thereby enabling the flux
to remain finite at very long times.

In contrast the model presented here deals with a finite
ensemble of excitons migrating in the interior of a defect
region, i.e., the entire crystal contains scattering im-
purities. The dependence of the flux F on N can be cal-
culated using Eq. (18) as

_aN2
F=CNe 8% | (19)

where C and B are parameters independent of N, but de-
pendent on the time {. Here N is the number of scatter-
ing impurities traversed after a time {. This result is
not strictly analogous to Greer’s since for a finite size
exciton ensemble the flux tends to zero at infinite time.

{Il. IMPURITY SCATTERING AND TRAPPING

It is clear from physical and theoretical considerations
that the presence of scattering impurities in an otherwise
perfect crystal will have a considerable effect on exciton
migration when the temperature is reduced sufficiently
such that exciton—phonon scattering is relatively infre-
quent compared to exciton—impurity scattering. How-
ever, it is not yet possible to directly measure exciton
displacements in a bulk crystal. Therefore, the results
obtained for the thermal average mean-square displace-
ment in Sec. II will be applied to an experimental observ-
able, the time-dependent intensity of emission from ex-
citations localized on low energy impurity sites (traps)
after impulse optical excitation of a crystal dilute in both
scattering impurities and trapping impurities. In such
optical excitation experiments the trapping impurities
play the role of “sensitizers”3® to exciton migration;
after excitons encounter these sensitizers the event is
recorded by emission of a photon of characteristic fre-
quency. However, to use trapping as a probe of exciton
migration the exciton~trap interaction must be well un-
derstood in order to decouple the two problems, The
exciton-trap interaction has been the focus of many cur-
rent theoretical investigations,?!®’ However, by care-
fully choosing experimental conditions it is possible to
greatly simplify this problem. The rate at which exci-
tons reach traps can be directly related to the rate of
exciton migration in our model provided several physi-
cally reasonable conditions are met. The first is that
the exciton—trap interaction is fairly short range, so
that proximity of the exciton to the trapping impurity is
a necessary condition for trapping. For narrow exciton
bands in one dimension (e.g., the case of one-dimen-
sional triplet excitons) the intermolecular interaction is
very short ranged and the presence of scattering impuri-
ties tends to mitigate still further long range interac-
tions. Second, we must have a reasonable knowledge of
what fraction of exciton—trap encounters result in trap-
ping. In the above model an exciton remains caged be-
tween scattering impurities for a significant period of
time. During this period the time averaged exciton
probability is uniformly distributed throughout the cage.
An exciton which is in a cage with a trapping impurity
will have a probability of trapping which is tremendously
greater than that which would be predicted by consider-
ing coherently migrating excitons in the absence of scat-
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tering impurities because the scattering impurities
greatly entend the exciton-trap interaction time. Thus,
we assume that for efficient barriers, i.e., §/8>1, a
necessary and sufficient condition for trapping is that the
cage within which the exciton is localized contains at
least onetrap. Finally, although itwill become clear be-
low that the process of “detrapping” (i.e., thermally as-
sisted promotion from alocalized trap state to a delocal-
ized band state) can be explicitly treated, the necessary
complications can be avoided by lowering the thermal en-
ergy available to the point where K7« A, where A is the
difference in energy between the trap and band.

For an ensemble of excitons the time-dependent popu-
lation of the band E(f) and of the trap states T(#) can be
described by a kinetic scheme which explicitly considers
the rate constant for decay from the band in the absence
of trapping, K, therateconstant for decay from the trap
states, K;, and the time-dependent rate for localization
per unit population, K (#):

E()=-[K +K (DE®) ,
T(t)= - K, T+ KD EW) .

(20)
{21)

Detrapping could be included by adding a term +K,T(f)
to Eq. (20) and subtracting that term from Eq. (21),
where K, is the rate constant for promotion from the
localized state. A similar kinetic scheme has previous-
ly been considered!® which employed a time-independent
localization rate constant. In that case it is assumed
that all excitons have equal probability of trapping.
However, in the model developed above this is not the
case,

The rate of localization can be directly calculated in
light of the previous discussion. As the excitons move
from cage to cage an ever increasing fraction of the en-
semble encounters cages with traps. The probability
of encountering at least one trap in #n lattice sites is

P)=1-(1-fY ,

where f is the mole fraction of traps present. The prob-
ability of excitons migrating » lattice sites in time ¢/,
P,(n), is given by Eq. (18). Thus, the total fraction of
the ensemble which has trapped after time ¢ is

(22)

F(t)= Z P(n)P,(n)

n=-o

2a2 S n -(na)z/ZUZ(t)
=1~ ’woz(t);(l_f)e ’

where the mean-square displacement (DA(T)) contained
in o(£) can be calculated using Eq. (16) or (17).

(23)

Note that Eq. (23) is strictly valid only in the limit
that the number of steps in the random walk is large
enough to treat the position distribution as a continuous
function. This condition occurs in samples in which the
fraction of scattering impurities is larger than the frac-
tion of trapping impurities, Taking the sum to an inte-

gral Eq. (23) can be evaluated to yield
F(t)=1 - eAterfe(VA7), (24)

where erfc(u) is the well-known statistical function, er-
ror function complement, and A is given by
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A (25)

_ AT [n(1 - 1)F
2t ’

A is time independent since (D?(T)) is linearly dependent
on the time ¢. The rate of localization per unit popula-
tion K (¢) is the time derivative of the total fraction of
trapped excitons after time #,

K. ()= % F(t) =A[(WT:)1—}-5 - et erfc(At)l/z]. (28)

K, (1) is thus a time-dependent rate “constant” which
has been calculated by explicitly considering the dynam-
ics of exciton migration. In general, Eq. (26) is valid
for any diffusive motion in one dimension in the presence
of randomly distributed trapping impurities. For exam-
ple, in the case of a “pure” random walk with step fre-
quency w and step size ! the mean-square displacement
is just lzwt, in which case A can be calculated from Eq.
(25) and substituted into Eq. (26)

Figure 2 displays K () versus time for three values
of A. It can be seen that K ,(f) is a highly time-depen-
dent function. The integrated area under each curve is
unity, which can be seen from Eq. (24), and is thus in-
dependent of the value of A. The rate of localization is
K (1) multiplied by the exciton population at time ¢, E(f).
Since E(f) is a continuously decreasing function, those
curves which have the most area at early time (i.e,,
those with the largest value of A) have the fastest trap-
ping rate.

The expression for K,(f) can be substituted into Eqgs.
(21) and (22) along with the initial conditions of unit ex-
citon population, i.e., E(0)=1 and 7(0)=0. These con-
ditions correspond to the case of impulse optical excita-
tion. In general, T(0) will depend on the method of

200
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160f:

——— A=800SEC”
________ A=150 SEC”'

c™
8

1
!
1
il
1
140F 1
i
1
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\l
A

1) (SE

= 100t

KL(
58 8

RATE OF LOCALIZATION PER UNIT POPULATION
!
n
S

2 4 6 8 0 12 14 16 18 Zb
TIME (MSEC}
FIG. 2. The rate of localization per unit population K (¢) is
plotted versus time for three values of A, a parameter which
depends on the mean-square displacement and the mole frac-
tion of trapping impurities. The figure illustrates clearly the
time dependent nature of the localization function for systems
in which exciton transport is macroscopically diffusive and
traps are randomly distributed. This is in contrast to pre-
vious work which utilized a time independent trapping rate
constant,
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preparation of the excited state. If the traps are dilute,
very few excitons are created in cages containing traps
and setting 7(0)=0 introduces only a small error into
the calculated excited state populations. The resulting
expression obtained for the time-dependent trap popula-
tion is

VAt 2 2
T(t)=e¥rt [\/’i_ f duexp(g{l—tgﬂwe" erfc(u)—1>
T o

At
—f dze‘erfc(zl/a)exp(-(—ISI-Z—K’ﬁ+e‘erfc(z‘/z)—1>]
A )

27

The integrals in Eq. (27) can be numerically evaluated
to give the time-dependent trap population, which is pro-
portional to the time-dependent intensity of trap emis-
sion following impulse optical excitation. This provides
the necessary physical observable. Implicit in the
mathematical development of Eq., (27) are two assump-
tions. The first is that Eq. (18) remains valid in the
presence of trapping which would tend to perturb the
Gaussian nature of the exciton spatial distribution. Sec-
ond, in Eq. (23) it is assumed that the dominant decay
path for the exciton population is via trapping. These
assumptions will be discussed in detail in a subsequent
publication on impurity scattering and trapping where
alternative formalisms will be presented which avoid
the assumptions. For the physical situations discussed
below, the above assumptions result in very minor
changes in the calculated curves. The parameters on
which the trap intensity depends in addition to the radia-
tive rate constant are the concentrations of scattering
and trapping impurities, the temperature, the intermo-
lecular interaction matrix element, the difference in en-
ergy between the band center and corresponding impur-
ity energy level, and the exciton and trap rate constants
for radiative plus nonradiative decay to the ground state.
These parameters are amenable to independent experi-
mental determination. Thus, low temperature time-de-
pendent optical experiments can be used to determine
the applicability of the model presented here to particular
experimental system.

Equation (27) gives the intensity of trap emission as
a function of time. The emission builds up in a compli-
cated fashion determined by the functional form of K, (f)
and decays with the trap lifetime 1/K,. To illustrate, in
Fig. 3 the time-dependent trap intensity following an
impulse excitation which creates unit exciton population
is plotted for different values of the band-impurity en-
ergy spacings. The parameters are typical of narrow

. triplet exciton bands in molecular crystals; the band-

width is 1 em™, K, =K.=33,3 sec, the concentration
of scattering impurities is 107, the concentration of
traps is 5x107%, and the temperature is 1°K. As the
ratio S/B increases the buildup rate slows, the total in-
tegrated intensity of trap emission decreases, and more
decay takes place via exciton emission, This last phe-
nomenon was first reported by Hochstrasser and White-
man, ! who observed a 60-fold increase in exciton emis-
sion at 4.2 °K in 1, 4-dibromonaphthalene when 17% dg-
dibromonaphthalene was added.
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FIG. 3. Calculated trap populations as a function of time are
used to illustrate the effect of increasing S, the energy dif-
ference between the scattering impurity and the band center,
on the time-dependent intensity of trap emission following
impulse optical excitation of the exciton band. The parameters
used describe a narrow exciton band of width 1 em™ in thermal
equilibrium at 1°K. Rate constants for exciton and trap decay,
Kg and K respectively, are 33.3 sec™! and trap and scatter-
ing impurity concentrations are 5x10-5 and 10, respectively.
As S increases the buildup maximum is shifted to longer times
and the integrated intensity of the trap emission decreases.

Figure 4 is an illustration of the effect of temperature
on the trap buildup rate in a system which exhibits a
large temperature dependence in the mean-square dis-
placement throughout the temperature range of interest.
Here the bandwidth is 29.6 cm™, K=K, =313 sec™, the
scattering impurity concentration is 1073, the difference
in energy between the scattering impurity and the center
of the band is 50 cm™, and the trap concentration is
5x1075. The increase in buildup rate with increasing
temperature is a consequence of populating more of the
highly mobile % states near the band center. As the
temperature rises exciton—phonon scattering and detrap-
ping will become increasingly important and must be
taken into consideration when appropriate.

1V. APPLICATION TO 1,2,4,5-
TETRACHLOROBENZENE

In this section the results obtained above will be ap-
plied to the first triplet exciton band in single crystals
of 1,2,4,5-tetrachlorobenzene. A good deal of previous
low temperature experimental work on this system has
been interpreted in terms of a one-dimensional coher-
ent transport model, 2(¢»2(4:5(2113 1 addition, a so-
called “pure” crystalof TCB contains 0. 03% monodeutero-
TCB (hd-TCB). The hd-TCB’s first excited triplet state
lies 10.4 cm™ above the center of TCB’s exciton band,
which is 1,4 cm™ wide. Monodeutero-TCB is thus the
type of scattering impurity considered in the previous
sections, It has a large enough S so that its first triplet

Coherent exciton transport

state is not amalgamated into the band, yet it is small
enough that the probability of a scattering event result-
ing in reflection is not unity.

A proper description of coherent transport in real
crystals of TCB should include impurity scattering, If
the exciton coherence length is sufficiently long, the
model developed above will apply. Since the mean-
square displacement is not a direct observable, the in-
tensity of optical emission from the naturally occurring
17.3 em™ deep x-trap found in TCB can be employed as
the observable. Equation (27) gives as a function of time
the trap population, which is proportional to the intensity
of trap phosphorescent emission after impulse optical
excitation of the exciton band. The parameters neces-
sary for the evaluation of Eq. (27) are (1) the exciton in-
termolecular interaction matrix element 8, (2) the ener-
gy difference between the band center and the impurity
state S, (3) the mole fraction of scattering impurities,
(4) the mole fraction of traps, (5) the exciton lifetime,
(8) the trap lifetime, and (7) the temperature.

For the TCB triplet exciton system all of these param-
eters are available. The exciton bandwidth 42 has been
measured by two independent means,?®'5¢® Thege ex-
perimental results are in excellent agreement and yield
a value of 3=0.35 cm™. A reasonable value for S can
be obtained by using the difference between the triplet
state energies of h,-TCB and hd-TCB impurities in a
d,-TCB host crystal. This number was measured spec-

J S=50cm”
B=74cm’
Kr=Kg=3I13sec™
TRAP CONCENTRATION =5x10™5
SCATTERING IMPURITY
CONCENTRATION = 1073

TRAP PROBABILITY
w

DU I 1 1 1
2 3 4 5
TIME (MSEC)

FIG. 4. The effect of temperature on the time-dependent trap
population in the presence of exciton scattering impurities is
illustrated for an example of a wide triplet exciton band. The
impurity concentrations are the same as Fig. 2 but §=7.4
cm™t, §=50 c¢m™!, and the rate of decay Ky =Kp =313 sec’l. As
temperature is increased the population is shifted to the center
of the band, resulting in a large increase in the mean-square
displacement. The buildup rate increases as does the fraction
of the ensemble which decays via trap emission,
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FIG. 5. The points are the experimentally determined time

dependent emission from the x trap in h,-1,2, 4, 5-tetrachloro-
benzene (,~TCB) following impulse optical excitation, The
solid line is the calculated trap intensity assuming the excitons
are scattered only by the naturally occurring (0. 03%) isotopic
impurity 2d-TCB. The calculated curve does not utilize adjust-
able parameters. The experimentally determined parameters
used in the calculation are 8 =0.35 cm‘l, §=10.4 cm‘1, Krp

=27 sec™!, Ky =36 sec", the x-trap concentration is 5x107%,
and the excitons are taken to be in thermal equilibrium at the
experimental temperature 1,25°K, If the dominant mode of
exciton transport is coherent in the TCB system at very low
temperatures, the agreement between theory and experiment
demonstrates that isotopic impurity scattering has a major
influence on exciton transport in the TCB system.

troscopically and has a value of 10.4 cm™, Since the
scattering impurity under consideration is the naturally
occurring isotopic species hd-TCB, the natural abun-
dance of deuterium can be used to obtain an impurity
mole fraction of 3x10™, Although there are three trip-
let sublevels, at low temperatures in the absence of
spin-lattice relaxation they can be considered as sepa-
rate ensembles. Only one trap sublevel is observed in
emission to the origin and has a lifetime of 39 msec.
(Another sublevel which is formally allowed by symme-
try is not observed. Experiments performed on TCB
traps in a durene host indicate that it is weakly radia-
tive and has a lifetime of ~ 760 msec.) Experiments
performed on this system have indicated®‘® that spin
polarization is preserved upon trapping. The lifetime
of the exciton sublevel coupled to this trap level has been
determined to be 28 msec. Both values are in agree-
ment with previously reported values. ™1 An x-trap
mole fraction of 5x107° was experimentally determined
using the method of Ref. 2(d). The details of this de-
termination will be discussed in a subsequent publica-
tion., The temperature employed for this calculation was
1.25°K. This is the temperature used in the experi-
mental investigation discussed below.

Using these seven parameters and Eq. (27) of Sec. II
the time-dependent intensity of x-trap emission after
impulse optical excitation of the TCB triplet exciton band
can be calculated with no adjustable parameters. The
result of this calculation is the solid curve in Fig, 5.

In the same figure experimental results are displayed.
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In the experiment the x-trap time-dependent phosphores-
cent emission was recorded using a monochromator,
phototube, and analog-to-digital data handling equipment,
The samples were excited either directly into the triplet
state with a 20 nsec duration doubled ruby laser pulse or
into the first singlet state with a 3 ysec duration filtered
flash lamp pulse. In each case the results were the
same. Details of sample preparation,® and x-trap
and TCB exciton?® spectra are given elsewhere. The
temperature was maintained at 1.25 °K by pumping on
the liquid helium bath in which the TCB single crystal
was immersed. This temperature is sufficiently low to
assure that detrapping does not occur, ¢

5(b)

Although the maximum intensity in the calculated
curve occurs somewhat earlier than in the experimental
curve, the overall agreement between experiment and
theory is good. The model used in the calculation is
based on a coherent mode of exciton transport. Earlier
experimental results have indicated that exciton-phonon
scattering times may be quite long in this system at
temperatures below 3 °K.2(%:5@)+12 The results pre-
sented here are also consistent with a long exciton-pho-
non scattering time. If coherent migration is in fact the
dominant mode of exciton transport, then exciton-im-
purity scattering is clearly a major scattering mecha-
nism in this system at very low temperatures, This can
be seen by considering the trapping rate in the absence
of scattering impurities. From the thermal average
mean square velocity given in Table I and the known con-
centration of trapping impurities the mean first encoun-
ter time can be calculated and is on the order of micro-
seconds, As discussed in Sec. III, without scattering im-
purities to localize excitons in the vicinity of the traps
a knowledge is required of the fraction of exciton-trap
encounters y which result in trapping. To match the
observed build up rate y must be on the order of 107,
which seems quite low. Ify is between 0.1 and 1.0,
which seems reasonable, 317 the trap buildup time cal-
culated in the absence of scattering would be orders of
magnitude too fast. Experimental results like those
displayed in Fig., 5 were previously reported and inter-
preted in terms of a strictly phenomenological scatter-
ing time.!® Using curve fitting techniques a time on the
order of 10 nsec was obtained and attributed to exciton—
phonon scattering. Impurity scattering was not con-
sidered. An estimate of the impurity scattering time
can be obtained by dividing the thermal average group
velocity by the median barrier separation. This time
is also on the order of 10 nsec, and again demonstrates
the exciton scattering by the naturally occurring iso-
topic impurity #d-TCB is a major scattering mecha-
nism. Althoughthe discussion here involves one-dimen-
sional systems, it is reasonable to assume that exci-
ton—isotopic impurity scattering is also significant in
multidimensional systems. However, caging of exci-
tons by low concentration impurities will not occur in
multidimensional systems and therefore the effect on
an observable such as trapping will not be as dramatic
as in the one-dimensional case. ‘

There are several factors which may contribute to the
early peaking of the calculated curve in Fig. 5 besides
the simple possibility that some of the values of the
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parameters used in the calculation are in error. An-
other possibility is that there are other scattering spe-
cies, either chemical impurities such as “3C substituted
molecules or crystal lattice defects, which cause sig-
nificant scattering. The additional scattering centers
would further hinder exciton transport and therefore
shift the experimentally observed peak to longer time,

Another factor which may enter here and could be-
come very important under different experimental cir-

cumstances involves the question of thermal equilibrium,

The mean-square displacement is sharply peaked around
the center of the band [Eq. (12)] and consequently the
band center states will trap at a faster rate than states
near the band edges. This can result in depletion of
population from the band center if exciton—phonon scat-
tering is not fast enough to maintain a thermal distribu-
tion of population. In this very slow exciton—phonon
scattering limit exciton—phonon scattering from the band
edges toward the band center can become the rate de-
termining step in exciton trapping. Thus, the thermal
equilibrium trapping rate discussed above is the fastest
possible rate, for it permits the slowly trapped band
edge states to be efficiently funneled through the band
center, Therefore, if a system is in the very slow ex-
citon—phonon scattering limit, the peak in the experi-
mental results will be shifted toward long times relative
to the calculated curve which assumed thermal equilib-
rium. In this situation raising the sample temperature,
which results in increased exciton-phonon scattering,
will actually enhance exciton trapping until a tempera-
ture is reached at which the phonon scattering rate be-
gins to dominate the impurity scattering rate.

An additional factor which would affect the time de-
pendence of the trap population and therefore the trap
intensity is exciton—phonon scattering. The model pre-
sented above includes only the effects of exciton-impur-
ity scattering. An exciton—phonon scattering time which
is comparable to the exciton—impurity scattering time
would still permit the above model to be used, but would
result in a reduction in the trapping rate. This will
shift the experimental curve toward long time relative
to the calculated curve, as is the case in Fig. 5. An
average exciton-phonon scattering time on the order of
tens of nanoseconds would be required to account for
the observed discrepancy. However, it is not possible
at this time to distinguish between the various factors
which could account for the early peaking of the calcu-
lated curve.

Finally, it is important to consider whether a strictly
incoherent mode of exciton {ransport can account for the
experimental data. To this end we first considered a
random walk exciton on a one-dimensional lattice with-
out scattering impurities. A value for the random walk
step time for TCB can be estimated to be on the order
of 5 psec.!” In this case the time-dependent trap build-
up, in the absence of scatteving impuvrities, is the right
order of magnitude to account for the observed data.
The probability of taking a step past an hd-TCB impurity
is on the order of 0.001. This will reduce the ability of
a one-dimensional random walk exciton to reach a trap.
It is therefore possible to eliminate a stricily one-di-
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mensional vandom walk as the mode of exciton transport
in the TCB system at 1,35 °K.

Although a one-dimensional random walk is unlikely,
it is important to consider the effect that small multi-
dimensional intermolecular interactions could have on
exciton transport in this system. Both theoretical and
experimental considerations are consistent with a basi-
cally one-dimensional character for the TCB triplet ex-
citon system. Experimental results indicate that a sec-
ond intermolecular interaction is down by a factor of at
least 10* relative to the dominant linear chain intermo-
lecular interaction, !®* However, for a random walk pro-
cess even an interaction down by a factor of 10 could
be significant in this system. This small two-dimen-
sional intermolecular interaction would permit a random
walking exciton to sample greater than an order of mag-
nitude more lattice sites than a strictly one-dimensional
randoin walker., The problem is complicated by the ef-
fect of the hd-TCB scattering impurities on what is basi-
cally a one-dimensional random walk. However, if the
exciton traps on a single encounter and if the multidi-
mensional interactions are not too small, it would be
possible to account for the experimental data in Fig. 5
strictly on the basis of an incoherent (random walk)
mode of exciton transport.

To try and resolve some of the questions pertaining
to triplet exciton transport in TCB at very low temper-
atures we are currently conducting experiments on TCB
samples containing known concentrations of 4,-TCB.
The d,-TCB acts as a scattering impurity and therefore
the model for coherent one-dimensional transport and
trapping developed in Sec. II and III can be employed
and compared to experiments in which the concentration
of the scattering impurity is varied. These experimen-
tal results and the question of the importance of multi-
dimensional triplet exciton transport in TCB will be dis-
cussed in a subsequent publication.

V. CONCLUSIONS

A model has been presented which permits the calcu-
lation of the mean-square displacement of an ensemble
of coherently migrating one-dimensional excitons in a
crystal containing scattering impurities, The mean-
square displacement as a function of the exciton wave
vector k is very sharply peaked near the band center.
This can result in an ensemble mean-square displace-
ment which increases with increasing temperature if ex-
citon—phonon scattering does not dominate impurity scat-
tering., The model was applied to the problem of exciton
trapping. An expression was obtained for the time de-
pendent trap population after impulse optical excitation
of a crystal. Since the trap population is proportional
to the intensity of trap emission, this provides the nec-
essary experimental observable. The time dependent
trap population function depends on parameters which
are experimentally accessible and therefore can pro-
vide a test for one-dimensional coherent exciton
transport.

The trapping model was applied to triplet excitons in
“pure” crystals of 1, 2, 4, 5-tetrachlorobenzene (TCB) in
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which the naturally occurring isotopic impurity mono-
deutero-TCB acts as a scattering impurity. Without
adjustable parameters the model produced good agree-
ment with experimental data on time dependent trap
emission in the TCB system. However, it was pointed
out that although TCB is basically a one-dimensional ex-
citon transport system, incoherent exciton migration
coupled with a small degree of multidimensional trans-
port could also account for the experimental data, If
transport is basically coherent, the results indicate that
exciton-impurity scattering from naturally occurring
isotopic impurities is an important scattering mecha-
nism in this system at very low temperatures,
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