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The authors show that the effect of self-focusing can be controlled by exploiting spatial dispersion
effects in a photonic crystal. In the positive refraction region, the critical field value for self-guiding
can be significantly reduced. In the negative refraction region, the self-focusing effect can be
completely suppressed in spite of a positive Kerr coefficient. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2724905�

The propagation of an intense optical beam in general is
strongly influenced by diffraction and nonlinear effects. In a
Kerr medium, the interplay between these two effects can
result in self-focusing or propagation of a self-guided finite-
size wave front.1,2 Self-guiding of an optical beam is useful
for channeling optical information on-chip without using
waveguides. For this purpose it is of interest to reduce its
power threshold. On the other hand, in high power laser ap-
plications, developing approaches to suppress self-focusing
�i.e., to increase its power threshold� is also of great
interest,3,4 since self-focusing leads to filament formation,
which is the precursor of optical damage. In this letter, we
show that self-focusing effects can be controlled with appro-
priate design of the spatial dispersion effects in a photonic
crystal system.

In order to describe the onset of self-guiding in photonic
crystals, we first develop an analytic model. Our approach is
a generalization of a standard semiquantitative description
which considers the propagation of a wide monochromatic
beam with a flattop intensity distribution.5 For simplicity,
consider a beam propagating along a symmetry direction of a
two-dimensional photonic crystal. We define the wave vector
components parallel or perpendicular to the beam propaga-
tion directions as k� or k�, respectively. In the absence of
nonlinearity, the dispersion relation of the linear crystal is
��k� ,k��. With Kerr nonlinearity, where the material is
characterized by an intensity dependent dielectric constant
�=�0+�2�E�2, the dielectric constant shifts by ��=�2�E�2 in-
side the beam region. The dispersion relation for the crystal
inside the beam region thus becomes

���k�,k�� = ��k�,k�� − �� , �1�

where ��=����=���2�E�2�0, and � is an overlap factor
that is related to the fraction of the beam power in the non-
linear material.

At a given operating frequency �0, we suppose that for
the linear crystal �0=��k�

0 ,0�, i.e., �k�
0 ,0��k0 is on the con-

stant frequency contour of the linear crystal. In the vicinity

of k0, the constant frequency contour for the nonlinear crys-
tal at the beam center can then be described as

�0 = ���k�
0 + �k�,�k�� = ��k�

0 + �k�,�k�� − �� . �2�

Since typically ����0, by Taylor expanding ��k�
0

+�k� ,�k�� around the k point �k�
0 ,0� and by taking into ac-

count �0=��k�
0 ,0� and ��� /�k��k�

0,0=0 due to mirror symme-
try, Eq. �2� can be further simplified as

�� = � ��

�k�

�
k�

0,0
�k� + �1

2

�2�

�k�

�
k�

0,0
�k�

2 . �3�

In order to achieve self-guiding, all wave vector compo-
nents at the beam center should undergo total internal reflec-
tion when incident upon the linear crystal, i.e., �k� �0 for all
�k�. The maximum �k� is related to the beam width d as
k�,max=2� /d. Thus, in Eq. �3�, setting k� =0 at k�,max, we
have

��k���k�=0 =	 2��

��2�/�k�
2 �0,k�

0
= k�,max = 2�/d . �4�

Hence the critical field value of the self-guiding is

Ecritical =
1

d
	��2�/�k�

2 �0,k�
0

2��2�
. �5�

For a uniform nonlinear medium, Eq. �5� can be simplified as

Ecritical =
�0

d

1
	�2

, �6�

where �0 is the wavelength in vacuum. Equation �6� is in
agreement with the result for a uniform two-dimensional sys-
tem in Ref. 5.

In a photonic crystal, on the other hand, �2� /�k�
2 is no

longer directly proportional to �0 but instead becomes
strongly structure dependent. As an example, we consider a
photonic crystal with a square lattice of air holes introduced
into a medium with a dielectric constant �0=12 and plot in
Fig. 1 the constant frequency contours of the first band �TE
mode�. The radius of the air hole is 0.35a. For a beam propa-
gating along the �11� direction, self-collimation6,7 occurs at aa�Electronic mail: xfyu@standford.edu
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frequency �s=0.185�2�c /a�. Hence at this frequency,
�2� /�k�

2 =0. In the frequency region �	�s the crystal ex-
hibits positive refraction and �2� /�k�

2 �0. Above �s the
crystal becomes a negatively refracting medium8,9 and
�2� /�k�

2 	0. Therefore Eq. �5� predicts different nonlinear
behaviors in frequency regions below and above �s. In the
frequency region �	�s, self-guiding should occur. How-
ever, the threshold for self-guiding is now determined by the
lattice. In particular, as �→�s

−, ��2� /�k�
2 �k�

0,0

��s−��.
From Eq. �5� the critical peak field value for an optical beam
becomes

Ecritical �
1

d
	��s − ��

�s�2
�7�

and asymptotically approaches zero as the frequency ap-
proaches the self-collimation frequency from below. On
the other hand, in the frequency region of the first band with
���s, self-focusing can be completely suppressed.

Below, we seek to numerically demonstrate these non-
linear effects in a photonic crystal by nonlinear finite deffer-
ence time domain simulations.10 We first test our method in a
uniform nonlinear medium. We simulate a monochromatic
beam with a transverse Gaussian profile propagating through
a two-dimensional uniform medium with Kerr nonlinearity
�i.e., �=�0+�2�E�2�. The width of the Gaussian beam is 14a.
At each operating wavelength, we gradually change the peak

field amplitude of the input and obtain the critical peak value
by examining at the field pattern until no significant diffrac-
tion occurs within the computation cell. Figure 2 shows the
results of the critical peak field value versus the wavelength.
�The electric fields in all plots are normalized to 1/	�2�. The
slope of the fitting line differs with the slope predicted from
Eq. �6� by about 25%, due largely to the fact that Eq. �6�
assumes a flattop beam while in our simulation we use a
Gaussian beam. Nevertheless, the linear dependence of the
critical field on wavelength is clearly seen, in agreement with
the analytic results of Eq. �6�.

Using the same numerical methods, we obtain the criti-
cal field value for self-guiding in the photonic crystal shown
in Fig. 1. Figure 3 shows the wavelength dependency of the
critical field value, for the same Gaussian input pulse with a
width of 14a. As predicted from Eq. �5�, self-guiding occurs
in the positive refraction region with �	�s. When ���s,
the critical field value for self-guiding is much larger in the
crystal compared with the uniform medium, since the air
holes in the crystal reduce the amount of nonlinear materials
present �i.e., in Eq. �5�, the overlap factor � is reduced�. The
critical field value reduces as frequency increases and indeed
vanishes when �→�s

−. In the vicinity of �s
−, which is the

regime where Eq. �7� is valid, indeed the numerical results
agree very well with the fit using Eq. �7�.

The numerical simulations also demonstrate that self-
guiding is completely suppressed in the negative region at
���s. Figure 4�a� shows the strong defocusing of an optical
beam at �=0.21�2�c /a�, which is above the self-collimation
frequency in the crystal, with an initial field amplitude
��2�E�2
0.98�. In comparison, a clear self-guiding effect is

FIG. 1. �Color� Constant frequency contours of the first band �TE mode� of
a photonic crystal at frequencies �=0.05,0.175, 0.22�2�c /a� �solid lines�
and frequencies �=0.055,0.18, 0.225�2�c /a� �dashed lines�. The crystal
consists of square lattice of air holes introduce into a dielectric ��=12�. The
radius of the hole is 0.35a, where a is the lattice constant. The x direction is
along the �11� direction of the crystal. The insets are ��ky� in the vicinity of
ky =0 at the three frequencies �=0.05,0.175, 0.22�2�c /a�.

FIG. 2. �Color� Critical field value vs wavelength in a nonlinear uniform
medium for an incident optical beam with a width of 14a. The medium has
a nonlinear dielectric constant �=�0+�2�E�2, where �0=12. The blue dots
are the simulation results and the red line is a linear fit.

FIG. 3. �Color� Critical field value vs wavelength in a nonlinear photonic
crystal. The crystal has the same parameters as in Fig. 1. The incident
optical beam has a width of 14a. The blue dots are the simulations result and
the red line is generated by fitting using Eq. �7�.

FIG. 4. �Color� Magnetic field distribution in a �a� nonlinear photonic crys-
tal and �b� nonlinear uniform medium at a frequency of 0.21�2�c /a�, where
a is the lattice constant in the crystal. The width of the incident optical beam
is 14a. The maximum amplitudes of the input electric field are �a�
0.98�1/	�2� and �b� 0.06�1/	�2�.
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observed in a corresponding uniform medium with a much
lower input field amplitude ��2�E�2
0.06� �Fig. 4�b��.

Finally, we estimate the power level required to observe
the effects predicted here in the AlGaAs system, in which
spatial soliton propagation has been widely studied. Assum-
ing a Kerr coefficient n2=1.4�10−13cm2/W, which is appro-
priate for AlGaAs at 1.55 
m,11 our estimation indicates that
when the power exceeds a threshold of 5 kW, a spatial soli-
ton with a beam width of 4.5 
m forms in a uniform slab
with a thickness of 0.5 
m. �Consist with the experiments in
Ref. 12 at a different thickness and beam width.� In such a
slab system, our theory predicts significant modification of
the power threshold for spatial soliton formation once the
photonic crystal is introduced.
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